樓亞玲 劉進(jìn)★ 徐煒 楊水新
腫瘤相關(guān)性巨噬細(xì)胞在胃癌中的研究進(jìn)展
樓亞玲 劉進(jìn)★ 徐煒 楊水新
胃癌是消化道常見的惡性腫瘤,病死率高,嚴(yán)重危害人們健康。越來越多的研究認(rèn)為胃癌的發(fā)生、發(fā)展及預(yù)后不僅與腫瘤本身的特性有關(guān),還與腫瘤所處的腫瘤微環(huán)境有關(guān)。腫瘤相關(guān)性巨噬細(xì)胞(Tumor-associated macrophages,TAMs)是腫瘤組織中的巨噬細(xì)胞,不僅不能殺傷腫瘤細(xì)胞,反而能促進(jìn)腫瘤的生長(zhǎng)、侵襲和侵移的免疫細(xì)胞?,F(xiàn)較多的研究認(rèn)為TAMs促進(jìn)了胃癌的進(jìn)展,本文就TAMs在胃癌發(fā)生發(fā)展中的作用做一綜述。
巨噬細(xì)胞是機(jī)體先天免疫的主要部分,在抗炎和宿主防御過程中起主要作用。巨噬細(xì)胞是由CD34+骨髓干細(xì)胞分化的單核巨噬細(xì)胞系遷移至全身各組織器官內(nèi)發(fā)育形成,并可因環(huán)境及不同刺激物作用下分化成不同功能表型。巨噬細(xì)胞在IFN-γ,LPS等刺激下分化成經(jīng)典活化型M1型,該型釋放IL-1、IL-12、IFN-γ等炎性因子,誘發(fā)炎癥反應(yīng),誘導(dǎo)機(jī)體啟動(dòng)特異性免疫,殺滅病原體和腫瘤;巨噬細(xì)胞在IL-4、IL-13、IL-10、免疫復(fù)合物等誘導(dǎo)刺激下分化成替代活化型M2型,該型合成并分泌抑制T淋巴細(xì)胞增殖和活性的細(xì)胞因子,抑制炎癥反應(yīng),促進(jìn)血管生成和組織修復(fù)、重塑及免疫調(diào)節(jié)等作用[1]。M2型巨噬細(xì)胞可通過下調(diào)M1型巨噬細(xì)胞介導(dǎo)的功能來控制炎癥反應(yīng)[2],且在不同細(xì)胞因子誘導(dǎo)下,M1型與M2型巨噬細(xì)胞是可以相互轉(zhuǎn)化[3]。
2.1 TAMs與胃癌的發(fā)生 胃癌是當(dāng)今世界第二大腫瘤,與幽門螺旋桿菌(Helicobacter pylori,HP)感染引起的慢性炎癥有關(guān)。HP與慢性萎縮性胃炎和胃癌的發(fā)生有明確的相關(guān)性,HP感染的小鼠胃組織可致胃黏膜巨噬細(xì)胞浸潤(rùn)和核β-連環(huán)蛋白聚集,促進(jìn)Wnt/β-連環(huán)蛋白的活化是胃癌發(fā)生的重要途徑[4]。越來越多的實(shí)驗(yàn)和臨床研究發(fā)現(xiàn)慢性炎癥與腫瘤的發(fā)生或發(fā)展有密切的聯(lián)系[5]。已發(fā)現(xiàn)慢性炎癥部位常聚集許多巨噬細(xì)胞和其他炎癥細(xì)胞,如朗漢氏(LP)巨噬細(xì)胞,LP巨噬細(xì)胞具有特殊的非炎癥表型,可減少先天性免疫受體的表達(dá),降低協(xié)同刺激的活性和促炎癥因子的釋放,這一功能可認(rèn)為類似于M2型巨噬細(xì)胞[6],但是LP巨噬細(xì)胞仍具有吞噬作用和抗細(xì)菌活性,但并不能分泌IL-1、IL-6、IL-8、TNF-α等促炎癥因子[7]。有研究認(rèn)為機(jī)體對(duì)感染和惡性腫瘤所作出的應(yīng)答是同一炎癥途徑,巨噬細(xì)胞中的TLR受體參與組織修復(fù)和組織損傷誘導(dǎo)的炎癥反應(yīng),而這一受體同時(shí)也與腫瘤的進(jìn)展相關(guān)[8]。因此作者認(rèn)為許多慢性炎癥疾病能增加原位腫瘤發(fā)生的風(fēng)險(xiǎn),在因炎癥導(dǎo)致的腫瘤中,將在腫瘤的發(fā)生發(fā)展過程中起重要作用的特殊巨噬細(xì)胞稱為TAMs[9]。
2.2 TAMs與胃癌侵襲及遷移 胃癌組織由腫瘤細(xì)胞和基質(zhì)細(xì)胞組成,胃癌的發(fā)展與腫瘤細(xì)胞和基質(zhì)細(xì)胞密切相關(guān),由腫瘤細(xì)胞和間質(zhì)細(xì)胞組成的特殊腫瘤微環(huán)境能夠促進(jìn)腫瘤的發(fā)生發(fā)展,侵襲及遷移[10]。腫瘤間質(zhì)包括活化的成纖維細(xì)胞,平滑肌細(xì)胞,內(nèi)皮細(xì)胞和炎癥細(xì)胞(包括TAMs)。TAMs在腫瘤的侵襲和遷移過程中起著積極的作用,有研究顯示[11]敲除巨噬細(xì)胞基因可降低腫瘤的進(jìn)展和轉(zhuǎn)移。也有臨床研究表明[12],TAMs浸潤(rùn)的數(shù)量與血管密度和腫瘤進(jìn)展密切相關(guān),并且胃癌組織中TAMs浸潤(rùn)的程度與腫瘤浸潤(rùn)的深度,轉(zhuǎn)移的淋巴結(jié)數(shù),臨床分期等密切相關(guān)。這可能與活化的巨噬細(xì)胞可產(chǎn)生的各種誘導(dǎo)血管生成的因子有關(guān)[13]。Cardoso AP等[14]發(fā)現(xiàn)巨噬細(xì)胞可刺激胃癌細(xì)胞的侵襲、能動(dòng)性和遷移,認(rèn)為這些功能的產(chǎn)生依賴于金屬蛋白酶(MMPs)、EGFR、PLC-γ和Gab1的活性。
血管和淋巴管生成是腫瘤生長(zhǎng)和轉(zhuǎn)移的基礎(chǔ),胃癌細(xì)胞可產(chǎn)生多種促血管生成因子,如VEGF-A、IL-8等。在胃癌組織中VEGF-A是一種最強(qiáng)的血管生成因子[15],其在胃癌組織中的表達(dá)與微血管密度(MVD)密切相關(guān)[16]。IL-8是一種多功能的細(xì)胞因子,可誘導(dǎo)腫瘤細(xì)胞的遷移[17]。胃癌細(xì)胞不僅可以表達(dá)IL-8還可表達(dá)IL-8受體A(CXCR1)和IL-8受體B(CXCR2)[18],人胃癌細(xì)胞體外實(shí)驗(yàn)加入外源性IL-8,發(fā)現(xiàn)可提高EGFR、MMP-9、VEGF-A和IL-8mRNAs的表達(dá),由此認(rèn)為IL-8可提高胃癌細(xì)胞侵襲遷移能力[19]。
在低氧條件下,腫瘤細(xì)胞內(nèi)也可產(chǎn)生多種血管生成因子,如VEGE、b-FGF等[20],因此在缺氧區(qū)胃癌細(xì)胞更易誘導(dǎo)血管的生成,招募巨噬細(xì)胞并極化,降解細(xì)胞外基質(zhì)(ECM),從而促進(jìn)腫瘤細(xì)胞的增殖、侵襲和遷移[21],且招募的巨噬細(xì)胞數(shù)量與瘤內(nèi)低氧的程度存在相關(guān)性[22]。缺氧條件下巨噬細(xì)胞高表達(dá)的MMPs[23]參與腫瘤血管的生成以及TAMs表達(dá)的IL-11進(jìn)一步促進(jìn)胃癌細(xì)胞的侵襲及轉(zhuǎn)移。
2.3 TAMs與胃癌的預(yù)后 胃癌組織中TAMs浸潤(rùn)的程度與腫瘤浸潤(rùn)的深度、轉(zhuǎn)移的淋巴結(jié)數(shù)、臨床分期等密切相關(guān)[13],因?yàn)門AMs可產(chǎn)生多種細(xì)胞因子和生長(zhǎng)因子,如VEGF、EGF和IL-8等,以及多種MMPs,這些因子可誘導(dǎo)血管生成,促進(jìn)腫瘤的侵襲、遷移[24]。有研究認(rèn)為VEGF-A在胃癌組織中表達(dá)與MVD密切相關(guān)[16],并且VEGF-A陽性的腫瘤患者比VEGF-A陰性患者預(yù)后更差[25],提示高密度的TAMs浸潤(rùn)與胃癌的不良預(yù)后存在相關(guān)性。
2.4 TAMs與胃癌的治療 隨著對(duì)TAMs與腫瘤的研究越來越多,針對(duì)TAMs的靶向治療也愈加成熟。目前針對(duì)TAMs的治療途徑主要有兩種:(1)減少、耗竭腫瘤區(qū)域的TAMs。(2)誘導(dǎo)TAMs重新分化,削弱M2型TAMs的功能[26]。有研究認(rèn)為賓達(dá)利(一種吲唑類藥物)可通過抑制TGF-β和Akt信號(hào)通路,阻止單核細(xì)胞趨化蛋白1和CCL-2的合成,從而減少TAMs的募集[27]。另外貝伐單抗與唑來膦酸均可作用于腫瘤血管[28,29],減少血管的生成,間接改變腫瘤內(nèi)環(huán)境,從而減少TAMs的募集。也有研究認(rèn)為M1/M2的比值與腫瘤的預(yù)后呈明顯相關(guān)性[30],因此改變M1和M2細(xì)胞在腫瘤內(nèi)環(huán)境中的比例對(duì)患者的治療具有一定的意義。Huang等[31]認(rèn)為乙烯亞胺可以重新改變TAMs的分化,可使M2型向M1型轉(zhuǎn)化,使腫瘤周圍血管正常化。但是目前大多數(shù)針對(duì)TAMs靶向治療藥物只在基礎(chǔ)研究中顯示有效,尚未應(yīng)用于臨床,如何開發(fā)藥物并應(yīng)用于臨床仍有待進(jìn)一步研究。
1 Antonio Sica, Alberto Mantovani.Macrophage plasticity and polarization:in vivo veritas. The Journal of Clinical investigation, 2012,122(3): 787~795.
2 Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 2009, 27(2):451~483.
3 Zhang H,Issekutz AC.Down-modulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor:reversal by the anti-angiogenic agent SU6668.Am J Pathol,2002,160(6):2219~2230.
4 Keisuke Oguma,Hiroko Oshima,Masahiro,et al.Activated macrophages promote Wnt signaling through tumour necrosis factor-α in gastric tumour cells.The EMBO Journal,2008,27(12):1671~1681.
5 Sica A,Allavena P,Mantovani A.Cancer related inflammation:The macrophage connection.Cancer Lett,2008,267(2):204~15.
6 Smith PD, Ochsenbauer-Jambor C, Smythies LE. Intestinal macrophages:unique effector cells of the innate immune system. Immunol Rev, 2005, 206(1): 149~159.
7 Smythies LE,Sellers M,Clements RH,et al.Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity.J Clin Invest,2005,115(1):66~75.
8 Simon Hallam,Monica Escorcio-Correia,Robin Soper,et al.Activated macrophages in the tumor microenvironment-dancing to the tune of TLR and NFkB.J Pathol,2009,219(2):143~152.
9 Pollard JW.Tumor-educated macrophages promote tumor progression and metastasis.Nat Rev Cancer,2004,4(1):71~8.
10 IJ. Fidler. Critical factors in the biology of human cancer metastasis:twenty-eighth G.H.A. Clowes memorial award lecture.Cancer Research, 1990, 50(19):6130~6138
11 JCondeelis, JW Pollard.Macrophages:obligate partners for tumor cell migration,invasion and metastasis.Cell,2006,124(2):263~266.
12 S Ishigami, S Natsugoe, K Tokuda,et al. Tumor-associated macrophage (TAM)infiltration in gastric cancer.Anticancer Research, 2003, 23(5):4079~4083.
13 S I Leibovich, D M Wiseman.Macrophages, wound repair and angiogenesis. Progression in Clinical and Biological Research,1988, 266: 131~145.
14 AP Cardoso,ML Pinto,AT Pinto,et al.Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y1086,c-Src,Eek1/2 and Akt Phosphorylation and small GTPase activity.Oncogene,2014,33(16):2123~2133.
15 G D Yancopoulos,S Davis,N W Gale,et al.Vascular-specific growth factors and blood vessel formation.Nature,2000,407(6801):242~248.
16 S Yamamoto,W Yasui,Y Kitadai,et al.Expression of vascular endothelial growth factor in human gastric carcinomas.Pathology Internation al,1998,48(7):499~506.
17 J M Wang, G Taraboletti,K Matsushima,et al.Induction of haptotactic migration of melanoma cells by neutrophil activating protein/ interleukin-8.Biochemical and Biophysical Research Communicatio ns,1990,169(1):165~170.
18 Y Kitadai, K Haruma, N Mukaida,et al. Regulation of diseaseprogression genes in human gastric carcinoma cells by interleukin8. Clinical Cancer Research, 2000,6(7):2735~2740.
19 Yasuhiko Kitadai.Angiogenesis and Lymphangiogenesis of Gastric Cance.Journal of Oncology,2010,2(8):1~8.
20 Siveen KS,Kuttan G.Role of macrophages in tumor progression. Immunol Lett,2009,117(3):460~466.
21 Sottile J.Regulation of angiogenesis by extracellular matrix.Biochim Biophys Acta,2004,1654(1):13~22.
22 Murdoch C,Giannoudis A,Lewis CE.Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumor and other ischemic into hypoxic areas of tumors and other ischemic tissues. Blood,2004,104(8):2224~2234.
23 Allavena P,Sica A,Solinas G,et al.The inflammatory micro-environment in tumor progression:the role of tumor-associated macrophages.Crit Rev Oncol Hematol,2008,66(1):1~9.
24 Koga J,Kakeji Y,Sumiyoshi Y,et al.Angiogenesis and macrophage infiltration Borrmann type IV gastric cancer.Fukuoka Lgaku Zasshi,2001,92(9):334~339.
25 N Tanigawa, H. Amaya, M Matsumura, et al. Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinoma.Cancer Research,1996,56(11):2671~2676.
26 韓尚容,潘燕,李學(xué)軍.腫瘤相關(guān)巨噬細(xì)胞靶向治療研究進(jìn)展.中國(guó)臨床藥理學(xué)雜志,2015,31(6):478~481.
27 Zollo M,Di Dato V,Spano D,et al.Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models.Clin Exp Metastasis,2012,29(6):585~601.
28 Roland CL,Dineen SP,Lynn KD,et al.Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts.Mol Cancer Ther,2009,8(7):1761~1771.
29 Rietkotter E,Menck K,Bleckmann A,et al.Zoledronic acid inhibits macrophage/microglia-assisted breast cancer invasion.Oncotarget,2013,4(9):1449~1460.
30 Francesco Pantano,Pierpaolo Berti,F(xiàn)rancesco Maria Guida,et al.The role of macrophages polarization in prediction prognosis of radically recected gastric cancer patients.Journal of Cellular and Molecular Medicne,2013,17(11):1415~1421
31 Huang Z,Yang Y,Jiang W,et al.Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers.Biomaterials,2013,34(3):746~755.
浙江省湖州市科學(xué)技術(shù)局自然科學(xué)基金項(xiàng)目(2014YZB02)
313000 浙江省湖州市中心醫(yī)院藥學(xué)部