賽音烏其日拉,牛廣明
定量磁敏感成像與磁敏感加權(quán)成像在原發(fā)性高血壓患者腦內(nèi)微出血中的診斷應(yīng)用
賽音烏其日拉,牛廣明
腦內(nèi)微出血是腦內(nèi)微小血管病變所導(dǎo)致的腦實質(zhì)亞臨床損害,主要特征為腦實質(zhì)內(nèi)微小出血灶,臨床無明確的癥狀與體征,常出現(xiàn)在腦和神經(jīng)變性疾病如腦淀粉樣血管病、阿爾茨海默病、高血壓,也可在正常老年人群中發(fā)現(xiàn),表示潛在的血管病理改變。作者就定量磁敏感成像和磁敏感加權(quán)成像應(yīng)用于腦內(nèi)微出血中的臨床進展作一綜述。
磁共振成像;磁敏感加權(quán)成像;定量磁敏感成像;腦內(nèi)微出血;原發(fā)性高血壓
目前,腦內(nèi)微出血(cerebral microbleeds,CMBs)的臨床意義越來越引起學(xué)者們的注意,而對其有效的檢查只能依靠影像學(xué)方法實現(xiàn)。較早時,學(xué)者們試圖通過MRI中的彌散加權(quán)成像(diffusion weighted imaging,DWI)來顯示CMBs。DWI序列屬功能成像,通過組織內(nèi)水分子擴散運動顯示病灶,反映的是組織內(nèi)水分子的運動情況,但CMBs病灶最典型病理變化為在其漫長而緩慢的形成過程中,隨時間變化所含血液內(nèi)的含鐵血黃素在CMBs病灶內(nèi)的沉積,很多學(xué)者已證實DWI效果不如梯度回波T2?加權(quán)成像以及后來的磁敏感加權(quán)成像(susceptibility weighted imaging,SWI)[1-3]。梯度回波 T2?加權(quán)成像與SWI是診斷CMBs最主要的檢查方式,利用CMBs內(nèi)含鐵血黃素引起的局部磁場的改變來顯示病灶。磁感性是物質(zhì)的基本物理特性之一,可由磁化率表示[4]。隨著MRI后處理技術(shù)的不斷發(fā)展,利用人體內(nèi)磁感性物質(zhì)的信息反映疾病狀況的探索得到了長足的進步。SWI優(yōu)勢在于幅度信號損耗和相位信息,該方法依靠組織之間的磁化率差異產(chǎn)生的相位變化,提高了圖像的對比度,揭示關(guān)于組織和靜脈脈管解剖和生理信息。定量磁敏感成像(quantitative susceptibility mapping,QSM)是SWI序列的發(fā)展與延伸,通過數(shù)值計算解決了逆源效應(yīng)問題,從測得的磁場分布得到局部組織的磁化率源頭,是反映相位信息的梯度回波序列[5]。
CMBs是腦內(nèi)微小血管病變所導(dǎo)致的腦實質(zhì)亞臨床損害,主要特征為腦實質(zhì)內(nèi)微小出血灶,臨床無明確的癥狀與體征[6]。首次由Scharf等[7]在1994年提出,當(dāng)時使用出血性腔隙綜合征(haemorrhagic lacunes,HL)這一名稱,發(fā)現(xiàn)腦出血(intracerebral hemorrhage,ICH)組比非ICH組更高頻率發(fā)生HL,存在HL的患者腦出血的風(fēng)險較高。CMBs最初的定義為梯度回波序列上直徑2~5 mm的信號缺失區(qū),周圍無水腫帶,也有學(xué)者認(rèn)為其上限應(yīng)為10 mm[8]。Greenberg等[9]認(rèn)為CMBs常出現(xiàn)在腦和神經(jīng)變性疾病,如腦淀粉樣血管病(cerebral amyloid angiopathy,CAA)、阿爾茨海默病(Alzheimer’s disease,AD);也可在正常老年人群中發(fā)現(xiàn),表示潛在的血管病理改變。CMBs在CAA與AD患者中的發(fā)現(xiàn)率分別為80%和30%。Pettersen等[6]認(rèn)為CAA和AD患者認(rèn)知功能減退的程度與CMBs位置及程度有關(guān),腦梗死患者的發(fā)生率為18%~65%,自發(fā)性ICH中發(fā)生率為47%~80%[10-11],正常老年人群中的發(fā)病率可高達(dá)23.5%[12],這些現(xiàn)象引起對CMBs的病理意義的關(guān)注。神經(jīng)影像學(xué)領(lǐng)域關(guān)注到CMBs與血管危險因素(年齡、高血壓)和小血管病變間關(guān)系,如腔隙性梗死和腦白質(zhì)高信號,并已經(jīng)注意到缺血性腦梗死和出血性腦梗死患者的CMBs的高發(fā)生率[13]。上述結(jié)果都強烈支持CMBs可作為小血管病變的額外標(biāo)志[14]。一些組織病理學(xué)研究反映了CMBs相關(guān)的血管異常,老年CMBs與CAA和高血壓導(dǎo)致的血管病變有關(guān)[15-17]。CAA由β淀粉樣肽在皮質(zhì)和軟腦膜動脈血管壁上積聚引起,而腦血管長期在高血壓的影響下,小血管管壁發(fā)生脂質(zhì)成纖維玻璃樣變性,從而影響大多數(shù)深部動脈。因CAA與高血壓所影響的血管分布區(qū)域不同,CMBs預(yù)期會遵循以下分布特點:①CAA多位于皮質(zhì)-皮質(zhì)下區(qū);②高血壓則多位于深部白質(zhì)、基底節(jié)、丘腦、腦干、小腦部位[18]。有研究報道,患有皮質(zhì)-皮質(zhì)下區(qū)CMBs的老年人體內(nèi)載脂蛋白Eε4等位基因高度表達(dá),更容易出現(xiàn)CAA[12]。相比之下,深部CMBs與血管危險因素腔隙性梗死和腦白質(zhì)信號增高有關(guān),而與載脂蛋白Eε4等位基因表達(dá)的關(guān)系不大,進一步印證了CMBs的空間分布可能存在的某種規(guī)律。Brundel等[19]已通過病理學(xué)證實了CMBs周圍存在組織損傷。Sch?fer等[20]提出,CMBs的存在可能是華法林相關(guān)原發(fā)性腦內(nèi)出血的一個獨立危險因素。在患者腦內(nèi)有大量CMBs時,傳統(tǒng)觀念中比抗凝劑更加安全的抗血小板劑仍會提高ICH的風(fēng)險[21-22],因此對CMBs患者進行合理的、個體化的抗凝治療非常必要。
雖然CMBs病因可能有多種,但CMBs的出現(xiàn)與高血壓有密切關(guān)系[23-26]。高血壓作為腦血管疾病的危險因素,可導(dǎo)致微血管壁發(fā)生變性,使微量血液從變形的血管壁滲出,引發(fā)CMBs。有研究指出,發(fā)生在基底節(jié)區(qū)及幕下的CMBs與收縮壓增高有關(guān)[27]。作為CMBs的獨立危險因素,高血壓是引起CMBs最重要的危險因素,并能為高血壓性ICH的預(yù)測提供可靠信息[28],提示癥狀性ICH的風(fēng)險增高[29-30],CMBs可用來預(yù)警患潛在出血傾向的腦血管疾病。已有研究通過觀察CMBs病灶的數(shù)目、直徑、分布部位對CMBs病灶進行診斷,但目前尚未建立對CMBs病灶客觀定量測量的方法[31]。一旦發(fā)生CMBs,就會誘發(fā)臨近的多處正常小動脈管壁的變性,并最終形成更多的CMBs。隨著時間推移,CMBs數(shù)量會累積,CMBs的形成以及其數(shù)量可預(yù)測新CMBs形成的風(fēng)險[32-33]。CMBs和ICH之間可能存在一個出血體積轉(zhuǎn)化閾值,當(dāng)CMBs體積達(dá)到這一閾值,就有可能轉(zhuǎn)變?yōu)镮CH[34-36]。
磁化率是指物質(zhì)進入外磁場后,該物質(zhì)的磁化強度與外磁場強度的比率,磁化率越大物質(zhì)的磁感性越大,磁化率能夠準(zhǔn)確地反映組織內(nèi)成分[37-38]。出血后,紅細(xì)胞的一小部分可能被小膠質(zhì)細(xì)胞或巨噬細(xì)胞所吞噬,大部分紅細(xì)胞最終裂解,血紅蛋白降解成高鐵血紅蛋白和含鐵血黃素。出血初期,氧合血紅蛋白內(nèi)的鐵輔基與卟啉環(huán)位于一個平面,此時氧合血紅蛋白是弱抗磁性的;氧合血紅蛋白丟失2個氧分子后,卟啉環(huán)位置改變,使得鐵輔基暴露,變成強順磁性脫氧血紅蛋白。臨床上,影像學(xué)方法是唯一能對CMBs作出診斷的方法。CMBs作為直徑≤10 mm微小病變,其診斷方法要滿足高靈敏度和高空間精度的基本要求。因?qū)F血黃素等血液降解產(chǎn)物內(nèi)順磁性鐵的高度敏感性,T2?加權(quán)梯度回波序列廣泛應(yīng)用于CMBs的診斷[9],這些序列能檢出直徑200 μm的出血灶[15]。在幅度圖上,CMBs顯示為小類圓形信號減低區(qū)域,但幅度圖無法有效區(qū)分順磁性鐵與其他能改變局部磁場的物質(zhì),如鈣化。而且,去相位效應(yīng)導(dǎo)致幅度圖上的信號減低范圍大于實際含鐵沉積物所占區(qū)域,往往造成對CMBs病灶實際大小的放大、高估,并妨礙相互比鄰的多發(fā)CMBs病灶的區(qū)分。
SWI被公認(rèn)為目前最成熟的CMBs檢查方法,由Haacke等[39]于1997年發(fā)明。該成像方法將分別采集到的強度數(shù)據(jù)以及相位數(shù)據(jù)相互疊加,經(jīng)后處理計算得到圖像。該方法優(yōu)勢在于幅度信號損耗和相位信息,揭示關(guān)于組織和靜脈脈管解剖和生理信息,依靠由于組織之間的磁化率差異產(chǎn)生的相位變化,提高圖像的對比度[40]。但不足之處在于:①SWI無法提供磁化率的定量數(shù)據(jù),而隨著現(xiàn)代醫(yī)學(xué)發(fā)展,只對組織內(nèi)順磁性物質(zhì)的定性分析已不能滿足臨床醫(yī)學(xué)的發(fā)展。在SWI的基礎(chǔ)上,對組織的磁化率定量分析已成為工作重點[40-41]。②SWI序列通過結(jié)合幅度圖與相位信息,放大腦內(nèi)含鐵區(qū)域的組織對比度[42],但是梯度回波序列里的相位圖和SWI相位分布之間的關(guān)系是非局域性的,其相位同時依賴于磁化率的空間分布和相對于主磁場的方向,此外相位值取決于病變的幾何形狀,以及它在主磁場的相對位置[20]。③因“開花效應(yīng)”[43-44]的存在,可導(dǎo)致SWI幅度圖中CMBs的大小超出實際大小約300%[45-46]。磁敏感加權(quán)圖像中的相位圖提供了出色的組織對比度。然而,相位圖受組織幾何形狀以及組織在主磁場相位B0中相對位置的影響,相位值變化會超出磁感性的變化范圍[6,20]。
因此,有學(xué)者利用逆傅立葉為基礎(chǔ)的方法分析人腦、人腦切片、狨猴腦切片,發(fā)現(xiàn)用此方法所計算出來的平均磁化率值接近真實的組織磁化率值[47]。另一項研究則顯示,QSM能夠區(qū)分抗磁性物質(zhì)與順磁性物質(zhì)[48-49]。而且,含鐵病變磁化率涉及鐵的濃度,QSM也可以非侵入性定量CMBs等病變內(nèi)的鐵濃度。Barbosa等[50]利用電子順磁共振(一個能夠準(zhǔn)確量化順磁離子濃度并且提供有關(guān)的順磁中心電子結(jié)構(gòu)信息設(shè)備)對死亡患者腦組織內(nèi)金屬離子測量,并與定量磁敏感成像進行比較,證實QSM測量鐵離子的敏感性,是目前唯一能夠?qū)w內(nèi)金屬含量與磁化率定量的影像學(xué)方法[51-52],可應(yīng)用于診斷腦鐵沉積[53-55]、組織鈣化[56]、腦部微出血[57]等;也可以非創(chuàng)傷性手段測量,如檢測白質(zhì)束和皮質(zhì)灰質(zhì)中的髓鞘[58]、缺氧或功能退化血液中的鐵含量、非氯化血紅素鐵沉積[12,59]等。因此,QSM已被建議作為體內(nèi)量化腦中的金屬濃度最敏感的技術(shù),比SWI、相位圖、幅度圖更適合精確地識別CMBs。
總之,CMBs是腦內(nèi)小血管病變的標(biāo)志,能為臨床提供診斷或預(yù)測信息。雖然近十年來對CMBs病理臨床意義了解加深了許多,但仍有很多問題沒得到充分揭示,新MRI技術(shù)的誕生(如QSM)可能從其內(nèi)部成分與磁化率等新角度揭示CMBs。雖然精確無創(chuàng)檢測鐵濃度仍然困難,但QSM至少校正了梯度回波幅度、相位和SWI圖像中的非局部影響,可能成為實驗?zāi)P秃团R床CMBs的一個重要診斷工具。
[1]黃琰.磁敏感加權(quán)成像及擴散加權(quán)成像在高血壓顱內(nèi)微出血中的臨床價值[J].中國煤炭工業(yè)醫(yī)學(xué)雜志,2013,16(10):1673-1676.
[2]亓恒新,徐寧,韓曾泰,等.彌散加權(quán)成像B0圖顯示腦微出血灶效果觀察[J].山東醫(yī)藥,2015,55(38):40-41.
[3]Sehgal V,Delproposto Z,Haacke EM,et al.Clinical applications of neuroimaging with susceptibility-weighted imaging[J].J Magn Reson Imaging,2005,22(4):439-450.
[4]Reichenbach JR,Schweser F,Serres B,et al.Quantitative susceptibility mapping:concepts and applications[J].Clin Neuroradiol,2015,25 Suppl 2:225-230.
[5]Liu C,Li W,Tong KA,et al.Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain [J].J Magn Reson Imaging,2015,42(1):23-41.
[6]Pettersen JA,Sathiyamoorthy G,Gao FQ,et al.Microbleed topography,leukoaraiosis,and cognition in probable Alzheimer disease from the Sunnybrook dementia study[J].Arch Neurol,2008,65(6):790-795.
[7]Scharf J,Br?uherr E,F(xiàn)orsting M,et al.Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage[J]. Neuroradiology,1994,36(7):504-508.
[8]Yates PA,Villemagne VL,Ellis KA,et al.Cerebral microbleeds:a review of clinical,genetic,and neuroimaging associations[J].Front Neurol,2014,4:205.
[9]Greenberg SM,Vernooij MW,Cordonnier C,et al.Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[10]Naka H,Nomura E,Wakabayashi S,et al.Frequency of asymptomatic microbleeds on T2?-weighted MR images of patients with recurrent stroke:association with combination of stroke subtypes and leukoaraiosis[J].AJNR Am J Neuroradiol,2004,25(5):714-719.
[11]Lee SH,Bae HJ,Kwon SJ,et al.Cerebral microbleeds are regionally associated with intracerebral hemorrhage[J]. Neurology,2004,62(1):72-76.
[12]Vernooij MW,van der Lugt A,Ikram MA,et al.Prevalence and risk factors of cerebral microbleeds:the Rotterdam scan study[J].Neurology,2008,70(14):1208-1214.
[13]Koennecke HC.Cerebral microbleeds on MRI:prevalence,associations,and potential clinical implications[J].Neurology,2006,66(2):165-171.
[14]Martinez-Ramirez S,Greenberg SM,Viswanathan A.Cerebral microbleeds:overview and implications in cognitive impairment[J].Alzheimers Res Ther,2014,6(3):33.
[15]Tanaka A,Ueno Y,Nakayama Y,et al.Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas[J].Stroke,1999,30(8): 1637-1642.
[16]Fazekas F,Kleinert R,Roob G,et al.Histopathologic analysis of foci of signal loss on gradient-echo T2?-weighted MR images in patients with spontaneous intracerebral hemorrhage:evidence of microangiopathy-related microbleeds[J].AJNR Am J Neuroradiol,1999,20(4):637-642.
[17]Tatsumi S,Shinohara M,Yamamoto T.Direct comparison of histology of microbleeds with postmortem MR images:a case report[J].Cerebrovasc Dis,2008,26(2):142-146.
[18]Greenberg SM,F(xiàn)inklestein SP,Schaefer PW.Petechial hemorrhages accompanying lobar hemorrhage:detection by gradient-echo MRI[J].Neurology,1996,46(6):1751-1754.
[19]Brundel M,Heringa SM,de Bresser J,et al.High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer’s disease[J].J Alzheimers Dis,2012,31(2):259-263.
[20]Sch?fer A,Wharton S,Gowland P,et al.Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI[J].Neuroimage,2009,48(1): 126-137.
[21]Soo YO,Yang SR,Lam WW,et al.Risk vs benefit of antithrombotic therapy in ischaemic stroke patients with cerebral microbleeds[J].J Neurol,2008,255(11):1679-1686.
[22]Biffi A,Halpin A,Towfighi A,et al.Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy [J].Neurology,2010,75(8):693-698.
[23]Roob G,Schmidt R,Kapeller P,et al.MRI evidence of past cerebral microbleeds in a healthy elderly population [J].Neurology,1999,52(5):991-994.
[24]Jeerakathil T,Wolf PA,Beiser A,et al.Cerebral microbleeds:prevalence and associations with cardiovascular risk factors in the Framingham study[J].Stroke,2004,35(8): 1831-1835.
[25]Sveinbjornsdottir S,Sigurdsson S,Aspelund T,et al.Cerebral microbleeds in the population based AGES-Reykjavik study:prevalence and location[J].J Neurol Neurosurg Psychiatry,2008,79(9):1002-1006.
[26]Poels MM,Vernooij MW,Ikram MA,et al.Prevalence and risk factors of cerebral microbleeds:an update of the Rotterdam scan study[J].Stroke,2010,41(10 Suppl):S103-S106.
[27]Jia Z,Mohammed W,Qiu Y,et al.Hypertension increases the risk of cerebral microbleed in the territory of posterior cerebral artery:a study of the association of microbleeds categorized on a basis of vascular territories and cardiovascular risk factors[J].J Stroke Cerebrovasc Dis,2014,23 (1):e5-e11.
[28]Vernooij MW.Cerebral microbleeds:do they really predict macrobleeding?[J].Int J Stroke,2012,7(7):565-566.
[29]Wei TM,Zhou LM,Ji JS,et al.Cerebral microbleeds detected on T2-weighted gradient echo magnetic resonance and its clinical significance[J].Zhonghua Yi Xue Za Zhi,2013,93(37):2979-2981.
[30]劉德國,于臺飛,王光彬,等.磁敏感加權(quán)成像檢測腦微出血的臨床價值研究[J].磁共振成像,2011,2(6):420-425.
[31]Greenberg SM,Vernooij MW,Cordonnier C,et al.Cerebral microbleeds:a guide to detection and interpretation[J]. Lancet Neurol,2009,8(2):165-174.
[32]Gregoire SM,Brown MM,Kallis C,et al.MRI detection of new microbleeds in patients with ischemic stroke:five-year cohort follow-up study[J].Stroke,2010,41(1):184-186.
[33]Poels MM,Ikram MA,van der Lugt A,et al.Incidence of cerebral microbleeds in the general population:the Rotterdam scan study[J].Stroke,2011,42(3):656-661.
[34]楊昂,張雪林,陳燕萍,等.SWI在高血壓患者伴發(fā)腦內(nèi)微出血的診斷應(yīng)用[J].臨床放射學(xué)雜志,2009,28(8): 1055-1059.
[35]陳穎.1.5TMRI-SWI序列對高血壓性腦微出血的診斷價值[J].中國CT和MRI雜志,2013,11(2):7-9.
[36]唐小平.中老年腦微出血與心腦血管危險因素相關(guān)性研究[D].南昌:南昌大學(xué),2009.
[37]Shmueli K,de Zwart JA,van Gelderen P,et al.Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data[J].Magn Reson Med,2009,62(6):1510-1522.
[38]Deistung A,Schweser F,Wiestler B,et al.Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[J]. PLoS One,2013,8(3):e57924.
[39]Haacke EM,Lai S,Reichenbach JR,et al.In vivo measurement of blood oxygen saturation using magnetic resonance imaging:a direct validation of the blood oxygen level-dependent concept in functional brain imaging[J].Human Brain Mapp,1997,5(5):341-346.
[40]Port JD,Pomper MG.Quantification and minimization of magnetic susceptibility artifacts on GRE images[J].J Comput Assist Tomogr,2000,24(6):958-964.
[41]Li L,Leigh JS.Quantifying arbitrary magnetic susceptibility distributions with MR[J].Magn Reson Med,2004,51 (5):1077-1082.
1)目標(biāo)點的坐標(biāo)計算。用目標(biāo)點的水平距離與其平均值之間偏差絕對值的最大值作為檢定結(jié)果。目標(biāo)點之間每一組水平距離li,k的計算公式為
[42]Reichenbach JR,Venkatesan R,Schillinger DJ,et al.Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J].Radiology,1997,204(1):272-277.
[43]范敬爭,田亞楠,周蕾,等.自發(fā)性腦出血患者腦微出血MR磁化率與體積的相關(guān)性研究[J].臨床放射學(xué)雜志,2012,31(12):1694-1698.
[44]Stojanov D,Vojinovic S,Aracki-Trenkic A,et al.Imaging characteristics of cerebral autosomal dominant arteriopathy with subcorticalinfarctsandleucoencephalopathy(CADASIL) [J].Bosn J Basic Med Sci,2015,15(1):1-8.
[45]Klohs J,Deistung A,Schweser F,et al.Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis[J]. J Cereb Blood Flow Metab,2011,31(12):2282-2292.
[46]Schrag M,McAuley G,Pomakian J,et al.Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy:a postmortem MRI study[J].Acta Neuropathol,2010,119(3):291-302.
[47]Yates PA,Villemagne VL,Ellis KA,et al.Cerebral microbleeds:a review of clinical,genetic,and neuroimaging associations[J].Front Neurol,2014,4:205.
[48]Schweser F,Deistung A,Lehr BW,et al.Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase:an approach to in vivo brain iron metabolism? [J].Neuroimage,2011,54(4):2789-2807.
[50]Barbosa JH,Emídio R,Alho AT,et al.Correlation between paramagnetic ions and quantitative susceptibility values of postmortem brain study[EB/OL].(2015-09-01)[2016-02-08].https://www.researchgate.net/publication/277477174_CORRELATION_BETWEEN_PARAMAGNETIC_IONS_AND_QUANTITATIVE_SUSCEPTIBILITY_VALUES_OF_POSTMORTEM_BRAIN_STUDY.
[51]Haller S,Bartsch A,Nguyen D,et al.Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment[J].Radiology,2010,257(3):764-773.
[52]Schenck JF.The role of magnetic susceptibility in magnetic resonance imaging:MRI magnetic compatibility of the first and second kinds[J].Med Phys,1996,23(6):815-850.
[53]Bilgic B,Pfefferbaum A,Rohlfing T,et al.MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J].Neuroimage,2012,59(3): 2625-2635.
[54]Tan H,Liu T,Wu Y,et al.Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping[J].Invest Radiol,2014,49(7):498-504.
[55]Lim IA,F(xiàn)aria AV,Li X,et al.Human brain atlas for automated region of interest selection in quantitative susceptibility mapping:application to determine iron content in deep gray matter structures[J].Neuroimage,2013,82: 449-469.
[56]Chen W,Zhu W,Kovanlikaya I,et al.Intracranial calcifications and hemorrhages:characterization with quantitative susceptibility mapping[J].Radiology,2014,270(2):496-505.
[57]Liu T,Surapaneni K,Lou M,et al.Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[J].Radiology,2012,262(1):269-278.
[58]Salomir R,de Senneville BD,Moonen CT.A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[J].Magnetic Resonance Engineering,2003,19B(1):26-34.
[59]Martinez-Ramirez S,Greenberg SM,Viswanathan A.Cerebral microbleeds:overview and implications in cognitive impairment[J].Alzheimers Res Ther,2014,6(3):33.
The application of susceptibility weighted imaging and quantitative susceptibility mapping in essential hypertension complicated by cerebral microbleeds
Saiyinwuqirila,NIU Guangming
(Department of Medical Imaging,Affiliated Hospital of Inner Mongolia Medical University,Hohhot Inner Mongolia 010050,China)
Cerebral microbleeds(CMBs)are the essence of subclinical brain damage of tiny blood vessels in the brain caused by the disease,mainly characterized by small parenchymal hemorrhage,no clear clinical symptoms and signs.It often appears in the brain and neurodegenerative diseases,such as cerebral amyloid angiopathy(CAA),Alzheimer’s disease(AD),essential hypertension(EH),also finds in normal elderly population.It represents a potential change of vascular pathology.This article reviews the clinical progression of susceptibility weighted imaging(SWI)and quantitative magnetic susceptibility mapping(QSM)applied in CMBs.
Magnetic resonance imaging(MRI);Susceptibility weighted imaging(SWI);Quantitative magnetic susceptibility mapping(QSM);Cerebral microbleeds(CMBs);Essential hypertension(EH)
R445.2;R743
A
2095-3097(2016)06-0376-05
10.3969/j.issn.2095-3097.2016.06.015
2016-03-31 本文編輯:馮 博)
國家自然科學(xué)基金(81460259)
010050內(nèi)蒙古呼和浩特,內(nèi)蒙古醫(yī)科大學(xué)附屬醫(yī)院影像科(賽音烏其日拉,牛廣明)