陳惠云 王少珍 廖聯(lián)明
·論著·
水飛薊賓對人肝癌HepG2細胞遷移的作用研究
陳惠云 王少珍 廖聯(lián)明
目的 觀察水飛薊賓對人肝癌(HCC)HepG2細胞遷移的作用。方法 采用MTT法觀察水飛薊賓對HepG2細胞的增殖抑制作用,采用細胞劃痕實驗和Transwell小室法觀察水飛薊賓對HepG2細胞遷移的作用,通過RT-PCR方法檢測遷移相關(guān)基因Twist、Snail和Slug的表達水平;采用單因素方差分析方法比較不同濃度水飛薊賓對細胞活力、細胞遷移距離的和遷移細胞個數(shù)的影響,并比較各組間Twist、Snail和Slug的轉(zhuǎn)率。結(jié)果 MTT檢測結(jié)果顯示不同濃度(0,30,60,120,240,480 μg/ml)水飛薊賓可以不同程度地抑制HepG2細胞增殖,同時呈現(xiàn)劑量依賴和時間依賴(P < 0.05);與對照組相比,HepG2細胞在劃痕24 h后,水飛薊賓組(60,120,240 μg/ml)的遷移距離分別為(1.50±0.24)cm(P = 0.046)、(1.20±0.33)cm(P = 0.037)和(1.05±0.24)cm(P = 0.029);Transwell實驗中水飛薊賓組(60,120和240 μg/ml)細胞遷移個數(shù)分別為(100.00±4.25)個、(30.00±5.34)個和(6.00±2.28)個(P均 < 0.05);PCR結(jié)果顯示,水飛薊賓不同程度的降低HepG2細胞Snail、Slug和Twist基因的轉(zhuǎn)率。結(jié)論 水飛薊賓可抑制人HCC HepG2細胞的遷移。
水飛薊素; 肝腫瘤; 細胞運動
肝癌(hepatocellular carcinoma,HCC)是常見的惡性腫瘤之一,其發(fā)病率居全球所有惡性腫瘤的第6位,病死率排在第3位,5年生存率不到5%[1]。轉(zhuǎn)移和術(shù)后復(fù)發(fā)是HCC致死的主要原因[2]。雖然科學(xué)界已經(jīng)發(fā)現(xiàn)了許多腫瘤細胞啟動的機制[3-6],但HCC的發(fā)病機制至今并不十分清楚。
水飛薊賓(silybin)是菊科水飛薊(silybum marianum L.Gaertn)種子中提取的黃酮類化合物,具有保肝、降血脂、抗氧化、防止糖尿病、保護心肌、抗血小板聚集和抗腫瘤等生理作用[7]。研究表明水飛薊賓還具有抗腫瘤活性,對于多種腫瘤均具有良好的抑制作用[8-11]。另外,水飛薊賓還可以抑制表皮生長因子受體(epidermal growth factor receptor,EGFR)突變的非小細胞肺癌細胞發(fā)生上皮細胞-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)和轉(zhuǎn)移[12]。因此,課題組推測水飛薊賓對HCC轉(zhuǎn)移可能有抑制作用。本研究以人HCC細胞株(HepG2)為模型,觀察水飛薊賓對HepG2人HCC細胞遷移的作用,為開發(fā)水飛薊賓用于抑制腫瘤轉(zhuǎn)移提供依據(jù)。
一、材料
1.腫瘤細胞株:人HCC HepG2細胞株為福建中醫(yī)藥大學(xué)醫(yī)學(xué)實驗中心保存。
2.主要試劑及儀器:水飛薊賓[天津天士力制藥集團股份有限公司(H37023385)],二甲亞砜(dimethyl sulfoxide, DMSO,美國Sigma公司產(chǎn)品),四甲基偶氮唑鹽(methylthiazolyldiphenyltetrazolium bromide,MTT);High-DMEM(美國Gibco公司);胎牛血清(美國Gibco公司)、磷酸緩沖液(PBS)、4%臺盼藍、引物(上海捷瑞生物工程有限公司)、Trizol(美國Nitrogen公司)、逆轉(zhuǎn)錄試劑盒(日本TaKaRa公司)、2xTaq Mix、焦碳酸二乙醋 (diethy pyrocarbonate,DEPC)(美國Sigma公司)、Gold View核酸染料、TBE Buffer、DNA marker。使用儀器包括ELX800酶標(biāo)儀(美國Biotek公司)、PCR分析儀(德國Eppendorf公司)、電泳儀(美國Bio-rad公司)和全自動凝膠成像系統(tǒng)(美國Bio-rad公司)
二、方法
1.細胞培養(yǎng):HepG2重懸于含有10%胎牛血清的high-DMDE培養(yǎng)液中并添加100 μg/ml青霉素和100 U/ml硫酸鏈霉素。放于37 ℃、5% CO2、95%濕度的培養(yǎng)箱培養(yǎng)。當(dāng)細胞達90%~100%匯合時,用0.125%胰蛋白酶+ 0.01%EDTA常規(guī)消化,細胞按1∶3比例進行傳代。所有實驗均使用處于對數(shù)生長期的細胞。
2. MTT法:取對數(shù)生長期的HepG2細胞,0.25%胰蛋白酶消化,重懸計數(shù)后,均以5×103個/孔接種于96孔板中,每孔100 μl。于37 ℃細胞培養(yǎng)箱中培養(yǎng)過夜,待細胞融合度達50%~ 60%時,棄上清液,分別加入不同濃度水飛薊賓(0,30,60,120, 240,480 μg/ml)干預(yù)24,48,72 h,小心吸棄上清液,每孔加0.5 mg/ml MTT 100 μl,于37℃培養(yǎng)箱繼續(xù)孵育4 h,小心吸棄MTT溶液(注意不要吸走孔底部的藍紫色結(jié)晶),每孔加入DMSO 100 μl,置37℃培養(yǎng)箱中繼續(xù)孵育10 min,振蕩器上充分振蕩至藍紫色結(jié)晶完全溶解,經(jīng)全自動酶標(biāo)儀于490 nm處檢測各孔的吸光度(A)值。每組設(shè)6個復(fù)孔,實驗重復(fù)3次。按公式計算細胞活力:細胞活力(%)=實驗組(A)值/對照組(A)值×100%。
3.細胞劃痕實驗:取對數(shù)生長期的HepG2細胞,0.25%胰蛋白酶消化,重懸計數(shù),調(diào)整細胞密度為1×105個/ml,接種于6孔板,待細胞融合度達95%以上時,用10 μl的無菌移液器吸頭在板孔底部沿直尺作直線形劃痕,吸去培養(yǎng)液,PBS洗2遍,小心洗去被劃下的細胞,各孔加入新的含或不含水飛薊賓的培養(yǎng)液繼續(xù)培養(yǎng)(0,60,120,240 μg/ml),此時記為0 h,分別在劃痕后0,12,24 h于倒置顯微鏡下觀察、拍照。實驗重復(fù)3次。
4. Transwell遷移實驗:同前所述,細胞經(jīng)傳代,接種及不同濃度水飛薊賓干預(yù)(0,60,120,240 μg/ml)48 h后,0.25%胰蛋白酶消化,用無血清培養(yǎng)液洗2遍,Countstar自動細胞計數(shù)儀計數(shù),調(diào)整細胞密度為5×105個/ml,取100 μl加入上層小室,下層小室加750 μl含10% FBS的DMEM培養(yǎng)液,于37 ℃細胞培養(yǎng)箱中培養(yǎng)14 h。將Transwell小室從24孔板中取出,用移液槍吸出小室上層培養(yǎng)液,用棉簽頭擦去上室未遷移的細胞,將小室置于4% 多聚甲醛溶液中固定15 min,用PBS輕輕蕩洗,0.1%的結(jié)晶紫染色20 min,PBS洗3次,洗去多余的結(jié)晶紫染液,晾干,于顯微鏡下觀察,隨機選取6個視野進行拍照(×200),統(tǒng)計遷移的細胞數(shù)。
5. PCR反應(yīng):胰酶消化對數(shù)生長期的HepG2細胞,調(diào)整細胞密度為1×105個/ml,接種于6孔板,置于細胞培養(yǎng)箱培養(yǎng),當(dāng)細胞融合度為50%~60%時,不同濃度水飛薊賓(0,60,120,240 μg/ml)干預(yù)48 h,用Trizol提取總RNA,取1 μg進行逆轉(zhuǎn)錄。根據(jù)試劑盒說明書,逆轉(zhuǎn)錄選20 μl體系,各組樣品均取1 μg Total RNA。置于Bio-rad PCR儀上進行逆轉(zhuǎn)錄反應(yīng)。逆轉(zhuǎn)錄反應(yīng)條件:42℃,30 min;85℃,5 min。所得cDNA產(chǎn)物于-20℃保存?zhèn)溆?。作為?nèi)參的3-磷酸甘油醛脫氫酶(GAPDH)的引物為5-TTAGCACCCCTGGCCAAGG-3和5-CTTACTCCTTGGAGGCCATG-3,Snail基因的引物為5-CTCCACGAGGTGTGACTAACTA-3和5-CCGACAAGTGACAGCCATTAC-3,Slug基因的引物為5-CTTCAAGGACACATTAGAACTCACA-3和5-CTACACAGCAGCCAGATTCC-3,Twist基因的引物為5-GGAGTCCGCAGTCTTACGAG-3和5-TCTGGAGGACCTGGTAGAGG-3。PCR總體系25 μl,按94 ℃ 2 min,94 ℃ 30 s,60 ℃ 30 s,72 ℃ 30 s擴增30個循環(huán),72℃ 2 min。PCR產(chǎn)物進行常規(guī)電泳分析,觀察藥物處理后Snail、Slug和Twist基因表達的變化。
三、統(tǒng)計學(xué)分析方法
采用SPSS 20.0統(tǒng)計軟件進行統(tǒng)計分析。水飛薊賓干預(yù)后細胞活力、細胞遷移距離、細胞遷移個數(shù)以及Snail、Slug和Twist基因的相對表達量均以± s表示,多組比較采用單因素方差分析,以P <0.05為差異具有統(tǒng)計學(xué)意義。
一、水飛薊賓對HepG2細胞增殖的影響
HepG2細胞在含有不同濃度水飛薊賓(0,30,60,120,240,480 μg/ml)的培養(yǎng)液中培養(yǎng)24,48,72 h后,MTT檢測細胞活力,如表1所示,HepG2細胞活力隨水飛薊賓濃度增加而降低,同時呈現(xiàn)劑量依賴和時間依賴(P < 0.05)。由于30 μg/ml的水飛薊賓對HepG2細胞的生長抑制作用不明顯,所以其余細胞實驗均選擇60,120,240 μg/ml的水飛薊賓干預(yù),另外藥物干預(yù)48 h的效果較24 h明顯,所以其他實驗選擇干預(yù)48 h后進行檢測。
表1 不同濃度水飛薊賓對HepG2細胞活力的影響(%,± s,n = 6)
表1 不同濃度水飛薊賓對HepG2細胞活力的影響(%,± s,n = 6)
藥物濃度(μg/ml)24 h48 h72 h 0 100.00±4.10100.00±4.22100.00±4.21 30115.13±5.03105.31±5.00100.05±0.62 60100.88±4.02 90.33±3.89 80.50±3.42 120 95.85±3.04 85.29±3.01 66.75±2.87 240 85.70±3.01 61.12±2.87 37.25±1.31 480 75.73±2.63 52.68±1.88 25.38±1.00 F值10.12650.345 77.789 P值 0.053 0.024< 0.001
二、細胞劃痕實驗結(jié)果
如圖1和表2所示,對照組的HepG2細胞在劃痕24 h后,劃痕距離明顯變窄,不同濃度水飛薊賓(0,60,120,240 μg/ml)干預(yù)的HepG2細胞的劃痕愈合能力明顯弱于對照組,即細胞的遷移能力明顯減弱,且細胞遷移能力隨藥物濃度的增大而降低??梢娝w薊賓可以抑制HepG2細胞的遷移。
三、Transwell實驗結(jié)果
Transwell通過檢測一段時間穿過小孔膜的細胞數(shù)來反映細胞遷移能力,穿過小孔膜的細胞數(shù)越多,迀移能力越強。結(jié)果如圖2和表3所示。在遷移實驗中,對照組有較多的HepG2細胞穿過微孔膜,水飛薊賓干預(yù)后穿過微孔膜的細胞數(shù)量明顯減少(P均< 0.05),且藥物劑量越大,穿過孔膜的細胞數(shù)越少。表明水飛薊賓可以顯著降低HepG2的遷移能力。
表2 不同干預(yù)時間下水飛薊賓對HepG2細胞遷移距離的影響(cm,± s,n = 3)
表2 不同干預(yù)時間下水飛薊賓對HepG2細胞遷移距離的影響(cm,± s,n = 3)
藥物濃度(μg/ml)12 h24 h 0 0.80±0.241.50±0.24 60 0.70±0.251.20±0.33 1200.60±0.341.05±0.24 240 0.40±0.280.75±0.26 F值3.464 37.648 P值0.052 0.029
表3 水飛薊賓對HepG2細胞遷移個數(shù)的影響(± s)
表3 水飛薊賓對HepG2細胞遷移個數(shù)的影響(± s)
藥物濃度(μg/ml)n細胞遷移個數(shù)(個)0 3 150 60 3100.00±4.25 1203 30.00±5.34 240 3 6.00±2.28 F值182.450 P值 < 0.001
四、水飛薊賓對HepG2細胞Snail、Slug和Twist基因的影響
如表4,HepG2細胞經(jīng)不同濃度水飛薊賓(0,60,120,240 μg/ml)干預(yù)48 h后Snail、Slug和Twist基因表達量均降低。由此可知,水飛薊賓可使HepG2細胞的Snail、Slug和Twist基因表達下調(diào)(P均< 0.05)。
腫瘤轉(zhuǎn)移是一個復(fù)雜的過程,而細胞的遷移是腫瘤轉(zhuǎn)移的主要表現(xiàn)[13]。因此,開發(fā)新的抑制細胞遷移的藥物對治療腫瘤轉(zhuǎn)移至關(guān)重要。開發(fā)新藥的來源之一是天然藥物[14]。水飛薊賓是一種天然藥物,能抑制腫瘤細胞的增殖和誘導(dǎo)腫瘤細胞凋亡,對于多種腫瘤均具有良好的抑制作用[8-11]。
圖 1 倒置顯微鏡下觀察水飛薊賓對HepG2細胞劃痕實驗結(jié)果 (×100)
圖 2 倒置顯微鏡下觀察水飛薊賓對HepG2細胞遷移能力的影響 (結(jié)晶紫染色×200)
表4 HepG2細胞對Snail、Slug和Twist基因表達量的影響(n = 3,± s)
表4 HepG2細胞對Snail、Slug和Twist基因表達量的影響(n = 3,± s)
藥物濃度(μg/ml)SnailSlugTwist 0 2.244±0.0841.704±0.1101.431±0.210 60 1.677±0.0531.353±0.0751.132±0.620 1201.494±0.0321.160±0.0680.913±0.068 2401.577±0.0441.173±0.0560.857±0.054 F值4.3444.496 43.689 P值0.0270.028< 0.001
本實驗首先通過MTT實驗觀察水飛薊賓對HepG2細胞增殖的作用。實驗結(jié)果表明,水飛薊賓可以抑制HepG2細胞的增殖,并且隨著藥物濃度和時間的增加逐漸增強。在此基礎(chǔ)上,通過細胞劃痕實驗和Transwell遷移實驗研究水飛薊賓對HepG2細胞遷移的抑制作用。細胞劃痕實驗結(jié)果表明,給藥24 h后水飛薊賓組HepG2細胞的愈合能力比未用藥組高,并具有濃度依賴性,因此可以推測水飛薊賓具有抑制HepG2細胞遷移的趨勢,但這種方法只是定性的分析。為了進一步確定水飛薊賓對HepG2細胞遷移的影響,采用Transwell進行定量研究,Transwell方法是通過檢測一段時間內(nèi)穿過小孔膜的細胞數(shù)來觀察細胞遷移能力的實驗。實驗表明,不同濃度的水飛薊賓對HepG2細胞的遷移有明顯的抑制作用,并呈現(xiàn)劑量依賴效應(yīng)。
本研究通過RT-PCR實驗觀察水飛薊賓對轉(zhuǎn)移相關(guān)因子Snail、Slug和Twist的作用。實驗結(jié)果表明,水飛薊賓干預(yù)48 h后HepG2細胞的Snail、Slug和Twist基因表達明顯下調(diào),并且有劑量依賴效應(yīng)。由于Snail、Slug和Twist等基因參與細胞的EMT,因此水飛薊賓是否會抑制EMT值得進一步研究。EMT對腫瘤的轉(zhuǎn)移非常關(guān)鍵[15-19]。Slug和Twist參與調(diào)控乳腺癌的EMT[18]。Snail參與調(diào)控多種腫瘤的侵襲和轉(zhuǎn)移[20-23]。本實驗發(fā)現(xiàn)水飛薊賓對Snail、Slug和Twist等基因的影響,對開發(fā)抑制HCC轉(zhuǎn)移的靶點抑制劑顯得尤為重要[24-26]。因此,在接下來的研究中將繼續(xù)深入研究水飛薊賓與HCC細胞EMT的關(guān)系。
綜上所述,水飛薊賓具有抑制人HCC HepG2細胞遷移的能力,為水飛薊賓臨床抗腫瘤的應(yīng)用提供了新的理論基礎(chǔ)和前景。同時,水飛薊賓可以抑制轉(zhuǎn)移相關(guān)因子Snail、Slug和Twist的表達又為開發(fā)HCC轉(zhuǎn)移抑制劑提供新的思路和基礎(chǔ)。水飛薊賓可以抑制EGFR突變的非小細胞肺癌細胞的EMT轉(zhuǎn)變[12]。但是,本實驗只是初步研究水飛薊賓對EMT相關(guān)因子Snail、Slug和Twist基因表達的影響,未對細胞EMT的標(biāo)志物E鈣黏蛋白與波形蛋白的表達進行檢測,因此水飛薊賓是否是通過逆轉(zhuǎn)HCC細胞EMT或通過其他通路來調(diào)節(jié)HCC細胞遷移的機制還不清楚,需要進一步研究。
1 Gluer AM, Cocco N, Laurence JM, et al. Systematic review of actual 10-year survival following resection for hepatocellular carcinoma[J]. HPB (Oxford), 2012, 14(5)∶285-290.
2 Lau WY, Lai EC. Hepatocellular carcinoma∶ current management and recent advances[J]. Hepatobiliary Pancreat Dis Int, 2008, 7(3)∶237-257.
3 Hanahan D, Weinberg RA. Hallmarks of cancer∶ the next Generation[J]. Cell, 2011, 144(5)∶646-674.
4 Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell, 2000, 100(1)∶57-70.
5 Liu F, Liu Y, Shen J, et al. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating fizzled 5 expression[J]. Oncotarget, 2016. [Epub ahead of print].
6 Wu YR, Qi HJ, Deng DF, et al. MicroRNA-21 promotes cell proliferation, migration, and resistance to apoptosis through PTEN/ PI3K/AKT signaling pathway in esophageal cancer[J]. Tumour Biol, 2016, 37(9)∶12061-12070.
7 劉香臣. 水飛薊素的藥理作用與臨床評價[J]. 中國醫(yī)藥指南, 2012 (14)∶66-67.
8 Deep G, Agarwal R. Antimetastatic efficacy of silibinin∶ molecular mechanisms and therapeutic potential against cancer[J]. Cancer Metastasis Rev, 2010, 29(3)∶447-463.
9 Son Y, Lee HJ, Rho JK, et al. The ameliorative effect of silibinin against radiation-induced lung injury∶ protection of normal tissue without decreasing therapeutic effcacy in lung cancer[J]. BMC Pulm Med, 2015, 15∶68.
10 Flaig TW, Glodé M, Gustafson D, et al. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer[J]. Prostate, 2010, 70(8)∶848-855.
11 Wang Y, Liang WC, Pan WL, et al. Silibinin, a novel chemokine receptor type 4 antagonist, inhibits chemokine ligand 12-induced migration in breast cancer cells[J]. Phytomedicine, 2014, 21(11)∶1310-1317.
12 Cufí S, Bonavia R, Vazquez-Martin A, et al. Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anticancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells[J]. FoodChem Toxicol, 2013, 60∶360-368.
13 Cheng CY, Lie PP, Wong EW, et al. Focal adhesion kinase and actin regulatory/binding proteins that modulate F-actin organization at the tissue barrier∶ Lesson from the testis[J]. Tissue Barriers, 2013, 1(2)∶e24252.
14 Liu X, Wang J, Sun B, et al. Cell growth inhibition, G2M cell cycle arrest, and apoptosis induced by the novel compound Alternol in human gastric carcinoma cell line MGC803[J]. Invest New Drugs, 2007, 25(6)∶505-517.
15 Li X, Pei D, Zheng H. Transitions between epithelial and mesenchymal states during cell fate conversions[J]. Protein Cell, 2014, 5(8)∶580-591.
16 Thiery JP, Sleeman JP. Complex networks orchestrate epithelialmesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006, 7(2)∶131-142. 17 Yilmaz M, Christofori GE, The C. And cancer cell invasion[J]. Cancer Metastasis Rev, 2009, 28(1/2)∶15-33.
18 Weyemi U, Redon CE, Sethi TK, et al. Twist1 and slug mediate H2AX-regulated Epithelial-Mesenchymal transition in breast cells[J]. Cell Cycle, 2016, 15(18)∶2398-2402.
19 Zhou XM, Zhang H, Han X. Role of epithelial to mesenchymal transition proteins in gynecological cancers∶ pathological and therapeutic perspectives[J]. Tumor Biology, 2014, 35(10)∶9523-9530.
20 Wang Y, Shi J, Chai K, et al. The role of snail in EMT and tumorigenesis[J]. Curr Cancer Drug Targets, 2013, 13(9)∶963-972.
21 Zheng M, Jiang YP, Chen W, et al. Snail and slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma[J]. Oncotarget, 2015, 6(9)∶6797-6810.
22 Ota I, Masui T, Kurihara M, et al. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells[J]. Oncol Rep, 2016, 35(1)∶261-266.
23 Jeon SY, Go RE, Heo JR, et al. Effects of cigarette smoke extracts on the progression and metastasis of human ovarian cancer cells via regulating epithelial-mesenchymal transition[J]. Reprod Toxicol, 2016, 65∶1-10.
24 Wang C, Jiang K, Kang X, et al. Tumor-derived secretory clusterin induces epithelial-mesenchymal transition and facilitates hepatocellular carcinoma metastasis[J]. Int J Biochem Cell Biol, 2012, 44(12)∶2308-2320.
25 Stebbing J, Filipovi? A, Giamas G. Claudin-1 as a promoter of EMT in hepatocellular carcinoma[J]. Oncogene, 2013, 32(41)∶4871-4872.
26 Wang J, Chen L, Li Y, et al. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma[J]. PLoS One, 2011, 6(9)∶e24967.
Silybin inhibits migration of human hepatocellular carcinoma cells and its mechanism
Chen Huiyun, Wang Shaozhen, Liao Lianming. Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
Liao Lianming, Email:llm@fjtcm.edu.cn
Objective To observe the effect of silybinin on the migration of HepG2 cells. Methods MTT assay was used to determine the effect of silybinin on cell proliferation and viability of HepG2 cells. Cell scratch and Transwell assay were used to evaluate the effect of silybinin on migration of HepG2 cells. mRNA transcription level of Twist, Snail and Slug genes was qualified by real-time quantitative PCR. The viability of HepG2 cells, migration distance, the numbers of migrated cells and gene expression levels of Twist, Snail and Slug were compared among four groups by Oneway ANOVA. P < 0.05 was considered statistically significant. Results MTT assay showed that silybinin(0, 30, 60, 120, 240, 480 μg/ml)treatment could significantly decrease viability of HepG2 cells in dose- and time- dependent manners(P < 0.05). The migration distances of silybinin group(60, 120 and 240 μg/ml ) were (1.50±0.24) cm(P = 0.046)、(1.20±0.33) cm(P = 0.037)and (1.05±0.24)cm(P = 0.029)respectively. Then, we examined the numbers of migrated cells were 100.00±4.25、30.00±5.34 and 6.00±2.28(P < 0.05)respectively. Gene expression levels of Twist, Snail and Slug were inhibited in HepG2 cells(P < 0.05). Conclusion Silybinin could inhibit the migration of HepG2 cells.
Silymarin; Liver neoplasms; Cell movement
2016-04-10)
(本文編輯:蔡曉珍)
10.3877/cma.j.issn.2095-1221.2016.06.004
350122 福州,福建中醫(yī)藥大學(xué)藥學(xué)院
廖聯(lián)明,Email:llm@fjtcm.edu.cn
陳惠云,王少珍,廖聯(lián)明. 水飛薊賓對人肝癌HepG2細胞遷移的作用研究[J/CD].中華細胞與干細胞雜志∶電子版, 2016, 6(6)∶345-350.