唐敏綜述,呂紅彬?qū)徯?/p>
(西南醫(yī)科大學(xué)附屬醫(yī)院眼科,四川瀘州646000)
周細(xì)胞凋亡與糖尿病性視網(wǎng)膜病變的研究進(jìn)展
唐敏綜述,呂紅彬?qū)徯?/p>
(西南醫(yī)科大學(xué)附屬醫(yī)院眼科,四川瀘州646000)
糖尿病性視網(wǎng)膜病變;周細(xì)胞凋亡;研究進(jìn)展
據(jù)調(diào)查,至2010年,我國18歲以上成年人罹患糖尿?。╠iabetes mellitus,DM)的人數(shù)約有超過1.1億,患病率高達(dá)11.6%,是糖尿病患病人數(shù)最多的國家[1],西方國家的DM患病率也呈逐年上升趨勢。糖尿病性視網(wǎng)膜病變(diabetic retinopathy,DR)是隨著DM病程延長而逐漸出現(xiàn)的糖尿病性微血管病變,為DM的嚴(yán)重并發(fā)癥之一,發(fā)展至增殖期可致盲[2]。DR的早期病理改變主要為:視網(wǎng)膜毛細(xì)血管周細(xì)胞(Peripheral cell,PC)減少或消失、影周細(xì)胞形成及無細(xì)胞毛細(xì)血管出現(xiàn)、內(nèi)皮細(xì)胞增生、基底膜增厚及血-視網(wǎng)膜屏障破壞等,繼而導(dǎo)致視網(wǎng)膜血管管腔狹窄、血流動力學(xué)改變,最終導(dǎo)致視網(wǎng)膜毛細(xì)血管閉塞,促進(jìn)DR后期視網(wǎng)膜缺血、缺氧以及新生血管形成[3-4]。視網(wǎng)膜毛細(xì)血管周細(xì)胞丟失為DR最早期病理改變之一,在DR的發(fā)生發(fā)展中起著至關(guān)重要的作用,然而,對視網(wǎng)膜周細(xì)胞凋亡的機(jī)制仍不十分清楚,多年來眾多學(xué)者致力于對周細(xì)胞凋亡機(jī)制的研究,本文就糖尿病視網(wǎng)膜病變早期周細(xì)胞凋亡的相關(guān)信號通路及細(xì)胞因子作一綜述,期望為糖尿病視網(wǎng)膜病變中周細(xì)胞凋亡的進(jìn)一步研究提供新的思路。
周細(xì)胞在調(diào)節(jié)微血管生理及病理性血管生成過程中起著舉足輕重的作用[5-6]。在微血管系統(tǒng)中,周細(xì)胞和毛細(xì)血管內(nèi)皮細(xì)胞由共同的基底膜包繞,兩者通過物理接觸及旁分泌信號進(jìn)行細(xì)胞通訊,共同調(diào)節(jié)血管形成、病理性血管新生、血管滲漏、腫瘤形成等病理生理過程。毛細(xì)血管形成早期,周細(xì)胞的募集可促使新生毛細(xì)血管的發(fā)生和發(fā)展;而血管形成后期,周細(xì)胞則抑制內(nèi)皮細(xì)胞增生,促進(jìn)內(nèi)皮細(xì)胞分化,從而促進(jìn)血管成熟,維持正常結(jié)構(gòu)和調(diào)節(jié)其通透性。在慢性高血糖的刺激下,視網(wǎng)膜毛細(xì)血管最早出現(xiàn)周細(xì)胞的丟失,進(jìn)而出現(xiàn)了影周細(xì)胞及無細(xì)胞毛細(xì)血管[7],推測早期毛細(xì)血管周細(xì)胞凋亡可能是誘導(dǎo)病理性血管生成的前提。
2.1 STAT1信號通路介導(dǎo)的Bim蛋白表達(dá)與視網(wǎng)膜周細(xì)胞凋亡
Bim蛋白屬于Bcl-2(B cell lymphoma-2)家族促凋亡成員之一。Bcl-2家族成員通過復(fù)雜的相互作用在細(xì)胞層面調(diào)控生物的生存和死亡信號,該家族可分為三大類:Bcl-2樣生存因子,Bax樣死亡因子,以及BH3-only死亡因子如Bim、Bik、Puma、Bid等。BH3-only死亡因子又被稱為BH3-only蛋白,其得名源于它只含有一個(gè)BH3域。BH3-only蛋白可通過翻譯后修飾(如磷酸化、乙酰化、泛素化等)和蛋白水解等方式激活,而Bim蛋白可與某些大分子結(jié)合來保持其失活狀態(tài)。Bcl-2蛋白家族可通過維持線粒體穩(wěn)態(tài)來調(diào)控細(xì)胞凋亡,并且這種調(diào)控作用依賴于抗凋亡和促凋亡蛋白的平衡[8]。
ES Shin等[9]研究發(fā)現(xiàn),糖尿病大鼠視網(wǎng)膜周細(xì)胞和高糖條件下培養(yǎng)的大鼠視網(wǎng)膜周細(xì)胞中促凋亡蛋白Bim表達(dá)增多,并闡明視網(wǎng)膜周細(xì)胞中Bim表達(dá)增多依賴于持續(xù)活化的信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子1(signal transducers and activators of transcriptions,STAT1)。Jenny等[10]也認(rèn)為,Bim促凋亡蛋白的表達(dá)受STAT1轉(zhuǎn)錄調(diào)控,而STAT1受炎癥因子特別是干擾素家族如IFN-α、IFN-β、IFN-γ及IL-1β等激活[11-12]。STAT1最早是在研究IFN信號通路時(shí)被發(fā)現(xiàn)的一種蛋白,不同的IFN亞族激活STAT1形式不完全一致:IFN-α、IFN-β刺激可形成STAT1同型二聚體進(jìn)而啟動GAS驅(qū)動的基因轉(zhuǎn)錄,而IFN-γ誘導(dǎo)STAT1同型二聚體和STAT1/STAT2異型二聚體形成,后者可啟動ISRE驅(qū)動的基因轉(zhuǎn)錄[13-14]。糖尿病患者血清中IFN-γ等明顯增加,最新研究表明,干擾素家族可通過激活JAK-STAT1信號途徑而使STAT1磷酸化,激活的STAT1蛋白從胞膜進(jìn)入胞核而啟動基因轉(zhuǎn)錄[15]。ES Shin[9]等通過測量不同濃度葡萄糖培養(yǎng)下的視網(wǎng)膜周細(xì)胞中活化的STAT1及STAT1總量,發(fā)現(xiàn)高糖條件下培養(yǎng)的視網(wǎng)膜周細(xì)胞中STAT1磷酸化水平明顯提高,STAT1可能通過以上途徑上調(diào)Bim蛋白表達(dá),進(jìn)而調(diào)控視網(wǎng)膜周細(xì)胞凋亡。
2.2 氧化應(yīng)激與周細(xì)胞凋亡
目前的研究結(jié)果顯示,氧化應(yīng)激(oxidative stress,OS)在DR的發(fā)生和發(fā)展過程中起了非常重要的作用[16]。線粒體呼吸鏈?zhǔn)求w內(nèi)活性氧(reactive oxygen species,ROS)的主要來源,高糖所致的代謝異??烧T導(dǎo)線粒體電子運(yùn)輸鏈(mitochondrial,electron transport chain,ETC)產(chǎn)生過多的ROS,一定濃度的ROS是維持機(jī)體基本生理過程必須的,而過量的ROS可對機(jī)體微環(huán)境產(chǎn)生破壞性的損傷。氧化還原反應(yīng)貫穿于細(xì)胞生存、活動的整個(gè)過程,活性氧增加導(dǎo)致視網(wǎng)膜代謝異常,而這些異常的代謝又能產(chǎn)生活性氧,由此構(gòu)成惡性循環(huán),持續(xù)暴露于高活性氧壞境下最終導(dǎo)致線粒體DNA損傷,細(xì)胞死亡[17]。最新研究顯示,ROS可介導(dǎo)多個(gè)生物途徑參與糖尿病性微血管并發(fā)癥,包括活化核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎癥小體,激活Keap1-Nrf2-ARE信號通路,以及SIRT1/ROS信號途徑活化[18-20]等。此外,多元醇途徑及細(xì)胞內(nèi)糖基化終末產(chǎn)物的增加、蛋白激酶C的激活以及己糖胺途徑的增加等已成為研究相對成熟的途徑[21-22],各信號途徑之間的相互聯(lián)系仍需進(jìn)一步詳細(xì)闡明。研究顯示,高糖誘導(dǎo)的牛視網(wǎng)膜毛細(xì)血管周細(xì)胞(BRPs)線粒體產(chǎn)生過多ROS,提示氧化應(yīng)激是誘導(dǎo)周細(xì)胞凋亡的主要原因之一[23-25]。
最近研究發(fā)現(xiàn),ROS在體內(nèi)可作為一種信號分子通過多種途徑激活c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)信號通路而誘導(dǎo)細(xì)胞損傷、自噬和凋亡[26]。ROS-JNK信號通路對細(xì)胞生存狀態(tài)的調(diào)控高度依賴胞內(nèi)ROS水平,適宜水平的ROS可短暫激活JNK通路,從而引起細(xì)胞自噬而不足以引起細(xì)胞凋亡,但過量的ROS引起JNK通路持續(xù)活化,經(jīng)線粒體途徑引起細(xì)胞凋亡[27]。
2.3 多元醇通路與周細(xì)胞凋亡
持續(xù)高血糖刺激可激活由醛糖還原酶(aldose reductase,AR)和山梨醇脫氫酶(sorbitol dehydrogenase,SDH)共同參與的葡萄糖多元醇通路,AR是此過程的限速酶。高糖刺激下,醛糖還原酶活性增加,過量的葡萄糖不能經(jīng)己糖激酶催化形成6-磷酸葡萄糖,而是在AR的催化下以還原型輔酶Ⅱ(NADPH)為輔酶被還原為山梨醇,山梨醇在SDH作用下被氧化為果糖,其輔酶為氧化型輔酶Ⅰ(NAD+)。目前研究認(rèn)為,此途徑的致病機(jī)制如下:山梨醇及果糖代謝緩慢且不易通過細(xì)胞膜彌散,因而導(dǎo)致對微血管的滲透壓損傷;山梨醇的激活同時(shí)抑制磷酸己糖旁路,引起細(xì)胞內(nèi)肌醇減少,導(dǎo)致Na+-K+-ATP酶活性下降,DNA活性下降及細(xì)胞死亡;山梨醇在氧化過程中胞漿中NADP/NAD+比值增加,抑制了3-磷酸甘油醛脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)的活性,磷酸丙糖濃度增加,從而使甲基丙二醛和二酰甘油的形成增加,后兩者是一種糖基化終末產(chǎn)物(AGEs)的前體,從而可激活蛋白激酶C途徑而導(dǎo)致細(xì)胞損傷[28-29]。
Akagi Y等[30-31]通過免疫組化研究發(fā)現(xiàn),經(jīng)胰蛋白酶消化分離的人和狗視網(wǎng)膜周細(xì)胞中AR表達(dá)量十分豐富,而醛糖還原酶抑制劑(aldose reductase Inhibitors,ARI)可明顯減少高糖介導(dǎo)的周細(xì)胞凋亡[32-33]。新近研究表明,高糖條件下培養(yǎng)的牛視網(wǎng)膜周細(xì)胞中鈣離子濃度和caspase-3活性顯著增加,而還原型谷胱甘肽含量(GSH)含量明顯降低,周細(xì)胞活性降低,而加入醛糖還原酶抑制劑SNK-860后以上異常明顯被抑制[34],這表明AR催化的多元醇通路在高糖誘導(dǎo)的周細(xì)胞凋亡中起著重要的作用。
2.4 硫氧還蛋白相互作用蛋白(TXNIP)表達(dá)與周細(xì)胞凋亡
硫氧還蛋白相互作用蛋白(Thioredoxin Interacting Protein,TXNIP)又稱硫氧還蛋白結(jié)合蛋白-2(TBP-2)或維生素D3上調(diào)蛋白1(VDUP-1),可通過抑制硫氧還蛋白(Thioredoxin,TRX)系統(tǒng)發(fā)揮介導(dǎo)氧化應(yīng)激、誘導(dǎo)細(xì)胞凋亡、對抗細(xì)胞增殖等作用而被稱為促氧化應(yīng)激/促凋亡蛋白[35]。Devi T S等[36]研究發(fā)現(xiàn),TXNIP在實(shí)驗(yàn)性糖尿病大鼠視網(wǎng)膜中表達(dá)上調(diào)并介導(dǎo)炎癥反應(yīng)和細(xì)胞凋亡。不同濃度葡萄糖環(huán)境下培養(yǎng)實(shí)驗(yàn)性大鼠視網(wǎng)膜周細(xì)胞,并予以抗氧化劑N-乙?;腚装彼幔∟AC)及TXNIP抑制劑Azas或siTXNIP3干預(yù)對比,結(jié)果表明,高糖環(huán)境下視網(wǎng)膜周細(xì)胞TXNIP表達(dá)增加,并與ROS產(chǎn)生、蛋白質(zhì)巰基亞硝基化及促凋亡蛋白caspase-3表達(dá)量呈正相關(guān),提示TXNIP與視網(wǎng)膜周細(xì)胞凋亡密切相關(guān)。
最新研究表明,TXNIP與核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)在糖尿病微血管病變包括糖尿病視網(wǎng)膜病變中發(fā)揮重要作用[37]。其機(jī)制可能為:持續(xù)高血糖代謝誘導(dǎo)產(chǎn)生大量活性氧族,可作為共同刺激信號激活NLRP3炎癥小體,TXNIP與TRX解離后隨之結(jié)合NLRP3進(jìn)而激活炎癥小體,形成正反饋效應(yīng),其直接效應(yīng)是裂解caspase-1,活化IL-1β,并促進(jìn)其他炎癥反應(yīng)因子釋放,從而介導(dǎo)糖尿病性視網(wǎng)膜細(xì)胞損傷[38],但是TXNIP與NLRP3是否在視網(wǎng)膜周細(xì)胞中產(chǎn)生同樣的作用而促進(jìn)周細(xì)胞凋亡有待進(jìn)一步研究。
2.5 促凋亡轉(zhuǎn)錄因子FoxO1與周細(xì)胞凋亡
FoxO1轉(zhuǎn)錄因子屬于叉形頭轉(zhuǎn)錄因子的O亞型,是Fox(forkhead transcription factors of the O class)家族中的一員,此類轉(zhuǎn)錄因子的特點(diǎn)是具有鮮明的叉頭DNA結(jié)合域,目前已發(fā)現(xiàn)FoxO1、FoxO3a、FoxO4、FoxO6等至少4個(gè)FoxO亞族成員,其中FoxO1基因定位于人染色體13q14.1,可編碼655個(gè)氨基酸[39]。FoxO1轉(zhuǎn)錄因子通過轉(zhuǎn)錄和傳導(dǎo)各種生長因子及細(xì)胞因子來調(diào)節(jié)細(xì)胞氧化應(yīng)激、增殖、凋亡和炎癥等多種病理生理過程。FoxO1是PI3K/AKT信號通路的直接下游分子,PI3K/AKT信號通路激活可使其發(fā)生磷酸化,F(xiàn)oxO1從細(xì)胞核轉(zhuǎn)移至細(xì)胞質(zhì),其轉(zhuǎn)錄活性降低,從而抑制其調(diào)控的下游基因表達(dá),抑制PI3K/AKT和MAPK/ERK信號通路使Fox-O1轉(zhuǎn)錄因子活性增強(qiáng),促進(jìn)細(xì)胞凋亡[40]。Alikhani M[41]等認(rèn)為,高糖刺激下FoxO1轉(zhuǎn)錄因子的活化可能通過絲裂原活化蛋白(MAP)激酶途徑激活。絲裂原活化蛋白激酶家族(mitogen-activated protein kinases,MAPKs)是一系列絲氨酸/蘇氨酸激酶,可磷酸化其他細(xì)胞質(zhì)蛋白,并從胞漿轉(zhuǎn)移至胞核而調(diào)節(jié)轉(zhuǎn)錄因子活性,目前已發(fā)現(xiàn)4個(gè)MAPK亞族,其中p38(SAPK2,PK,CSBP或Mxi2)和JNK(c-Jun氨基末端激酶)在大多數(shù)細(xì)胞中產(chǎn)生促凋亡信號,而即細(xì)胞外信號調(diào)節(jié)蛋白激酶(extracellular-signal regulated protein kinase,ERK)產(chǎn)生典型的抗凋亡信號[42-43]。Mani A等[44]通過體外實(shí)驗(yàn)表明,腫瘤壞死因子-α(TNF-α)或CML(羥甲基賴氨酸,一種糖基化終末產(chǎn)物)刺激下的視網(wǎng)膜周細(xì)胞中的FoxO1DNA結(jié)合活性明顯增強(qiáng),周細(xì)胞活性顯著降低,并且siRNA干擾技術(shù)抑制FoxO1表達(dá)可明顯抑制周細(xì)胞凋亡,提示FoxO1在視網(wǎng)膜周細(xì)胞凋亡中發(fā)揮重要作用。
視網(wǎng)膜毛細(xì)血管壁由內(nèi)皮細(xì)胞和周細(xì)胞兩種細(xì)胞組成,周細(xì)胞緊靠內(nèi)皮細(xì)胞,由共同的基底膜包繞。周細(xì)胞和內(nèi)皮細(xì)胞在結(jié)構(gòu)和功能上都聯(lián)系緊密,它們之間通過物理接觸及旁分泌信號進(jìn)行通訊,共同調(diào)節(jié)血管形成、病理性血管新生、血管滲漏、腫瘤形成等病理生理過程。毛細(xì)血管形成早期,周細(xì)胞的募集可促使新生毛細(xì)血管的發(fā)生和發(fā)展;血管形成后期,周細(xì)胞則抑制內(nèi)皮細(xì)胞增生,促進(jìn)內(nèi)皮細(xì)胞分化,從而促進(jìn)血管成熟,早期周細(xì)胞的丟失可能是啟動內(nèi)皮細(xì)胞增殖及觸發(fā)新生血管生成的“調(diào)控開關(guān)”[45]。研究表明,在糖尿病視網(wǎng)膜病變早期病理改變即出現(xiàn)周細(xì)胞丟失,繼而出現(xiàn)內(nèi)皮細(xì)胞增殖、基底膜增厚、血-視網(wǎng)膜屏障破壞等病理變化,最終發(fā)展為增殖型糖尿病性視網(wǎng)膜病變。因此,作為糖尿病視網(wǎng)膜病變發(fā)生發(fā)展的早期事件,周細(xì)胞凋亡相關(guān)研究成為熱點(diǎn)。綜上所述,持續(xù)高糖刺激下視網(wǎng)膜周細(xì)胞凋亡與氧化應(yīng)激、多元醇通路激活、促凋亡相關(guān)因子激活等多因素相關(guān),但是目前的大多數(shù)研究仍局限于體外實(shí)驗(yàn),且細(xì)胞凋亡相關(guān)的信號途徑及調(diào)控因子等在諸如病理性新生血管形成、腫瘤發(fā)生等過程中存在交互作用,因此,視網(wǎng)膜毛細(xì)血管周細(xì)胞凋亡與糖尿病視網(wǎng)膜病變的發(fā)生發(fā)展的確切機(jī)制仍有待進(jìn)一步研究闡明,不斷總結(jié)既往研究有助于為新的研究進(jìn)展提供新的思路,最終闡明糖尿病視網(wǎng)膜病變的發(fā)病機(jī)制。
1.Wenying Y,Juming L,Jianping W,et al.Prevalence of diabetes among men and women in China[J].New England Journal of Medicine,2010,362(12):1 090-1 101.
2.Laatikainen L,Ojamo M,Rudanko S L,et al.Improving visual prognosis of the diabetic patients during the past 30years based on the data of theFinnish Register of Visual Impairment[J].Acta Ophthalmologica,2016.93(3):226-231.
3.Cai X,Mcginnis J F.Diabetic Retinopathy:Animal Models,Therapies,and Perspectives[J].Journal of Diabetes Research,2016,2016(10):1-9.
4.Hans-Peter H,Yuxi F,Frederick P,et al.Diabetic retinopathy:targeting vasoregression[J].Diabetes,2011,60(1):9-16.
5.Chen Z,Xu X H,Hu J.Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy[J]. Neoplasma,2016.63(2):173-182.
6.Orlova V V,Drabsch Y,Freund C,et al.Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts[J].Arteriosclerosis Thrombosis&Vascular Biology,2014,34(1):177-186.
7.Barber A J,Gardner TW,Abcouwer SF.The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy[J].Investigative Ophthalmology&Visual Science,2011,52(2):1 156-1 163.
8.Lomonosova E,Chinnadurai G.BH3-only proteins in apoptosis and beyond:an overview[J].Oncogene,2008, 27(Suppl 1):S2-S19.
9.Shin ES,Huang Q,Gurel Z,et al.STAT1-mediated Bim expression promotes the apoptosis of retinal pericytes under high glucose conditions[J].Cell Death&Disease,2014,5(1):986-986.
10.Jenny,Barthson,Carla M,Germano,Fabrice,Moore,ect. Cytokines tumor necrosis factor-α and interferon-γ induce pancreatic β-cell apoptosis through STAT1-mediated Bim protein activation[J].Journal of Biological Chemistry,2011,286(45):39 632-39 643.
11.Moore F,Santin I,Nogueira TC.et al.The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells[J].PLoS One,2012,7:(2):268-270.
12.Barthson J,Germano CM,Moore F,et al.Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation[J].J Biol Chem,2011,286:39 632-39 643.
13.Katarzyna B?aszczyk,Olejnik A,Chmielewski S,et al.25: STAT2 and IRF9-dependent IFN-I signaling restores ISRE-mediated transcription and anti-viral activity independent of STAT1[J].Cytokine,2013,63(3):248-249.
14.Overmeire E V,Laoui D,Keirsse J,et al.STAT of the union:Dynamics of distinct tumor-associated macrophage subsets governed by STAT1[J].European Journal of Immunology,2014,44(8):2 238-2 242.
15.Dong G,Ming Y,Fan H,et al.STS-1 promotes IFN-α induced autophagy by activating the JAK1-STAT1 signaling pathway in B cells[J].European Journal of Immunology,2015,45(8):2 377-2 388.
16.Shashi Sharma MD,Saxena S,Khushboo Srivastav MD,et al.Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations[J].Clinical&Experimental Ophthalmology,2015, 43(5):429-436.
17.Kowluru RA,Mishra M.Oxidative stress,mitochondrial damage and diabetic retinopathy[J].Biochimica Et Biophysica Acta,2015,1852(11):2 474-2 483.
18.Huanqi S,Zhen Z,Xiaodan W,et al.Inhibition of autophagy induces IL-1β release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress[J].Biochemical&Biophysical Research Communications,2015,463(4):1 071-1 076.
19.Kovac S,Angelova PR,Holmstr?m KM,et al.Nrf2 regulates ROS production by mitochondria and NADPH oxidase[J].Biochimica et Biophysica Acta(BBA)-General Subjects,2015,1850(4):794-801.
20.Jiang Y,Sun Y,Yuan Y.Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT1 Pathway[J].國際轉(zhuǎn)化醫(yī)學(xué)雜志(英文版),2014(1).
21.Brownlee M.The pathobiology of diabetic complications:a unifying mechanism[J].Diabetes,2005,54:1 615-1 625.
22.Giacco F,Brownlee M.Oxidative stress and diabetic complications[J].Circ Res,2010,107:1 058-1 070.
23.Cui Y Xu X,Bi H,Zhu Q,et al.Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high Nucose:the role of reactive oxygen species in diabetic retinopathy[J].Exp Eye Res,2006,83(4):807-816.
24.Mustapha NM,Tarr JM,Kohner EM,et al.NADPH Oxidase versus Mitochondria-Derived ROS in Glucose-Induced Apoptosis of Pericytes in Early Diabetic Retinopathy[J].Journal of Ophthalmology,2010,2010(1):85-92.
25.Amano S,Yamagishi S,Inagaki Y,et al.Pigment epithelium-derived factor inhibits oxidative stress-induced apoptosis and dysfunction of cultured retinal pericytes[J].Microvascular Research,2005,69(69):45-55.
26.Scherz-Shouval R,Elazar Z.Regulation of autophagy by ROS:physiology and pathology[J].Trends in Biochemical Sciences,2011,36(1):30-38.
27.Iman F,Heba AH,Narayana K.Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats[J]. Toxicology&Applied Pharmacology,2015,289(3):482-494.
28.Lorenzi M.The polyol pathway as a mechanism for diabetic retinopathy:attractive,elusive,and resilient[J].Experimental Diabetes Research,2006,2007(1):164-173.
29.Dagher Z,Park YV,Hoehn T,et al.Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy[J].Diabetes,2004,53(9):2 404-2 411.
30.Akagi Y,Kador PF,Kuwabara T,et al.Aldose reductase localization in human retinal mural cells[J].Invest Ophthalmol Vis Sci.1983;24:1516-1519.
31.Akagi Y,Terubayashi H,Millen J,et al.Aldose reductase localization in dog retinal mural cells[J].Curr Eye Res, 1986,5:883-886.
32.Hohman TC,Nishimura C,Robison WG Jr.Aldose reductase and polyol in cultured pericytes of human retinal capillaries[J].Exp Eye Res,1989,48:55-60.
33.Naruse K,Nakamura J,Hamada Y,et al.Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes[J].Exp Eye Res,2000,71:309-315.
34.Miwa K,Nakamura J,Hamada Y,et al.The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes[J].Diabetes Research&Clinical Practice, 2014,9(9):104 396-104 396.
35.Singh LP.Thioredoxin Interacting Protein(TXNIP)and Pathogenesis of Diabetic Retinopathy[J].Journal of Clinical &Experimental Ophthalmology,2013,4(1):30-42.
36.Devi TS,Ken-Ichi H,Tetsuya T,et al.Critical role of TXNIP in oxidative stress,DNA damage and retinal pericyte apoptosis under high glucose:implications for diabetic retinopathy[J].Experimental Cell Research,2013,319(7): 1 001-1 012.
37.Li Y,Yang J,Chen MH,et al.Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner[J].Pharmacological Research,2015,99:101-115.
38.Tseng WA,Thein T,Kinnunen K,et al.NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization:implications for agerelated macular degeneration[J].Invest Ophthalmol Vis Sci,2013,54: 110-120.
39.Kaestner KH,Knochel W,Martinez DE.Unified nomenclature for the winged helix/forkhead transcription factors [J].Genes&Development,2000,14(2):142-146.
40.Roy SK,Srivastava RK,Shankar S.Inhibition of PI3K/ AKT and MAPK/ERK pathways causes activation of FOXO transcription factor,leading to cell cycle arrest and apoptosis in pancreatic cancer[J].Journal of Molecular Signaling,2014,5(1):10.
41.Alikhani M,Maclellan CM,Raptis M,et al.Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS,MAP kinases,and the FOXO1 transcription factor[J].Am J Physiol Cell Physiol,2007, 292:850-856.
42.Johnson GL,Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK,JNK,and p38 protein kinases[J].Science,2002,298:1 911-1 912.
43.2 4.Kumar S,Boehm J,Lee JC.p38 MAP kinases:key signaling molecules as therapeutic targets for inflammatory diseases[J].Nat Rev Drug Discov,2003,2:717-726.
44.Mani A,Sayon R,Graves D T.FOXO1 plays an essential role in apoptosis of retinal pericytes[J].Molecular Vision, 2010,16:408-415.
45.Arboleda-Velasquez JF,Valdez CN,Marko CK,et al. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy[J].Current Diabetes Reports,2015,15(2):573-573.
(2016-04-27收稿)
R774.1+3
A
10.3969/j.issn.1000-2669.2016.06.026
唐敏(1989-),女,碩士生。E-mail:470080275@qq.com