蔣潔敏 康向東
摘要:紫杉醇是從天然植物紅豆杉屬樹皮中提取的單體雙萜類化合物,具有良好的抗癌活性,廣泛用于乳腺癌、卵巢癌、肺癌等多種癌癥的治療,被列為乳腺癌和卵巢癌的一線化療藥物。但與其他化療藥類似,耐藥性是限制紫杉醇臨床應(yīng)用的一個主要原因。以姜黃素為代表的低毒高效中藥單體成為逆轉(zhuǎn)紫杉醇耐藥性的研究熱點。茲以姜黃素與紫杉醇用藥間協(xié)同性研究進行綜述,以期為臨床尋找化療輔助藥物提供參考。
關(guān)鍵詞:姜黃素;紫杉醇;逆轉(zhuǎn)耐藥;綜述
DOI:10.3969/j.issn.1005-5304.2016.03.039
中圖分類號:R285.5 文獻標(biāo)識碼:A 文章編號:1005-5304(2016)03-0129-05
Abstract: Paclitaxel is a kind of monomer diterpene compound extracted from the taxus chinensis, which has good anti-cancer activity. It is widely used in the treatment of breast cancer, ovarian cancer, lung cancer and other cancers. It also has been listed as the first-line chemotherapy medicine on breast cancer and ovarian cancer. However, the drug resistance is the main obstacle to clinical application similar to other kinds of chemotherapy medicine. The low toxicity and high efficient traditional medicine monomer, represented by curcumin, has become the research focus on reversing paclitaxel resistance. This article summarized the research on synergy between curcumin and paclitaxel, with a purpose to provide references for finding clinical assistant chemotherapeutic medicine.
Key words: curcumin; paclitaxel; reversing medicine resistance; review
紫杉醇抗腫瘤活性發(fā)現(xiàn)于20世紀(jì)70年代,臨床應(yīng)用已超過20年[1]。其主要作用機制是能使快速分裂的腫瘤細(xì)胞在有絲分裂階段被牢牢固定,抑制微管解聚。微管的破壞導(dǎo)致腫瘤細(xì)胞阻滯在G2-M期,并形成異常的有絲分裂紡錘體,從而阻斷腫瘤細(xì)胞復(fù)制,最終發(fā)揮其抗腫瘤的作用[2]。然而,化療耐藥性的出現(xiàn),使紫杉醇臨床應(yīng)用受到限制。目前,克服紫杉醇耐藥、增強腫瘤細(xì)胞對紫杉醇的敏感性已成為紫杉醇用藥新的發(fā)展戰(zhàn)略。姜黃素是從姜黃、郁金、莪術(shù)、石菖蒲等植物根莖中提取的一種酚類衍生物,可通過對核因子κB(NF-κB)、過氧化物酶體增殖物激活受體C(PPARC)、腺苷酸活化蛋白激酶(Adenosine 5'-monophosphate-activated protein kinase,AMPK)和蛋白激酶B(AKT)等多個細(xì)胞信號分子的作用而抗血管生成,促腫瘤細(xì)胞凋亡,抑制癌細(xì)胞的侵襲和轉(zhuǎn)移[3-6]。近幾年研究發(fā)現(xiàn),姜黃素能顯著提高細(xì)胞對紫杉醇敏感性。茲就姜黃素增強紫杉醇化療敏感性的相關(guān)性研究進行綜述。
1 紫杉醇耐藥機制的產(chǎn)生
紫杉醇耐藥形成機制非常復(fù)雜,而且是多因素的,主要表現(xiàn)在以下幾個方面。
1.1 結(jié)合盒相關(guān)成員的作用
在先天或后天耐藥的腫瘤細(xì)胞上,幾乎均表達三磷酸腺苷(ATP)結(jié)合盒(ABC)轉(zhuǎn)運體。研究表明,惡性腫瘤過度表達的ATP ABC會泵出藥物分子,從而降低腫瘤細(xì)胞內(nèi)藥物濃度,影響藥物的藥理作用,同時增加健康細(xì)胞在藥物面前的暴露量,導(dǎo)致耐藥的發(fā)生[7-8]。其中P-糖蛋白(P-gp),也稱為MDR1或PGY1,是研究最多的藥物外排轉(zhuǎn)運蛋白,能介導(dǎo)許多重要的藥物從細(xì)胞內(nèi)流出;同時P-gp也可與膜蛋白A2、鈣依賴性磷脂結(jié)合蛋白(Annexin,Ⅱ)等進行協(xié)同作用,進而促進多藥耐藥的發(fā)展[9]。
1.2 微管結(jié)構(gòu)及相關(guān)蛋白改變
微管是紫杉醇抗腫瘤作用的主要靶點之一。α-和β-tubulin的突變會導(dǎo)致微管結(jié)合藥物改變,可能使腫瘤細(xì)胞敏感性下降[10-11]。對紫杉醇治療前后患者乳腺癌組織進行外顯子組測試發(fā)現(xiàn),治療后的腫瘤中有2種人筑絲蛋白4(TEKT4)種系變異富集[12]。而異位表達TEKT4變異體可通過降低微管穩(wěn)定性,抵抗紫杉醇誘導(dǎo)的穩(wěn)定微管作用,引起乳腺癌對紫杉醇耐藥。
1.3 腫瘤微環(huán)境的改變
現(xiàn)代研究表明,細(xì)胞外基質(zhì)(ECM)是腫瘤微環(huán)境的主要組成部分[13]。ECM能影響藥物抗性,通過阻止藥物滲透到癌細(xì)胞,抑制了藥物抗細(xì)胞凋亡[14]。研究發(fā)現(xiàn),基質(zhì)金屬蛋白酶和免疫信號分子趨化因子這兩個調(diào)節(jié)腫瘤微環(huán)境因子的選擇性抑制,能增加小鼠乳腺腫瘤對藥物的敏感性[15]。
1.4 相關(guān)腫瘤抑制基因的改變
與紫杉醇耐藥相關(guān)的基因有F框/WD-40域蛋白7(F-box and WD repeat domain-containing7,F(xiàn)BW7)、阻抑素(prohibitin,PHB)、髓樣細(xì)胞分化蛋白(myeloid differentiation factor 88,MYD88)。MCL1蛋白在人類癌癥中高表達會對抗微管藥物產(chǎn)生耐受,Wertz等[16]發(fā)現(xiàn)FBW7可促進泛素-蛋白酶體降解MCL1蛋白。Inuzuka H等[17]則發(fā)現(xiàn),在FBW7缺陷的急性淋巴細(xì)胞白血?。═-ALL)細(xì)胞中,轉(zhuǎn)錄調(diào)節(jié)因子Jun、癌基因Myc及跨膜受體蛋白notch 1呈高水平表達。正常情況下,這些蛋白高表達通常會誘導(dǎo)細(xì)胞發(fā)生凋亡,而FBW7缺陷的T-ALL細(xì)胞卻未表現(xiàn)出這一效應(yīng)。Patel N等[18]在穩(wěn)定敲除谷胱甘肽s轉(zhuǎn)運酶-π(GSTπ)和PHB1后,發(fā)現(xiàn)部分紫杉醇敏感性得到恢復(fù),并且敲除PHB1增加紫杉醇敏感效果比敲除GSTπ更好。同樣,敲除人細(xì)胞中MYD88的表達后,細(xì)胞對紫杉醇的敏感性增加[19]。
2 姜黃素增強紫杉醇抗腫瘤的作用機制
近年來,在姜黃素與紫杉醇抗腫瘤作用的初步探討中發(fā)現(xiàn),姜黃素可有效提高人肺腺癌細(xì)胞[20]、人卵巢癌耐藥細(xì)胞[21]、人喉癌細(xì)胞[22]、人前列腺癌細(xì)胞[23]等對紫杉醇的敏感性,二者聯(lián)合化療具有減毒增效作用。其作用機制主要集中在以下幾個方面。
2.1 姜黃素協(xié)同紫杉醇與耐藥蛋白P-糖蛋白
姜黃素可通過下調(diào)P-gp、MRP-1和ABCG2表達水平,從而逆轉(zhuǎn)多藥耐藥現(xiàn)象[24-26]。當(dāng)紫杉醇與不同濃度姜黃素聯(lián)合作用于卵巢癌耐藥細(xì)胞A2780/Taxol后,能較單藥組明顯抑制細(xì)胞生長(P<0.01),且姜黃素干預(yù)后的人卵巢癌A2780/Taxol細(xì)胞,MDR1/P-gp、PKC-α蛋白的表達明顯降低[26]。表明姜黃素可降低細(xì)胞對紫杉醇的外泵作用,增加細(xì)胞對紫杉醇的敏感性。Ganta S等[27]發(fā)現(xiàn),紫杉醇與姜黃素合用能有效改善在人類卵巢癌細(xì)胞SKOV3野生型和SKOV3TR(MDR-1陽性)卵巢腺癌多藥耐藥細(xì)胞的療效。體外試驗表明,姜黃素預(yù)處理后,無論紫杉醇是否用納米乳劑包埋,小鼠血漿中紫杉醇的生物利用度AUC0-1相對于單藥對照組增加4.1倍,相對的生物利用度增加5.2倍,腫瘤組織中紫杉醇的堆積增加3.2倍。施用以姜黃素預(yù)處理后的納米乳劑包埋紫杉醇組的小鼠表現(xiàn)出抗腫瘤活性顯著增強,且肝酶水平和肝組織病理學(xué)檢測未引起任何急性毒性。分子實驗表明,這可能與姜黃素預(yù)處理后,姜黃素能明顯下調(diào)P-gp的表達,從而增加紫杉醇口服生物利用度,以及在腫瘤細(xì)胞內(nèi)藥物累計有關(guān)[28]。
2.2 紫杉醇聯(lián)合姜黃素與核因子κB
姜黃素可以劑量依賴方式顯著抑制NF-κB啟動子的活性。研究發(fā)現(xiàn),在乳腺癌細(xì)胞中,紫杉醇活化的NF-κB可被姜黃素通過抑制Iκκ活化、IκBα磷酸化和IκBα降解來抑制。通過人乳腺癌異種移植模型實驗發(fā)現(xiàn),聯(lián)合姜黃素給藥乳腺癌肺轉(zhuǎn)移的發(fā)病率顯著下降,免疫組化顯示該機制可能與姜黃素能夠抑制紫杉醇誘導(dǎo)的NF-κB活化和受NF-κB調(diào)節(jié)的p50、p65基因的表達有關(guān)。該結(jié)果在宮頸癌中得到證實,NF-κB是姜黃素與紫杉醇起協(xié)同作用的中心環(huán)節(jié),姜黃素可通過下調(diào)NF-κB和Akt,致敏紫杉醇,從而誘導(dǎo)細(xì)胞凋亡。當(dāng)抑制NF-κB的表達后發(fā)現(xiàn),抑制NF-κB可完全抑制紫杉醇和姜黃素的協(xié)同作用;但當(dāng)抑制NF-κB的上游基因Akt時,只能起到部分阻礙作用。表明姜黃素可通過其他途徑調(diào)節(jié)NF-κB,進而抑制紫杉醇誘導(dǎo)NF-κB活化,但具體作用機制尚待進一步研究[29]。Smitha V等[30]研究表明,單藥紫杉醇處理30 min后即可造成Hela細(xì)胞NF-κB亞基的核易位,而用10 μmol/L姜黃素預(yù)處理4 h后的細(xì)胞,NF-κB的亞基仍然在細(xì)胞質(zhì)中。為確定該協(xié)同作用是否存在于體內(nèi),有研究使用Hela細(xì)胞進行動物體內(nèi)移植試驗,發(fā)現(xiàn)接受單藥紫杉醇和單藥姜黃素組的小鼠,腫瘤發(fā)病率分別為44%和60%,腫瘤體積為(965.07±115.96)mm3和(1293.49±139.89)mm3。而接受紫杉醇與姜黃素聯(lián)合用藥組小鼠腫瘤發(fā)病率只有24%,平均腫瘤體積減少至(655.54±100.20)mm3。對腫瘤樣本W(wǎng)estern Blot和免疫組化試驗也再次表明,姜黃素能通過下調(diào)NF-κB、Akt和絲裂原活化的蛋白激酶等,增強紫杉醇的抗腫瘤作用,降低腫瘤體內(nèi)的發(fā)生、血管生成和轉(zhuǎn)移[31]。
2.3 紫杉醇聯(lián)合姜黃素與腫瘤微環(huán)境
單藥姜黃素可調(diào)節(jié)腫瘤微環(huán)境,從而抑制腫瘤發(fā)生和轉(zhuǎn)移。田氏[32]以2.5 μmol/L姜黃素與紫杉醇聯(lián)用,顯示聯(lián)合用藥組以劑量依賴方式顯著下調(diào)白細(xì)胞介素-6和血管內(nèi)皮生長因子,增強細(xì)胞對紫杉醇的敏感性。鄧氏等[33]運用納米材料作為載體,通過比較紫杉醇、固體脂質(zhì)納米姜黃素(SLN-Cur)、紫杉醇聯(lián)用SLN-Cur 3組在不同濃度及不同作用時間下對人卵巢癌細(xì)胞系H0-8910的增殖抑制效應(yīng)、細(xì)胞凋亡超微結(jié)構(gòu)變化、細(xì)胞凋亡率、周期分布、微環(huán)境相關(guān)基因蛋白的表達等,發(fā)現(xiàn)二者有良好協(xié)同作用,紫杉醇聯(lián)用SLN-Cur組的細(xì)胞凋亡率是陰性對照組的6.5倍,分別是紫杉醇單藥組和SLN-Cur組的3.9、2.1倍。二者協(xié)同能下調(diào)基質(zhì)金屬蛋白酶9的表達及上調(diào)基質(zhì)金屬蛋白酶抑制因子2表達。表明姜黃素可能是通過改變腫瘤微環(huán)境而逆轉(zhuǎn)紫杉醇耐藥的。
2.4 其他
研究表明,PHB蛋白在紫杉醇耐藥株中表達上調(diào)[34]。Yang等[35]通過免疫熒光顯微鏡和激光共聚焦顯微鏡結(jié)果顯示,HaCaT細(xì)胞經(jīng)過姜黃素處理后,PHB與p53、c-Myc、Bax和Fas基因共定位的位置發(fā)生改變,PHB在細(xì)胞核內(nèi)明顯減少。Bava SV等[36]發(fā)現(xiàn),5 nmol/L紫杉醇與5 μmol/L姜黃素聯(lián)合使用比紫杉醇單藥更具有抗癌效果。二者在組合使用時,誘導(dǎo)細(xì)胞死亡的死亡率為紫杉醇單藥的2倍,其作用機制可能與二藥聯(lián)合使用后減少細(xì)胞DNA的合成,增強了caspase-3、caspase-7,以及加細(xì)胞色素C釋放等有關(guān)。鑒于姜黃素和紫杉醇都為水溶性差的藥物,ABOUZEID A H等[37]制作共同負(fù)載姜黃素和紫杉醇的混合膠束PEG-PE/VitE。體內(nèi)實驗結(jié)果顯示,姜黃素聯(lián)合治療組腫瘤大小比單藥組小3倍。表明兩藥間具有良好的協(xié)同作用。而體外實驗中,通過計算細(xì)胞半數(shù)抑制率IC50發(fā)現(xiàn),5 μmol/L姜黃素合用指數(shù)(combination index,CI)=1.1,10 μmol/L姜黃素CI=0.78,15 μmol/L姜黃素CI=1.0(CI>1表示拮抗,CI=1表示疊加,CI<1表示協(xié)同[38])。10 μmol/L姜黃素與紫杉醇聯(lián)合時,紫杉醇IC50由2.1 nmol/L降至0.68 nmol/L,同時在10 μmol/L姜黃素濃度不變情況下,調(diào)整紫杉醇濃度,表現(xiàn)出良好的細(xì)胞毒性,顯示姜黃素在10 μmol/L濃度下腫瘤多藥耐藥性逆轉(zhuǎn)能最強。表明姜黃素與紫杉醇之間是存在協(xié)同作用,但這種協(xié)同用藥濃度還需進一步探索。
3 展望
通過近幾年的研究,對于紫杉醇耐藥的機制已有初步了解,一些臨床試驗表明聯(lián)合用藥較單藥治療有無可比擬的優(yōu)越性。如中晚期胃癌患者,紫杉醇治療單藥有效率為11%~23%,而聯(lián)合用藥有效率為50%~60%[39]。表明單獨用藥方案不理想,而聯(lián)合用藥是提高紫杉醇化療敏感性、逆轉(zhuǎn)其耐藥的一個很好突破點。姜黃素毒性低、耐受性好,而新型納米技術(shù)的出現(xiàn),又很好解決了姜黃素疏水性和低生物利用度的缺點。研究也顯示了姜黃素與紫杉醇聯(lián)合使用的可行性,因此,姜黃素有望成為紫杉醇化療中的輔助藥物。
當(dāng)然,目前研究多處于體內(nèi)試驗階段,且姜黃素與紫杉醇相互關(guān)系受藥物濃度影響較大,在不同細(xì)胞中也存在一定差異性。因此,如何確定個體間的協(xié)同用藥濃度、二者協(xié)同具體臨床療效等還需進一步探討。
參考文獻:
[1] JARDIM B V, MOSCHETTA M G, GELALETI G B, et al. Glutathione transferase pi (GSTpi) expression in breast cancer:An immunohistochemical and molecular study[J]. Acta Histochemica,2012, 114(5):510-517.
[2] KAUR R, KAUR G, GILL R K, et al. Recent developments in tubulin polymerization inhibitors:An overview[J]. European Journal of Medicinal Chemistry,2014,87:89-124.
[3] CHOI B H, KIM C G, LIM Y, et al. Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NF kappa B pathway[J]. Cancer Letters,2008,259(1):111-118.
[4] LI F, YIN X, LUO X, et al. Livin promotes progression of breast cancer through induction of epithelial-mesenchymal transition and activation of AKT signaling[J]. Cellular Signalling,2013,25(6):1413-1422.
[5] AGGARWAL S, ICHIKAWA H, TAKADA Y, et al. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of I kappa B alpha kinase and Akt activation[J]. Molecular Pharmacology,2006,69(1):195-206.
[6] REUTER S, EIFES S, DICATO M, et al. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells[J]. Biochemical Pharmacology,2008,76(11,SI):1340- 1351.
[7] BINKHATHLAN Z, LAVASANIFAR A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer:current status and future perspectives[J]. Current Cancer Drug Targets,2013,13(3):326-346.
[8] ALLEN J D, BRINKHUIS R F, VAN DEEMTER L, et al. Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance[J]. Cancer Research,2000,60(20):5761-5766.
[9] ZHANG F, ZHANG H C, WANG Z Y, et al. P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells[J]. Biochemical Pharmacology,2014,87(2):292-302.
[10] VERRILS N M, FLEMMING C L, LIU M, et al. Microtubule alterations and mutations induced by desoxyepothilone B:implications for drug-target interactions[J]. Chemistry & Biology,2003,10(7):597-607.
[11] YIN S, ZENG C, HARI M, et al. Paclitaxel resistance by random mutagenesis of α-tubulin[J]. Cytoskeleton (Hoboken,N.J.),2013, 70(12):849-862.
[12] JIANG Y Z, YU K D, PENG W T, et al. Enriched variations in TEKT4 and breast cancer resistance to paclitaxel[J]. Nature Communications, 2014,5:3794-3802.
[13] LU P, WEAVER V M, WERB Z. The extracellular matrix:a dynamic niche in cancer progression[J]. The Journal of Cell Biology,2012, 196(4):395-406.
[14] Januchowski R, Zawierucha P, Ruciński M. Extracellular matrix proteins expression profiling in chemoresistant variants of the a2780 ovarian cancer cell line[J]. Bio Med Research International,2014,2014:1-9.
[15] NAKASONE E S, ASKAUTRUD H A, KEES T, et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell,2012,21(4):488-503.
[16] WERTZ I E, KUSAM S, LAM C, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7[J]. Nature,2011, 471(7336):110-114.
[17] INUZUKA H, SHAIK S, ONOYAMA I, et al. SCF (FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction[J]. Nature,2011,471(7336):104-109.
[18] PATEL N, CHATTERJEE S K, VRBANAC V, et al. Rescue of paclitaxel sensitivity by repression of prohibitin1 in drug-resistant cancer cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(6):2503-2508.
[19] XIANG F F, WU R, NI Z H, et al. MyD88 expression is associated with paclitaxel resistance in lung cancer A549 cells[J]. Oncology Reports,2014,32(5):1837-1844.
[20] 李玲,陳福春,陳洪雷,等.多烯紫杉醇和姜黃素聯(lián)用對人肺腺癌A549細(xì)胞增殖和凋亡的影響[J].腫瘤防治研究,2010,37(6):617-620.
[21] 林琳,王平,趙曉蘭.姜黃素促卵巢癌耐藥細(xì)胞株COC1/DDP凋亡機制探索[J].四川大學(xué)學(xué)報:醫(yī)學(xué)版,2012,43(3):335-339.
[22] 曹彥洋,劉偉琦.姜黃素對人喉癌Hep-2細(xì)胞放療敏感性的實驗研究[J].中醫(yī)臨床研究,2013,16(16):3-6.
[23] 馬強,王德林,趙修民,等.姜黃素聯(lián)合多烯紫杉醇誘導(dǎo)PC-3細(xì)胞凋亡的實驗研究[J].重慶醫(yī)學(xué),2012,41(7):637-639,642.
[24] LIMTRAKUL P, CHEARWAE W, SHUKLA S, et al. Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin[J]. Molecular and Cellular Biochemistry,2007,296(1/2):85-95.
[25] CHEARWAE W, WU C P, CHU H Y, et al. Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1)[J]. Cancer Chemotherapy and Pharmacology,2006,57(3):376-388.
[26] 馬珊珊.姜黃素逆轉(zhuǎn)卵巢癌耐藥的試驗研究[D].蚌埠:蚌埠醫(yī)學(xué)院, 2014.
[27] GANTA S, AMIJI M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells[J]. Molecular Pharmaceutics,2009,6(3):928-939.
[28] GANTA S, DEVALAPALLY H, AMIJI M. Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation[J]. Journal of Pharmaceutical Sciences,2010,99(11):4630-4641.
[29] AGGARWAL B B, SHISHODIA S, TAKADA Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice[J]. Clinical Cancer Research,2005,11(20):7490-7498.
[30] BAVA S V, SREEKANTH C N, THULASIDASAN A K, et al. Akt is upstream and MAPKs are downstream of NF-kappa B in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism[J]. International Journal of Biochemistry & Cell Biology,2011,43(3):331-341.
[31] SREEKANTH C N, BAVA S V, SREEKUMAR E, et al. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer[J]. Oncogene,2011,30(28):3139-3152.
[32] 田現(xiàn)蓮.姜黃素對紫杉醇誘導(dǎo)MyD88+卵巢癌細(xì)胞IL-6、VEGF表達影響[D].成都:成都中醫(yī)藥大學(xué),2012.
[33] 鄧舒婷,李蓉,周琦,等.紫杉醇聯(lián)合固體脂質(zhì)納米姜黃素對人卵巢癌細(xì)胞系HO-8910的增殖抑制研究[J].中國藥房,2013,24(19):1756-1759.
[34] 曹蘭琴,黎欣,張怡,等.卵巢癌紫杉醇耐藥的蛋白質(zhì)組學(xué)研究[J].中南大學(xué)學(xué)報:醫(yī)學(xué)版,2010,35(4):286-294.
[35] YANG H B, SONG W, CHEN L Y, et al. Differential expression and regulation of prohibitin during curcumin-induced apoptosis of immortalized human epidermal HaCaT cells[J]. International Journal of Molecular Medicine,2014,33(3):507-514.
[36] BAVA S V, PULIAPPADAMBA V T, DEEPTI A. Sensitization of taxol- induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization[J]. Journal of Biological Chemistry,2005,280(8):6301-6308.
[37] ABOUZEID A H, PATEL N R, TORCHILIN V P. Polyethylene glycol- phosphatidylethanolamine (PEG-PE)/vitamin E micelles for co- delivery of paclitaxel and curcumin to overcome multi-drug resistance in ovarian cancer[J]. International Journal of Pharmaceutics,2014,464(1/2):178-184.
[38] CHOU T C. Drug combination studies and their synergy quantification using the Chou-Talalay method[J]. Cancer Research, 2010,70(2):440-446.
[39] WANG X, WANG M L, ZHOU L Y, et al. Randomized phase Ⅱ study comparing paclitaxel with S-1 vs. S-1 as first-line treatment in patients with advanced gastric cancer[J]. Clinical & Translational Oncology,2013,15(10):836-842.
(收稿日期:2015-03-02)
(修回日期:2015-06-22;編輯:梅智勝)