韓麗萍 陳莉明
·綜述·
GLP-1的神經(jīng)保護(hù)作用
韓麗萍 陳莉明
流行病學(xué)研究表明,2型糖尿病和神經(jīng)變性疾病,包括阿爾茨海默病和帕金森病及缺血性腦血管病存在緊密聯(lián)系。這些疾病都存在共同的病理生理學(xué)特征,包括氧化應(yīng)激、胰島素抵抗、異常蛋白的處理、認(rèn)知功能的減退,目前尚無(wú)有效的治療方案干預(yù)上述疾病。近年來(lái),以胰高血糖素樣肽-1(GLP-1)為基礎(chǔ)的降糖藥物備受關(guān)注。體內(nèi)和體外研究表明,激活GLP-1受體可以促進(jìn)神經(jīng)細(xì)胞的增殖、分化和突起的生長(zhǎng)、提高突觸的可塑性和記憶的生成、調(diào)節(jié)神經(jīng)細(xì)胞鈣穩(wěn)態(tài),對(duì)于改善記憶功能障礙、神經(jīng)運(yùn)動(dòng)障礙、缺血性腦血管損傷、氧化應(yīng)激及視網(wǎng)膜退化等神經(jīng)病變發(fā)揮重要作用。
胰高血糖素樣肽-1;胰高血糖素樣肽-1受體;阿爾茨海默??;帕金森??;2型糖尿病
流行病學(xué)資料表明,2型糖尿病與神經(jīng)變性疾病包括阿爾茨海默病(AD)、帕金森病(PD)及缺血性腦血管病存在顯著相關(guān)性。2型糖尿病與AD互為發(fā)病的風(fēng)險(xiǎn)因子,在各自發(fā)病之初即有共同的病理變化,表現(xiàn)為大腦組織中tau蛋白的過(guò)度磷酸化,大腦與胰腺組織中β淀粉樣蛋白(Aβ)水平增加以及胰島素信號(hào)的異常。2型糖尿病和AD的相似之處引發(fā)一系列假說(shuō),甚至用新的術(shù)語(yǔ)描述AD為“3型糖尿病”[1]。因此,治療2型糖尿病的藥物可能對(duì)AD患者有益。
近年來(lái),胰高血糖素樣肽-1(GLP-1)及其特異性受體(GLP-1R)成為糖尿病研究領(lǐng)域的新熱點(diǎn),有望為糖尿病及其并發(fā)癥的治療提供全新的選擇。最新研究表明,激活GLP-1R可產(chǎn)生神經(jīng)營(yíng)養(yǎng)和神經(jīng)保護(hù)作用。神經(jīng)元-腸促胰素通路被激活,產(chǎn)生的細(xì)胞應(yīng)答與胰島β細(xì)胞存在驚人的相似之處,表現(xiàn)為神經(jīng)細(xì)胞保護(hù)、增殖,前體細(xì)胞向神經(jīng)元分化[2]。本綜述重點(diǎn)討論GLP-1及GLP-1R與神經(jīng)系統(tǒng)疾病的聯(lián)系及潛在益處。
GLP-1是由小腸L細(xì)胞分泌的一種多肽激素,可通過(guò)多環(huán)節(jié)機(jī)制發(fā)揮降糖作用[3]。GLP-1可以高效地通過(guò)血-腦屏障,進(jìn)入相應(yīng)腦區(qū)發(fā)揮作用,而且腦組織也產(chǎn)生少量GLP-1,尤其是孤束核、后區(qū)和尾腦干[4]。研究發(fā)現(xiàn),GLP-1R不僅存在于胰島細(xì)胞中,在心臟、胃、肺和周?chē)爸袠猩窠?jīng)系統(tǒng)許多區(qū)域,包括人和嚙齒類(lèi)動(dòng)物的大腦皮層、腦干、海馬、黑質(zhì)紋狀體、周?chē)窠?jīng)的軸突和施旺細(xì)胞等中也都有表達(dá)。GLP-1R在體內(nèi)的廣泛分布決定了GLP-1生理作用的多樣性。研究發(fā)現(xiàn),GLP-1R的激活顯示出一定的神經(jīng)保護(hù)作用[5]。因此,近年來(lái)對(duì)GLP-1的研究焦點(diǎn)已經(jīng)從2型糖尿病轉(zhuǎn)移到神經(jīng)變性疾病。
2.1 神經(jīng)細(xì)胞的增殖 原代成年小鼠下丘腦細(xì)胞培養(yǎng)顯示,應(yīng)用GLP-1類(lèi)似物exendin-4(Ex-4)處理可使細(xì)胞分裂增殖的標(biāo)志物增加,且該作用是依賴(lài)睫狀神經(jīng)營(yíng)養(yǎng)因子(CNTF)實(shí)現(xiàn)的[6]。體內(nèi)給予CNTF可誘導(dǎo)成年野生型小鼠下丘腦GLP-1免疫反應(yīng)性表達(dá)增加,表明GLP-1R信號(hào)通路在CNTF調(diào)節(jié)的細(xì)胞增殖中發(fā)揮作用。這種反應(yīng)在GLP-1R基因敲除小鼠中不會(huì)出現(xiàn),進(jìn)一步表明GLP-1R信號(hào)通路在CNTF依賴(lài)的細(xì)胞增殖過(guò)程中的必要性。Hamilton等[7]給予糖尿病小鼠GLP-1類(lèi)似物治療4~10周,發(fā)現(xiàn)齒狀回原始祖細(xì)胞和幼神經(jīng)細(xì)胞數(shù)量明顯增加。相反,給予GLP-1R拮抗劑exendin-(9-39)可減少原始祖細(xì)胞增殖,同樣證實(shí)GLP-1R介導(dǎo)神經(jīng)細(xì)胞的增殖。
2.2 神經(jīng)細(xì)胞的分化和突起的生長(zhǎng) 成年小鼠接受Ex-4治療顯示,內(nèi)側(cè)紋狀體和室下區(qū)(已知的神經(jīng)干細(xì)胞池)神經(jīng)細(xì)胞分化和增殖增加。Isacson等[8]研究表明,成年嚙齒類(lèi)動(dòng)物應(yīng)用Ex-4治療2周后,標(biāo)志海馬神經(jīng)生長(zhǎng)的基因轉(zhuǎn)錄明顯增加。Li等[9]同樣顯示,GLP-1促進(jìn)小鼠齒狀回神經(jīng)母細(xì)胞分化和神經(jīng)再生。
應(yīng)用Ex-4處理人神經(jīng)母細(xì)胞瘤細(xì)胞,可使細(xì)胞突起數(shù)量明顯增加[10]。同樣在PC12細(xì)胞中觀察到刺激GLP-1R可誘發(fā)突起生長(zhǎng),類(lèi)似于神經(jīng)生長(zhǎng)因子的作用方式。但是從形態(tài)學(xué)來(lái)看,與神經(jīng)生長(zhǎng)因子的作用相比,無(wú)論是人神經(jīng)母細(xì)胞瘤細(xì)胞還是PC12細(xì)胞,Ex-4誘導(dǎo)的突起長(zhǎng)度更短,數(shù)量和分支更少。
2.3 突觸的可塑性和記憶的生成 長(zhǎng)時(shí)程增強(qiáng)作用(LTP)是發(fā)生在兩個(gè)神經(jīng)元信號(hào)傳輸中的一種持久的增強(qiáng)現(xiàn)象,能夠同步的刺激兩個(gè)神經(jīng)元,與突觸可塑性-突觸改變強(qiáng)度的能力相關(guān)。由于記憶被認(rèn)為是由突觸強(qiáng)度的改變來(lái)編碼的,LTP被普遍視為構(gòu)成學(xué)習(xí)與記憶基礎(chǔ)的主要分子機(jī)制之一。正常生理?xiàng)l件下,刺激GLP-1R會(huì)促進(jìn)海馬LTP,利拉魯肽及其他GLP-1R激動(dòng)劑也會(huì)提高LTP[11]。研究顯示,GLP-1R基因敲除小鼠(Glp-1r-/-)神經(jīng)元LTP受損;而應(yīng)用Ex-4治療可以提高野生型嚙齒類(lèi)動(dòng)物記憶參數(shù)[8]。Glp-1r-/-小鼠水迷宮實(shí)驗(yàn)?zāi)芰Σ?,且在認(rèn)知評(píng)估中不能區(qū)分新的和熟悉的物品,表明記憶生成受損,與雜合子和野生型小鼠相比存在明顯的海馬功能缺失[12]。Isacson等[8]給予野生型Sprague-Dawley大鼠GLP-1和腸促胰素類(lèi)似物,可改善其被動(dòng)回避和Morris水迷宮實(shí)驗(yàn)行為能力,提示大鼠海馬相關(guān)的認(rèn)知功能和空間學(xué)習(xí)能力得到提高,但這一現(xiàn)象可以被GLP-1拮抗劑逆轉(zhuǎn),說(shuō)明這種改善是依賴(lài)GLP-1R信號(hào)通路實(shí)現(xiàn)的。
2.4 鈣穩(wěn)態(tài)的調(diào)節(jié) 細(xì)胞內(nèi)適量的Ca2+參與神經(jīng)系統(tǒng)的信號(hào)傳輸及整合,而Ca2+超載又是導(dǎo)致細(xì)胞變性壞死的主要原因,因此Ca2+穩(wěn)態(tài)的維持對(duì)于細(xì)胞功能正常的發(fā)揮至關(guān)重要。Ca2+介導(dǎo)神經(jīng)細(xì)胞對(duì)生理性刺激產(chǎn)生多種反應(yīng)。其通過(guò)谷氨酸受體通道或電壓依賴(lài)性通道的內(nèi)流,在神經(jīng)軸突的生長(zhǎng)、突觸形成、神經(jīng)遞質(zhì)從突觸前膜的釋放、以及與學(xué)習(xí)記憶相關(guān)的突觸重塑過(guò)程中發(fā)揮重要作用[13]。GLP-1與GLP-1R結(jié)合后,可激活腺苷酸環(huán)化酶,催化ATP生成cAMP,提高細(xì)胞內(nèi)cAMP水平,觸發(fā)Ca2+內(nèi)流,增加神經(jīng)遞質(zhì)的釋放,加快神經(jīng)興奮性傳導(dǎo),進(jìn)而增強(qiáng)學(xué)習(xí)、認(rèn)知和記憶。cAMP還可以激活蛋白激酶A,使細(xì)胞核內(nèi)轉(zhuǎn)錄因子cAMP應(yīng)答元件結(jié)合蛋白的133位絲氨酸殘基磷酸化,從而調(diào)節(jié)Bcl-2、c-Fos的表達(dá),這條通路的激活能減輕細(xì)胞內(nèi)鈣超載導(dǎo)致的興奮性毒性[14]。
3.1 改善記憶功能障礙 體外和AD轉(zhuǎn)基因大鼠模型研究證實(shí),Aβ的生成和沉積促進(jìn)中樞神經(jīng)系統(tǒng)細(xì)胞代謝異常、功能紊亂,而激活GLP-1R可以改變細(xì)胞產(chǎn)物和Aβ沉積物蓄積,減輕毒性作用[15]。給予Ex-4和GLP-1預(yù)處理,可減少體外培養(yǎng)的海馬神經(jīng)細(xì)胞Aβ及Fe2+誘導(dǎo)的細(xì)胞死亡。在正常血糖和高血糖條件下,激活GLP-1R也會(huì)減少SH-SY5Y細(xì)胞Aβ分泌水平[16]。Ex-4還可以保護(hù)嚙齒類(lèi)動(dòng)物原代皮質(zhì)神經(jīng)元免于Aβ和氧化應(yīng)激誘導(dǎo)的毒性損傷。鏈脲佐菌素誘導(dǎo)嚙齒類(lèi)動(dòng)物不但產(chǎn)生糖尿病病理改變,同時(shí)增加腦組織β淀粉樣蛋白前體蛋白和可溶性Aβ、tau蛋白水平,類(lèi)似于AD轉(zhuǎn)基因小鼠及人AD病理改變。側(cè)腦室緩慢注入Ex-4可完全改善腦組織上述蛋白水平改變,減少海馬Aβ斑塊的數(shù)量。長(zhǎng)效GLP-1激動(dòng)劑Val(8)GLP-1同樣可減少AD轉(zhuǎn)基因小鼠淀粉樣蛋白斑塊并激活小神經(jīng)膠質(zhì)細(xì)胞,也能有效降低鏈脲佐菌素誘導(dǎo)大鼠腦tau蛋白水平,改善與之相關(guān)的學(xué)習(xí)功能損傷[17-18]。
3.2 改善神經(jīng)運(yùn)動(dòng)障礙 PD是中老年最常見(jiàn)的中樞神經(jīng)系統(tǒng)變性疾病,其特征是紋狀體多巴胺能神經(jīng)元的損失和細(xì)胞變性,與運(yùn)動(dòng)功能的缺陷相關(guān)聯(lián)。甲基苯基四氫吡啶(MPTP)是一種神經(jīng)毒素,可代謝為有毒性的陽(yáng)離子1-甲基-4-苯基吡啶,并選擇性轉(zhuǎn)運(yùn)至多巴胺能神經(jīng)元軸突,通過(guò)抑制線粒體復(fù)合物1導(dǎo)致細(xì)胞死亡及活性氧簇生成,產(chǎn)生類(lèi)似于PD的癥狀,因而廣泛應(yīng)用于人類(lèi)和各種動(dòng)物PD模型的研究中。給予大鼠或小鼠MPTP,均可見(jiàn)多巴胺能神經(jīng)元減少,伴隨炎性應(yīng)答增強(qiáng),導(dǎo)致運(yùn)動(dòng)功能?chē)?yán)重?fù)p傷。Ex-4可完全逆轉(zhuǎn)MPTP的毒性作用,增加多巴胺能神經(jīng)元數(shù)量,調(diào)節(jié)炎性反應(yīng)水平,恢復(fù)運(yùn)動(dòng)功能缺失[19-20]。酪氨酸羥化酶(TH)是人體合成多巴胺的關(guān)鍵酶之一,體外研究顯示,MPTP減少TH陽(yáng)性神經(jīng)元,以及多巴胺及其代謝產(chǎn)物濃度,但這些效應(yīng)可被Ex-4完全抑制。Ex-4可以提高初級(jí)多巴胺能神經(jīng)元內(nèi)源性TH水平,誘導(dǎo)TH基因表達(dá)。這些研究表明,激活GLP-1R可使神經(jīng)毒素衍生的PD模型受益,多巴胺能神經(jīng)元幸存,異常行為得到改善,進(jìn)一步證實(shí),激活GLP-1R對(duì)于人類(lèi)PD具有重要的治療價(jià)值。
對(duì)糖尿病周?chē)窠?jīng)病變的研究表明,Ex-4治療可改善鏈脲佐菌素誘導(dǎo)的糖尿病小鼠運(yùn)動(dòng)神經(jīng)傳導(dǎo)速度減慢和掌爪表皮內(nèi)的神經(jīng)纖維密度[21]。還有研究證實(shí),Ex-4治療明顯改善糖尿病多發(fā)性神經(jīng)病變及維生素B6缺乏導(dǎo)致的神經(jīng)功能及行為的異常,使坐骨神經(jīng)及脊髓背根神經(jīng)節(jié)形態(tài)恢復(fù)正常[22]。
亨廷頓舞蹈病(Huntington′s Disease, HD)是一種遺傳性疾病,歸因于huntingtin蛋白質(zhì)基因內(nèi)CAG三核苷酸重復(fù)序列的擴(kuò)展。這一突變導(dǎo)致胰腺和中樞神經(jīng)系統(tǒng)細(xì)胞內(nèi)蛋白異常聚集,后者導(dǎo)致運(yùn)動(dòng)協(xié)調(diào)的喪失。Huntingtin蛋白突變的HD小鼠模型,不但出現(xiàn)運(yùn)動(dòng)功能障礙,還顯示血糖控制失調(diào)。伴隨著突變huntingtin蛋白聚集增加,運(yùn)動(dòng)功能不斷減退,動(dòng)物出現(xiàn)年齡依賴(lài)性平衡功能減退。Ex-4治療不但改善HD小鼠異常的血糖水平,還可抑制胰腺和腦組織細(xì)胞的病理改變,減少突變huntingtin蛋白聚集。Ex-4治療使HD小鼠運(yùn)動(dòng)功能明顯提高,并延長(zhǎng)存活時(shí)間,與對(duì)照組相比,動(dòng)物存活率提高18%[23]。
3.3 改善缺血性腦血管疾病 應(yīng)用GLP-1R激動(dòng)劑Ex-4治療,可保護(hù)嚙齒類(lèi)動(dòng)物卒中模型缺氧誘發(fā)的大腦皮層神經(jīng)元的細(xì)胞死亡,使梗死面積顯著減小,這一益處在Glp-1r-/-小鼠中并不存在。如果共同給予GLP-1R拮抗劑exendin-(9-39),則Ex-4治療所產(chǎn)生的對(duì)缺氧損傷的保護(hù)作用也隨之消失[24]。
3.4 改善氧化應(yīng)激 與2型糖尿病類(lèi)似,氧化應(yīng)激是神經(jīng)變性疾病的共同特性,在疾病的進(jìn)展中發(fā)揮重要作用。研究顯示,GLP-1和Ex-4呈劑量依賴(lài)性保護(hù)SH-SY5Y細(xì)胞、PC12細(xì)胞過(guò)氧化氫介導(dǎo)的細(xì)胞凋亡[25]。缺血-再灌注損傷也會(huì)引起氧化應(yīng)激,導(dǎo)致細(xì)胞損傷和凋亡。在卒中小鼠模型中觀察到,Ex-4治療可明顯減少氧化應(yīng)激標(biāo)志物8-羥基脫氧鳥(niǎo)苷和4-羥基2-己烯醛的產(chǎn)生。
3.5 改善視網(wǎng)膜退化 視網(wǎng)膜被認(rèn)為是中樞神經(jīng)系統(tǒng)的一部分,存在GLP-1R的表達(dá)。Zhang等[26]研究顯示,糖尿病大鼠視網(wǎng)膜GLP-1R表達(dá)明顯減少,皮下或玻璃體內(nèi)注射Ex-4能保護(hù)糖尿病視網(wǎng)膜病變大鼠的視網(wǎng)膜細(xì)胞。該研究應(yīng)用視網(wǎng)膜電流圖評(píng)價(jià)視網(wǎng)膜功能,可見(jiàn)糖尿病大鼠B波波幅和振蕩電位減少,Ex-4可使之明顯改善,并減少視網(wǎng)膜神經(jīng)元的凋亡。其他研究也顯示,通過(guò)眼內(nèi)植入人工細(xì)胞給予GLP-1,可提高視神經(jīng)損傷模型大鼠視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的存活率[27]。
綜上所述,激活GLP-1R介導(dǎo)的腸促胰素通路,不僅對(duì)2型糖尿病患者有益,而且還具有神經(jīng)營(yíng)養(yǎng)和神經(jīng)保護(hù)作用。盡管GLP-1的中樞作用機(jī)制尚未完全明確,但在大量的生理和病理模型中均表現(xiàn)出功能上和行為上顯著獲益,對(duì)于AD、PD等神經(jīng)退行性疾病及缺血性腦血管疾病,這一新的、潛在的治療策略有希望發(fā)揮更加重要的作用。
[1] Salcedo I, Tweedie D, Li Y, et al. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders[J].Br J Pharmacol,2012,166(5):1586-1599. DOI: 10.1111/j.1476-5381.2012.01971.x.
[2] Akter K, Lanza EA, Martin SA, et al. Diabetes mellitus and Alzheimer′s disease: shared pathology and treatment [J].Br J Clin Pharmacol,2011,71(3):365-376. DOI: 10.1111/j.1365-2125.2010.03830.x.
[3] Kappe C, Zhang Q, Nystr?m T,et al. Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells[J].Diabetol Metab Syndr,2014,6:70.DOI: 10.1186/1758-5996-6-70.
[4] Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus[J].Nat Rev Endocrinol,2009,5(5):262-269. DOI: 10.1038/nrendo.2009.48.
[5] Hamilton A, H?lscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system[J].Neuroreport,2009,20(13):1161-1166.DOI: 10.1097/WNR.0b013e32832fbf14.
[6] Belsham DD, Fick LJ, Dalvi PS, et al. Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons[J].FASEB J,2009,23(12):4256-4265. DOI: 10.1096/fj.09-133454.
[7] Hamilton A, Patterson S, Porter D,et al. Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain[J].J Neurosci Res,2011,89(4):481-489. DOI: 10.1002/jnr.22565.
[8] Isacson R, Nielsen E, Dannaeus K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test[J].Eur J Pharmacol,2011,650(1):249-255. DOI: 10.1016/j.ejphar.2010.10.008.
[9] Li H, Lee CH, Yoo KY, et al. Chronic treatment of exendin-4 affects cell proliferation and neuroblast differentiation in the adult mouse hippocampal dentate gyrus[J].Neurosci Lett,2010,486(1):38-42. DOI: 10.1016/j.neulet.2010.09.040.
[10] Luciani P, Deledda C, Benvenuti S,et al. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells[J].PLoS One,2013,8(8):e71716. DOI: 10.1371/journal.pone.0071716.
[11] McClean PL, Parthsarathy V, Faivre E, et al. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer′s disease[J].J Neurosci,2011,31(17):6587-6594. DOI: 10.1523/JNEUROSCI.0529-11.2011.
[12] Abbas T, Faivre E, H?lscher C. Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: interaction between type 2 diabetes and Alzheimer′s disease[J].Behav Brain Res,2009,205(1):265-271. DOI: 10.1016/j.bbr.2009.06.035.
[13] Li LH, Tian XR, Hu ZP. The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1[J].Neural Regen Res,2015,10(8):1271-1278. DOI:10.4103/1673-5374.162760.
[14] Bao Y, Jiang L, Chen H,et al. The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway[J].Cell Physiol Biochem,2015,36(6):2366-2378. DOI: 10.1159/000430199.
[15] O′Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer′s disease[J].Annu Rev Neurosci,2011,34:185-204. DOI: 10.1146/annurev-neuro-061010-113613.
[16] Marchetti C, Marie H. Hippocampal synaptic plasticity in Alzheimer′s disease: what have we learned so far from transgenic models [J].Rev Neurosci,2011,22(4):373-402. DOI: 10.1515/RNS.2011.035.
[17] Gengler S, McClean PL, McCurtin R,et al. Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice[J].Neurobiol Aging,2012,33(2):265-276. DOI: 10.1016/j.neurobiolaging.2010.02.014.
[18] Li L, Zhang ZF, Holscher C, et al. (Val ) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains[J].Eur J Pharmacol,2012,674(2-3):280-286. DOI: 10.1016/j.ejphar.2011.11.005.
[19] Kim S, Moon M, Park S. Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3expression in an animal model of Parkinson′s disease[J].J Endocrinol,2009,202(3):431-439. DOI: 10.1677/JOE-09-0132.
[20] Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and parkinsonism[J].Proc Natl Acad Sci U S A,2009,106(4):1285-1290. DOI: 10.1073/pnas.0806720106.
[21] Jolivalt CG, Fineman M, Deacon CF, et al. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice[J].Diabetes Obes Metab,2011,13(11):990-1000. DOI: 10.1111/j.1463-1326.2011.01431.x.
[22] Kan M, Guo G, Singh B, et al. Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy[J].J Neuropathol Exp Neurol,2012,71(6):494-510. DOI: 10.1097/NEN.0b013e3182580673.
[23] Martin B, Golden E, Carlson OD, et al. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington′s disease[J].Diabetes,2009,58(2):318-328. DOI: 10.2337/db08-0799.
[24] Teramoto S, Miyamoto N, Yatomi K,et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia[J].J Cereb Blood Flow Metab,2011,31(8):1696-1705. DOI: 10.1038/jcbfm.2011.51.
[25] Liu JH, Yin F, Guo LX,et al. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway[J].Acta Pharmacol Sin,2009,30(2):159-165. DOI: 10.1038/aps.2008.25.
[26] Zhang Y, Zhang J, Wang Q, et al. Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats[J].Invest Ophthalmol Vis Sci,2011,52(1):278-285.DOI: 10.1167/iovs.09-4727.
[27] Zhang R, Zhang H, Xu L, et al. Neuroprotective effect of intravitreal cell-based glucagon-like peptide-1 production in the optic nerve crush model[J].Acta Ophthalmol,2011,89(4):e320-e326. DOI: 10.1111/j.1755-3768.2010.02044.x.
Neuroprotectiveactionsofglucagon-likepeptide-1
HanLiping,ChenLiming.
DepartmentofNeurology,TheMetabolicDiseaseHospitalofTianjinMedicalUniversity,Tianjin300070,China
Correspondingauthor:ChenLiming,Email:xfx22081@vip.163.com
Epidemiological data indicate an association between type 2 diabetes mellitus and most major neurodegenerative diseases, including Alzheimer′s, Parkinson′s diseases and ischemic cerebrovascular disease. Studies have revealed that these diseases have common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline. Nowadays there is no effective treatment of diseases mentioned above. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention in recent years.Invivoandinvitroevidences supported that stimulation of GLP-1 receptor might promote neuronal cell proliferation, differentiation and neurite outgrowth, enhance synaptic plasticity and memory formation, regulate calcium homeostasis, and play an important role in improving memory dysfunction, neuromotor impairment, ischemic cerebrovascular damage, oxidative stress,retinal degeneration and other diseases of the nervous system.
Glucagon-like peptide-1;Glucagon-like peptide-1 recepter;Alzheimer′s disease;Pakinson′s disease;Type 2 diabetes mellitus
10.3760/cma.j.issn.1673-4157.2016.05.08
300070 天津醫(yī)科大學(xué)代謝病醫(yī)院神經(jīng)內(nèi)科
陳莉明,Email: xfx22081@vip.163.com
2015-10-07)