馮娟 夏維波
·綜述·
維生素D結(jié)合蛋白研究進(jìn)展
馮娟 夏維波
維生素D結(jié)合蛋白(DBP)最初被稱為簇特異性成分(group-specific component),簡稱Gc蛋白,是一種多功能的糖蛋白,具有高度多態(tài)性,DBP基因多態(tài)性會(huì)影響其水平及其與維生素D及其代謝產(chǎn)物的親和力,從而可能影響功能性25(OH)D3水平。它不僅與骨質(zhì)疏松相關(guān),同時(shí)也與多種骨外疾病相關(guān)。
維生素D結(jié)合蛋白;基因多態(tài)性;維生素D;骨質(zhì)疏松
維生素D結(jié)合蛋白(DBP)對(duì)人類健康至關(guān)重要,近年來有越來越多的研究涉及DBP,其中DBP與骨礦鹽代謝的關(guān)系為該領(lǐng)域的研究熱點(diǎn),DBP與骨外疾病的關(guān)系也日益受到學(xué)者們的重視。本文將從DBP的一般特征、基因多態(tài)性、對(duì)血25(OH)D3水平的影響、與骨質(zhì)疏松及骨外疾病的關(guān)系等方面作一綜述。
1.1 DBP的理化和生物學(xué)性質(zhì) 1959年Hirschfeld首次發(fā)現(xiàn)人血漿中有一種新的蛋白質(zhì),根據(jù)其免疫學(xué)特性命名為簇特異性成分(group-specific component),簡稱Gc蛋白,同年Thomas等也發(fā)現(xiàn)人血漿中有一種新的蛋白質(zhì),因其能結(jié)合維生素D而稱之為DBP,但二者的關(guān)系并未被注意到,直到1975年Daiger等證明Gc蛋白也能結(jié)合維生素D,且這種結(jié)合是特異性的,二者在電泳行為、親和力、結(jié)合容量等許多特性方面都幾乎相同,從而認(rèn)定二者是同一種蛋白質(zhì),現(xiàn)在普遍稱之為DBP[12]。人DBP基因位于4號(hào)染色體(4q12-q13),基因長度約為35 kb,包含13個(gè)外顯子和12個(gè)內(nèi)含子[3]。DBP基因在人體多個(gè)組織中表達(dá),血漿DBP主要由肝臟合成,由458個(gè)氨基酸組成,包含3個(gè)結(jié)構(gòu)域,相對(duì)分子質(zhì)量52 000~59 000(取決于其糖基化狀態(tài)),其正常血漿濃度5.52×106~7.93×106mol/L(0.32~0.46 g/L),蛋白電泳行為屬于α2-球蛋白[3]。DBP的血漿半衰期為2.5~3 d[3-4]。Bouillon等[5]研究發(fā)現(xiàn),妊娠或口服雌激素時(shí)血清DBP水平升高,并且觀察到DBP的水平全年恒定,沒有明顯季節(jié)差異。而在有肝臟疾病、腎病綜合征或嚴(yán)重營養(yǎng)不良時(shí)DBP水平降低[3]。
1.2 DBP的功能 眾多人口研究并未發(fā)現(xiàn)DBP基因缺失或重大改變,推測該基因的缺失或重大改變的個(gè)體可能難以生存下來,提示DBP對(duì)人類生存至關(guān)重要[6-7]。DBP是血漿中維生素D及其代謝產(chǎn)物最主要的轉(zhuǎn)運(yùn)蛋白,對(duì)它們的親和力依次為25(OH)D3=24,25(OH)2D3=25,26(OH)2D3>1,25(OH)2D3>維生素D3,并且DBP對(duì)維生素D3和維生素D2的親和力沒有明顯差異[1]。1999年Safadi等對(duì)野生型小鼠(DBP+/+小鼠)和不表達(dá)DBP的小鼠(DBP-/-小鼠)的研究提示,DBP顯著延長了25(OH)D3的半衰期,對(duì)于維持血清維生素D濃度穩(wěn)定、調(diào)節(jié)其生物活性及靶器官反應(yīng)性起重要作用[4]。此外,DBP在循環(huán)中的濃度遠(yuǎn)高于其主要的配體25(OH)D3,只有不到5%的DBP與維生素D結(jié)合,提示它還有其他功能[7]。DBP上有肌動(dòng)蛋白結(jié)合位點(diǎn),位于第373~403氨基酸殘基之間。研究發(fā)現(xiàn)DBP還參與脂肪酸運(yùn)輸、肌動(dòng)蛋白清除、活化巨噬細(xì)胞(通過DBP-巨噬細(xì)胞活化因子)和趨化作用等[3,6]。
人類DBP具有高度基因多態(tài)性,已有超過120種基因變異體被報(bào)道,其中最常見的3種類型是Gc1F、Gc1S、Gc2,它們最初是通過電泳方法發(fā)現(xiàn)的,各自的等電點(diǎn)不同,Gc1F、Gc1S和Gc2的等電點(diǎn)為分別為4.94~4.84、4.95~4.85、5.1[8-9]。DBP與維生素D代謝產(chǎn)物的親和力可能和等電點(diǎn)相關(guān),等電點(diǎn)低的DBP與維生素D代謝產(chǎn)物的親和力高[8,10]。另外,這些常見等位基因的分布頻率有種族、地區(qū)差異,且可能與皮膚色素沉著和日照強(qiáng)度相關(guān):色素沉著的(黑色)和角化的(黃色)皮膚的人群中Gc1F等位基因的頻率高于白種人,而白種人中Gc1S頻率更高[11]。這種種族差異在Powe等[12]的研究中得到進(jìn)一步證實(shí),在658名黑人純合子中,3種等位基因純合子所占的比例依次為Gc1F(92.7%)>Gc1S(5.2%)>Gc2(2.1%),而在367名白人純合子中依次為Gc1S(76.0%)>Gc2(18.0%)>Gc1F(6.0%)。此外該研究還發(fā)現(xiàn)DBP水平在不同人種間有差異,即黑人的DBP水平低于白人,而DBP基因多態(tài)性可以獨(dú)立解釋79.4%的DBP水平差異。實(shí)際上這3種分子在結(jié)構(gòu)上的差異很有限,Gc1S、Gc2與Gc1F相比僅是單個(gè)核苷酸差異,即單核苷酸多態(tài)性(SNPs)。Rs7041和rs4588是DBP基因編碼區(qū)(第11外顯子)常見的兩個(gè)SNP,rs7041(1296T>G)引起第432位天冬氨酸(Gc1F)變成谷氨酸(Gc1S),而rs4588(1307C>A)引起第436位蘇氨酸(Gc1F)變成賴氨酸(Gc2)[12-13]。由此可見,DBP具有基因多態(tài)性,黑人中Gc1F表型更常見,其血清DBP水平較低而與維生素D代謝產(chǎn)物親和力較高;而白人中Gc1S表型更常見,其血清DBP水平較高。此外最近Moy等[14]對(duì)1 380名男性的全基因組關(guān)聯(lián)研究(GWAS)發(fā)現(xiàn)了與血清DBP水平高度相關(guān)的兩個(gè)獨(dú)立的DBP基因SNP,即rs7041(位于外顯子區(qū))和rs705117(位于內(nèi)含子區(qū)),二者的DBP水平均隨最小等位基因拷貝增加而降低。綜上,DBP基因多態(tài)性可能影響DBP水平和親和力,雖然二者之間的關(guān)系尚未完全明確,但對(duì)其深入研究有助于了解維生素D的結(jié)合、運(yùn)輸以及維生素D狀態(tài)對(duì)機(jī)體健康的影響。
維生素D對(duì)維持骨骼健康至關(guān)重要,而它的骨外作用也日益受到重視,維生素D不足對(duì)骨骼的影響相對(duì)明確,包括佝僂病、骨軟化癥、骨折等,其他可能與維生素D不足相關(guān)的骨外疾病包括糖尿病、心血管疾病、惡性腫瘤、多發(fā)性硬化等[15-16]。由于25(OH)D3的半衰期長(15~35 d)及肝臟25羥化酶缺乏激素調(diào)節(jié),血漿總25(OH)D3濃度被認(rèn)為是機(jī)體維生素D狀態(tài)的指標(biāo),用于判定維生素D充足與否[17]。血漿25(OH)D3濃度受多種因素影響,如膚色、日照、飲食等,但眾多研究顯示遺傳因素如DBP基因多態(tài)性也在其中發(fā)揮作用。Wang等[15]對(duì)33 996名歐洲血統(tǒng)的受試者進(jìn)行GWAS,發(fā)現(xiàn)DBP基因rs2282679影響維生素D狀態(tài),其等位基因C與維生素D不足風(fēng)險(xiǎn)增加相關(guān)。Ahn等[16]對(duì)4 501名歐洲血統(tǒng)的受試者進(jìn)行研究,發(fā)現(xiàn)DBP基因rs2282679、rs7041、rs1155563與血漿25(OH)D3水平相關(guān),rs2282679的C等位基因與維生素D不足風(fēng)險(xiǎn)增加相關(guān)。而McGrath等[18]系統(tǒng)評(píng)價(jià)亦發(fā)現(xiàn)DBP基因rs4588的A等位基因、rs7041的T等位基因與低血漿25(OH)D3水平相關(guān)。維生素D缺乏呈世界流行趨勢,某些兒童和青少年人群也受到影響,Santos等[19]對(duì)巴西南部的198名10~18歲女孩的橫斷面研究顯示,循環(huán)25(OH)D3充足(≥75 nmol/L)者僅占9.1%,而維生素D缺乏(<50 nmol/L)者占31.3%,DBP基因rs4588的AA基因型、rs7041的TT基因型以及CT-AT/AT-AT(Gc1F-2/2-2)雙體型和低25(OH)D3水平顯著相關(guān),即使在調(diào)整了年齡和季節(jié)后也是如此,所以DBP基因型可能與女性兒童和青少年低25(OH)D3易感性相關(guān)。類似地,一項(xiàng)涉及3 129名西非兒童的研究發(fā)現(xiàn)其人群中DBP基因型不同,機(jī)體25(OH)D3水平不同,Gc1F/Gc1F攜帶者與25(OH)D3的親和力最高,其25(OH)D3水平最高[20]。此外,北京協(xié)和醫(yī)院的Xu等[21]對(duì)來自北京7個(gè)社區(qū)的1 494名漢族絕經(jīng)后女性的研究顯示,89.6%的女性維生素D缺乏,DBP基因rs2298849與25(OH)D3水平顯著相關(guān),其等位基因G可能是25(OH)D3的保護(hù)因素。雖然已有大量研究發(fā)現(xiàn)25(OH)D3水平與DBP基因多態(tài)性相關(guān),但如何界定維生素D不足或缺乏仍沒有定論。研究發(fā)現(xiàn),僅使用血漿總25(OH)D3濃度來界定機(jī)體維生素D的狀態(tài)可能不夠科學(xué),如盡管黑人體內(nèi)總25(OH)D3水平較白人低,但黑人的骨密度確高于白人,且其發(fā)生脆性骨折的風(fēng)險(xiǎn)亦低于白人,這難以用總25(OH)D3水平解釋[12]。DBP是維生素D及其代謝產(chǎn)物的主要運(yùn)載蛋白,血漿總25(OH)D3中85%~90%與DBP緊密結(jié)合,10%~15%與白蛋白結(jié)合,還有不足1%以游離形式存在,后兩者一同被稱為25(OH)D3的非DBP結(jié)合部分[17]。游離激素假說認(rèn)為與結(jié)合蛋白結(jié)合激素相對(duì)不具有活性,而游離狀態(tài)的激素可以發(fā)揮生物學(xué)效應(yīng),即某特定激素的生物活性受其游離狀態(tài)濃度的影響[22]。根據(jù)這一假說,非DBP結(jié)合部分的25(OH)D3可以發(fā)揮生物學(xué)效應(yīng),稱之為功能性25(OH)D3。Powe等[12]研究發(fā)現(xiàn),盡管黑人體內(nèi)總25(OH)D3水平較白人低,但其DBP水平也較白人低,從而使得二者功能性25(OH)D3的濃度類似,DBP基因多態(tài)性的種族差異似乎可以解釋這個(gè)現(xiàn)象。所以對(duì)不同人群體內(nèi)維生素D狀態(tài)的判斷,應(yīng)結(jié)合血漿25(OH)D3和DBP水平綜合評(píng)估。功能性25(OH)D3的測量方式有直接測量和間接計(jì)算兩種,由于前者耗時(shí)、耗人力,大多數(shù)的研究尚采用間接計(jì)算[23]。但Schwartz等[24]的研究顯示,間接計(jì)算得到的功能性25(OH)D3與直接測量差異較大,更進(jìn)一步的直接測量方法是非常有必要的。
DBP與骨質(zhì)疏松的關(guān)系目前尚未完全明確。已有大量研究顯示DBP基因多態(tài)性與維生素D水平相關(guān),而維生素D對(duì)于維持鈣磷穩(wěn)定和骨健康至關(guān)重要。此外DBP被B細(xì)胞和T細(xì)胞的糖苷酶去糖基化后轉(zhuǎn)變成強(qiáng)有力的巨噬細(xì)胞活化因子(MAF),即DBP-MAF或GcMAF[25]。進(jìn)一步研究發(fā)現(xiàn),DBP-MAF可能是破骨細(xì)胞激活劑,接受DBP-MAF治療的骨硬化癥小鼠破骨細(xì)胞數(shù)量增加[26]。此外,近年來有不少研究探討DBP基因多態(tài)性與骨質(zhì)疏松的關(guān)系。Lauridsen等[27]對(duì)丹麥595名45~58歲的圍絕經(jīng)期女性進(jìn)行DBP表型Gc1-1(Gc1S-1S,Gc1S-1F,Gc1F-1F)、Gc1-2(Gc1S-2,Gc1F-2)、Gc2-2與圍絕經(jīng)期骨折風(fēng)險(xiǎn)的研究,結(jié)果顯示,3種表型間至少發(fā)生1次圍絕經(jīng)期骨折的風(fēng)險(xiǎn)差異很大,在低能量創(chuàng)傷(如站高水平的跌倒)引起的骨折中尤為明顯,其中Gc1-1表型最易發(fā)生骨折,與Gc1-1表型相比,Gc2-2表型發(fā)生圍絕經(jīng)期骨折的相對(duì)危險(xiǎn)度是0.32(0.13~0.80),并且發(fā)現(xiàn)Gc1-1表型的DBP水平和可溶性CD163(巨噬細(xì)胞標(biāo)記物)水平較Gc2-2表型高,從而推測DBP表型差異可能引起破骨細(xì)胞活性不同;但三者在骨密度和骨轉(zhuǎn)換方面無明顯差異。另一項(xiàng)對(duì)俄羅斯伏爾加-烏拉爾地區(qū)絕經(jīng)年后女性DBP基因(TAAA)n多態(tài)性與骨質(zhì)疏松關(guān)系的研究顯示,與對(duì)照組相比,DBP(TAAA)10基因型者骨折發(fā)生率更低,而DBP(TAAA)11基因型者骨折發(fā)生率更高。DBP(TAAA)11基因是發(fā)生骨折的一個(gè)高危標(biāo)志(OR=1.93,95%CI:1.06~3.48),并發(fā)現(xiàn)與DBP(TAAA)10(TAAA)10和DBP(TAAA)10(TAAA)11基因型者相比,DBP(TAAA)10(TAAA)8基因型者股骨頸和腰椎骨密度有降低趨勢[28]。除絕經(jīng)后女性,老年男性也是骨質(zhì)疏松的高發(fā)人群,Taes等[29]對(duì)社區(qū)211名男性(>70歲)的研究顯示,DBP基因(TAAA)(n)-Alu多態(tài)性對(duì)骨密度、骨轉(zhuǎn)換指標(biāo)無明顯影響。然而也有研究得出不同結(jié)論,DBP基因(TAAA)(n)-Alu多態(tài)性對(duì)DBP水平、骨密度和男性骨折風(fēng)險(xiǎn)有影響。Papiha等[30]對(duì)26名男性椎體骨折組和21名男性對(duì)照組的研究顯示,盡管DBP表型對(duì)骨密度無明顯影響,但某些特定的(TAAA)(n)-Alu重復(fù)序列與骨密度降低和椎體骨折相關(guān),(TAAA)(n)-Alu重復(fù)序列為10/8的基因型是椎體骨折組最主要的基因型,該基因型者血漿DBP濃度較高,而腰椎和股骨頸的骨密度較低,從而認(rèn)為DBP基因(TAAA)(n)-Alu多態(tài)性可能對(duì)男性血漿DBP水平、骨密度和骨折風(fēng)險(xiǎn)有重要影響。Al-oanzi等[31]研究中也證實(shí),DBP基因(TAAA)(n)-Alu多態(tài)性與骨密度相關(guān),它可能影響骨折風(fēng)險(xiǎn),其機(jī)制可能是血漿DBP濃度改變從而影響游離維生素D濃度。綜上,目前關(guān)于DBP與骨質(zhì)疏松、骨折的關(guān)系尚無定論,還需要進(jìn)一步研究。
研究顯示,維生素D不足可能與糖尿病、心血管疾病、惡性腫瘤、多發(fā)性硬化等骨外疾病相關(guān)。Wang等[32]的一項(xiàng)薈萃分析顯示,DBP基因多態(tài)性與亞洲人2型糖尿病易感性增加相關(guān),但在白種人中未發(fā)現(xiàn)類似的關(guān)聯(lián)。至于心血管疾病方面,Leong等[33]進(jìn)行了一項(xiàng)孟德爾隨機(jī)化研究,結(jié)果表明DBP與平均動(dòng)脈壓、缺血性卒中、冠心病等無因果關(guān)系。Michos等[34]在社區(qū)動(dòng)脈粥樣硬化風(fēng)險(xiǎn)(ARIC)研究中發(fā)現(xiàn),白人低25(OH)D3水平與冠心病發(fā)生相關(guān),但并未發(fā)現(xiàn)25(OH)D3與DBP基因型(rs7041、rs4588)之間有關(guān)。然而也有研究得出不同結(jié)論,Lutsey等[35]對(duì)ARIC研究部分人群隨訪21年,結(jié)果顯示白人低25(OH)D3與心力衰竭發(fā)生相關(guān),而黑人則不存在此相關(guān)性,但亞組分析顯示,兩個(gè)種族在具有高DBP水平遺傳傾向的人群中低25(OH)D3均與心力衰竭相關(guān)。Schneider等[36]研究發(fā)現(xiàn),高DBP水平的遺傳易感人群卒中風(fēng)險(xiǎn)可能更高。關(guān)于DBP與惡性腫瘤的研究結(jié)果也存在爭議:Jorde等[37]的研究顯示,與Gc1S/1S、Gc2/2表型者相比,DBP的Gc1F/1F表型者惡性腫瘤風(fēng)險(xiǎn)降低23%~26%(P<0.02),且Gc1F/1F表型的保護(hù)作用難以用25(OH)D3水平差異解釋。此外Peng等[38]針對(duì)中國人的研究顯示,DBP基因多態(tài)性rs7041可能增加中國人乙肝相關(guān)肝癌的易感性。也有報(bào)道顯示DBP水平可能影響25(OH)D3水平與直腸癌的關(guān)系[39]。然而,Weinstein等[40]進(jìn)行了一項(xiàng)前瞻性研究發(fā)現(xiàn),較高的維生素D水平大大降低結(jié)直腸癌風(fēng)險(xiǎn),但并未發(fā)現(xiàn)DBP與其相關(guān)。另外,也有研究報(bào)道DBP與多發(fā)性硬化、慢性阻塞性肺病等有關(guān)[41-43]。
總之,DBP具有多種重要的生物學(xué)功能,特別是在骨礦鹽代謝方面。它是血漿維生素D及其代謝產(chǎn)物最主要的轉(zhuǎn)運(yùn)蛋白,目前認(rèn)為與DBP結(jié)合的25(OH)D3不能被靶組織利用,而非DBP結(jié)合的部分(包括與白蛋白結(jié)合的和游離的部分)可以發(fā)揮生物學(xué)效應(yīng),所以即使血清總25(OH)D3水平相同,由于個(gè)體間DBP水平或親和力等的差異,其功能性25(OH)D3的狀態(tài)可能大不相同。值得注意的是DBP具有高度基因多態(tài)性,除了常見的3個(gè)分子形式Gc1F、Gc1S、Gc2,還有超過120種罕見的變異類型已被發(fā)現(xiàn)。此外,DBP基因多態(tài)性存在種族差異,并且基因多態(tài)性可能影響DBP濃度、DBP與25(OH)D3親和力等,從而影響功能性25(OH)D3的狀態(tài),進(jìn)一步可能影響骨健康。但目前對(duì)于功能性25(OH)D3的測量、DBP與骨健康的關(guān)系等仍有待更多更深入的研究。此外,DBP與骨外疾病的關(guān)系也日益受到人們的重視,如糖尿病、心血管疾病、惡性腫瘤、多發(fā)性硬化等,但目前多為觀察性研究,且結(jié)果存在爭議,有待更進(jìn)一步的研究。
[1] 劉秀. 維生素D結(jié)合蛋白的研究現(xiàn)狀[J]. 生命的化學(xué)(中國生物化學(xué)會(huì)通訊), 1993,14-16.
[2] Daiger SP, Schanfield MS, Cavalli-Sforza LL. Group-specific component (Gc) proteins bind vitamin D and 25-hydroxyvitamin D[J].Proc Natl Acad Sci U S A,1975,72(6):2076-2080.
[3] Speeckaert M, Huang G, Delanghe JR,et al. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism[J].Clin Chim Acta,2006,372(1-2):33-42.
[4] Safadi FF,Thornton P,Magiera H,et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein[J].J Clin Invest,1999,103(2):239-251.
[5] Bouillon R, Van Assche FA, Van Baelen H,et al. Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3. Significance of the free 1,25-dihydroxyvitamin D3concentration[J].J Clin Invest,1981,67(3):589-596.
[6] White P,Cooke N. The multifunctional properties and characteristics of vitamin D-binding protein[J].Trends Endocrinol Metab,2000,11(8):320-327.
[7] Cooke NE,Haddad JG. Vitamin D binding protein (Gc-globulin)[J].Endocr Rev,1989,10(3):294-307.
[8] Arnaud J,Constans J. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP)[J].Hum Genet,1993,92(2):183-188.
[9] Cleve H,Constans J. The mutants of the vitamin-D-binding protein: more than 120 variants of the GC/DBP system[J].Vox Sang,1988,54(4):215-225.
[10] Braun A,Brandhofer A, Cleve H. Interaction of the vitamin D-binding protein (group-specific component) and its ligand 25-hydroxy-vitamin D3: binding differences of the various genetic types disclosed by isoelectric focusing[J].Electrophoresis,1990,11(6):478-483.
[11] Kamboh MI, Ferrell RE. Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations[J].Hum Genet,1986,72(4):281-293.
[12] Powe CE, Evans MK, Wenger J,et al. Vitamin D-binding protein and vitamin D status of black Americans and white Americans[J].N Engl J Med,2013,369(21):1991-2000. DOI: 10.1056/NEJMoa1306357.
[13] Malik S, Fu L, Juras DJ,et al. Common variants of the vitamin D binding protein gene and adverse health outcomes[J].Crit Rev Clin Lab Sci,2013,50(1):1-22. DOI: 10.3109/10408363.2012.750262.
[14] Moy KA, Mondul AM, Zhang H,et al. Genome-wide association study of circulating vitamin D-binding protein[J].Am J Clin Nutr, 2014,99(6):1424-1431. DOI: 10.3945/ajcn.113.080309.
[15] Wang TJ, Zhang F, Richards JB,et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study[J].Lancet,2010,376(9736):180-188.DOI: 10.1016/S0140-6736(10)60588-0.
[16] Ahn J, Yu K, Stolzenberg-Solomon R,et al. Genome-wide association study of circulating vitamin D levels[J].Hum Mol Genet,2010,19(13):2739-2745.DOI: 10.1093/hmg/ddq155.
[17] Yousefzadeh P, Shapses SA, Wang X. Vitamin D binding protein impact on 25-hydroxyvitamin D levels under different physiologic and pathologic conditions[J]. Int J Endocrinol,2014,2014:981581. DOI: 10.1155/2014/981581.
[18] McGrath JJ, Saha S, Burne TH,et al. A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations[J].J Steroid Biochem Mol Biol,2010,121(1-2):471-477.DOI: 10.1016/j.jsbmb.2010.03.073.
[19] Santos BR, Mascarenhas LP, Boguszewski MC,et al. Variations in the vitamin D-binding protein (DBP) gene are related to lower 25-hydroxyvitamin D levels in healthy girls: a cross-sectional study[J].Horm Res Paediatr,2013,79:162-168. DOI: 10.1159/000348847.
[20] Braithwaite VS, Jones KS, Schoenmakers I,et al. Vitamin D binding protein genotype is associated with plasma 25OHD concentration in West African children[J].Bone,2015,74:166-170. DOI: 10.1016/j.bone.2014.12.068.
[21] Xu W, Sun J, Wang W,et al. Association of genetic variants of vit D binding protein (DBP/GC) and of the enzyme catalyzing its 25-hydroxylation (DCYP2R1) and serum vit D in postmenopausal women[J].Hormones (Athens),2014,13(3):345-352. DOI: 10.14310/horm.2002.1484.
[22] Mendel CM.The free hormone hypothesis: a physiologically based mathematical model[J].Endocr Rev,1989,10(3):232-274.
[23] Chun RF,Peercy BE,Orwoll ES,et al. Vitamin D and DBP: the free hormone hypothesis revisited[J].J Steroid Biochem Mol Biol,2014,144 Pt A:132-137. DOI: 10.1016/j.jsbmb.2013.09.012.
[24] Schwartz JB, Lai J, Lizaola B,et al. A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations[J].J Clin Endocrinol Metab,2014,99(5):1631-1637. DOI: 10.1210/jc.2013-3874.
[25] Yamamoto N, Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells[J].J Immunol,1993,151(5):2794-2802.
[26] Schneider GB, Benis KA, Flay NW,et al. Effects of vitamin D binding protein-macrophage activating factor (DBP-MAF) infusion on bone resorption in two osteopetrotic mutations[J].Bone,1995,16(6):657-662.
[27] Lauridsen AL,Vestergaard P,Hermann AP,et al. Female premenopausal fracture risk is associated with gc phenotype[J].J Bone Miner Res,2004,19(6):875-881.
[28] Khusainova RI, Seleznyova LI, Mal'tsev AV,et al. Associations between vitamin D-binding protein (DBP) gene polymorphism (TAAA)n and development of osteoporosis in the Volga-Ural region of Russia[J].Bull Exp Biol Med,2014,157(2):253-257. DOI: 10.1007/s10517-014-2538-5.
[29] Taes YE, Goemaere S, Huang G,et al. Vitamin D binding protein, bone status and body composition in community-dwelling elderly men[J].Bone,2006,38(5):701-707.
[30] Papiha SS, Allcroft LC, Kanan RM,et al. Vitamin D binding protein gene in male osteoporosis: association of plasma DBP and bone mineral density with (TAAA)(n)-Alu polymorphism in DBP[J].Calcif Tissue Int,1999,65(4):262-266.
[31] Al-oanzi ZH, Tuck SP, Mastana SS, et al.Vitamin D-binding protein gene microsatellite polymorphism influences BMD and risk of fractures in men[J]. Osteoporos Int,2008,19: 951-960.
[32] Wang G, Li Y, Li L,et al. Association of the vitamin D binding protein polymorphisms with the risk of type 2 diabetes mellitus: a meta-analysis[J].BMJ Open,2014,4(11):e005617. DOI: 10.1136/bmjopen-2014-005617.
[33] Leong A, Rehman W, Dastani Z,et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study[J].PLoS Med,2014,11(10):e1001751. DOI: 10.1371/journal.pmed.1001751. eCollection 2014.
[34] Michos ED, Misialek JR, Selvin E,et al. 25-hydroxyvitamin D levels, vitamin D binding protein gene polymorphisms and incident coronary heart disease among whites and blacks: The ARIC study[J].Atherosclerosis,2015,241(1):12-17.DOI: 10.1016/j.atherosclerosis.2015.04.803.
[35] Lutsey PL, Michos ED, Misialek JR,et al. Race and vitamin D binding protein gene polymorphisms modify the association of 25-hydroxyvitamin D and incident heart failure: The (ARIC AtheroSclerosis Risk in Communities) Study[J].JACC Heart Fail, 2015,3(5):347-356. DOI: 10.1016/j.jchf.2014.11.013.
[36] Schneider AL, Lutsey PL, Selvin E,et al. Vitamin D, vitamin D binding protein gene polymorphisms, race and risk of incident stroke: the Atherosclerosis Risk in Communities (ARIC) study[J].Eur J Neurol,2015,22(8):1220-1227.DOI: 10.1111/ene.12731.
[37] Jorde R, Schirmer H, Wilsgaard T,et al. The DBP phenotype Gc-1f/Gc-1f is associated with reduced risk of cancer. The Troms Study[J].PLoS One,2015,10(5):e0126359. DOI: 10.1371/journal.pone.0126359. eCollection 2015.
[38] Peng Q, Yang S, Lao X,et al. Association of single nucleotide polymorphisms in VDR and DBP genes with HBV-related hepatocellular carcinoma risk in a Chinese population[J].PLoS One,2014,9(12):e116026. DOI: 10.1371/journal.pone.0116026.
[39] Anic GM, Weinstein SJ, Mondul AM,et al. Serum vitamin D, vitamin D binding protein, and risk of colorectal cancer[J].PLoS One,2014,9(7):e102966.DOI:10.1371/journal.pone.0102966.
[40] Weinstein SJ, Purdue MP, Smith-Warner SA,et al. Serum 25-hydroxyvitamin D, vitamin D binding protein and risk of colorectal cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial[J].Int J Cancer,2015,136(6):E654-E664. DOI: 10.1002/ijc.29157.
[41] Rinaldi AO, Sanseverino I, Purificato C,et al. Increased circulating levels of vitamin D binding protein in MS patients[J].Toxins (Basel),2015,7(1):129-137. DOI: 10.3390/toxins7010129.
[42] Perga S, Giuliano Albo A, Lis K,et al. Vitamin D binding protein isoforms and apolipoprotein E in cerebrospinal fluid as prognostic biomarkers of multiple sclerosis[J].PLoS One,2015,10(6):e0129291.DOI:10.1371/journal.pone.0129291.
[43] Xiao M, Wang T, Zhu T,et al. Dual role of vitamin D-binding protein 1F allele in chronic obstructive pulmonary disease susceptibility: a meta-analysis[J].Genet Mol Res,2015,14(2):3534-3540. DOI: 10.4238/2015.
ResearchprogressofvitaminDbindingprotein
FengJuan,XiaWeibo.
KeyLaboratoryofEndocrinologyofTheMinistryofHealth,DepartmentofEndocrinology,PekingUnionMedicalCollegeHospital,ChineseAcademyofMedicalSciencesandPekingUnionMedicalCollege,Beijing100730,China
XiaWeibo,Email:xiaweibo@medmail.com.cn
Vitamin D binding protein (DBP), originally known as group-specific component(Gc-globulin), is a multifunctional glycoprotein with high polymorphism.In addition,the polymorphism may influence the level of DBP and its affinity with vitamin D and its metabolites,which may eventually influence the level of functional 25-hydroxyvitamin D3.DBP not only has an association with osteoporosis, but also with a variety of diseases outside bone.
Vitamin D binding protein; Gene; Polymorphism; Vitamin D; Osteoporosis
10.3760/cma.j.issn.1673-4157.2016.03.017
100730 中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院,北京協(xié)和醫(yī)院內(nèi)分泌科,衛(wèi)生部內(nèi)分泌重點(diǎn)實(shí)驗(yàn)室
夏維波,Email:xiaweibo@medmail.com.cn
2015-05-27)