亓飛 綜述 胡系偉 審校
(貴州醫(yī)科大學(xué),貴州 貴陽 550004)
?
COPD合并骨密度降低因素的研究進(jìn)展
亓飛 綜述 胡系偉△審校
(貴州醫(yī)科大學(xué),貴州 貴陽 550004)
慢性阻塞性肺疾??; 骨密度; 骨量減少; 骨質(zhì)疏松癥
慢性阻塞性肺疾病(COPD)是一種不完全可逆的氣流受限,呈進(jìn)行性發(fā)展的慢性呼吸系統(tǒng)疾病。COPD患者周期性地伴有急性癥狀加重,肺功能逐漸減弱,病程的終末還會(huì)造成身體其他臟器的損害。《慢性阻塞性肺疾病全球倡議》(GOLD)對(duì)COPD的定義中首次認(rèn)為并提及合并癥也會(huì)影響患者整體疾病的嚴(yán)重程度[1]。
成骨細(xì)胞同破骨細(xì)胞在人體的骨代謝中呈動(dòng)態(tài)平衡,當(dāng)骨的吸收速度超過骨的形成時(shí)就會(huì)導(dǎo)致骨量流失、減少,一旦這種狀態(tài)持續(xù)發(fā)展,則會(huì)最終成為骨質(zhì)疏松癥。1994年WHO建議根據(jù)骨密度或骨礦含量值對(duì)骨質(zhì)疏松癥進(jìn)行分級(jí)診斷,骨質(zhì)疏松癥作為COPD主要的合并癥之一,不僅影響患者生活質(zhì)量,也同此病的進(jìn)展、預(yù)后及死亡率密切相關(guān)[2]。
研究發(fā)現(xiàn),COPD患者伴有體質(zhì)量指數(shù)下降及游離脂肪減少時(shí),更易發(fā)生骨密度降低或骨質(zhì)疏松癥。Graat-Verboom[3]發(fā)現(xiàn),超重及肥胖的COPD患者患有骨質(zhì)疏松風(fēng)險(xiǎn)反而較低。Cavanagh等[4]提出,BMI的下降及無脂體質(zhì)量(FFM)減少會(huì)引起機(jī)體負(fù)荷減少,從而導(dǎo)致骨形成減少。脂肪組織的減少不僅會(huì)導(dǎo)致骨骼缺乏保護(hù),而且使成骨活性物質(zhì)減少,影響骨骼合成。
COPD患者體質(zhì)量逐漸減輕的現(xiàn)象也與其血清瘦素的水平與穩(wěn)定期慢性 COPD 患者的體質(zhì)量呈正相關(guān)有關(guān)。大部分學(xué)者認(rèn)為瘦素通過神經(jīng)系統(tǒng)對(duì)骨代謝產(chǎn)生負(fù)性作用。Elefteriou等[5]在研究中發(fā)現(xiàn),瘦素可作用于交感神經(jīng)系統(tǒng),刺激其釋放去甲腎上腺素,使成骨細(xì)胞產(chǎn)生核因子kB受體活化因子配(RANKL),再激活破骨細(xì)胞,最終降低骨量。
脂聯(lián)素同樣也可影響體質(zhì)量。Tomoda 等[6]研究發(fā)現(xiàn)COPD患者血清中的脂聯(lián)素水平明顯高于正常人,這提示COPD可能與脂聯(lián)素密切相關(guān)。Rubinsztajn等[7]研究顯示,在COPD急性發(fā)作1次以上患者中脂聯(lián)素濃度明顯高于COPD急性發(fā)作1次或無急性發(fā)作患者。
COPD是以巨噬細(xì)胞、中性粒細(xì)胞為特點(diǎn)的慢性炎癥疾病,即使病情平穩(wěn)的COPD患者,其體內(nèi)仍有炎癥細(xì)胞及炎癥因子的長期存在,這些炎癥介質(zhì)通過進(jìn)入循環(huán)系統(tǒng)而擴(kuò)散到患者全身,這種全身低水平慢性炎癥則會(huì)導(dǎo)致一系列合并癥,而骨質(zhì)疏松癥就是COPD肺外表現(xiàn)之一[8]。影響骨量減低的COPD全身炎癥因子有:(1)腫瘤壞死因子(TNF):TNF-α是骨代謝和重塑的重要調(diào)節(jié)因子,以協(xié)同作用的方式刺激破骨細(xì)胞的分化。在骨骼系統(tǒng)中,TNF-α可通過多種途徑導(dǎo)致機(jī)體發(fā)生骨質(zhì)疏松。Keatings等[9]通過對(duì)誘導(dǎo)痰的檢測(cè),發(fā)現(xiàn)TNF-α水平的升高僅見于COPD患者,不吸煙者和健康吸煙者誘導(dǎo)痰中并未發(fā)現(xiàn)TNF-α水平升高,提示TNF-α升高并非受吸煙的影響,而僅與COPD相關(guān)。RANKL、OPG均是TNF大家族的成員,RANKL與RANK的結(jié)合會(huì)導(dǎo)致骨量的減少,而OPG影響了RANKL與RANK的結(jié)合,以一種抑制劑的形式維護(hù)機(jī)體內(nèi)骨量的流失。研究者在OPG敲除的小鼠中發(fā)現(xiàn),由于破骨細(xì)胞的數(shù)量和活性的增高出現(xiàn)骨質(zhì)疏松[10-11],相反,過度表達(dá)OPG的小鼠會(huì)出現(xiàn)骨硬化[12]。由此可見,OPG同RANKL的比例可決定一些病理狀態(tài)的骨量變化,如COPD患者炎癥介質(zhì)大量誘導(dǎo)產(chǎn)生下的骨吸收速率[13]。(2)白細(xì)胞介素(IL):IL-17是近年來研究的熱點(diǎn),它誘導(dǎo)炎性細(xì)胞(巨噬細(xì)胞、中性粒細(xì)胞等)分泌IL-6、IL-8、TNF-α等炎性因子,后者進(jìn)一步放大炎癥級(jí)聯(lián)反應(yīng)[14]。其中,IL-6 可刺激破骨細(xì)胞形成,并被認(rèn)為是骨重建過程中刺激骨吸收的關(guān)鍵因素。Bon等[15]研究發(fā)現(xiàn),循環(huán)系統(tǒng)內(nèi)IL-6水平骨密度水平有相關(guān)性。Liang等[16]研究認(rèn)為TNF-α、IL-6 可作為 COPD 患者骨密度降低的獨(dú)立預(yù)測(cè)指標(biāo)。(3)基質(zhì)金屬蛋白酶(MMP):蛋白酶-抗蛋白酶系統(tǒng)失衡學(xué)說為近年來研究的熱點(diǎn),而在這些研究中,基質(zhì)金屬蛋白酶及其抑制劑的平衡理論在解釋COPD患者肺泡壁細(xì)胞外基質(zhì)的降解和重塑中占據(jù)了重要地位。大量研究證實(shí),機(jī)體內(nèi)的炎癥細(xì)胞因子、激素和生長因子,如IL-l、IL-6、TNF-α、表皮生長因子(EGF)、血小板源性生長因子(PDGF)和CD40能夠誘導(dǎo)或刺激MMPs在轉(zhuǎn)錄水平的表達(dá)。COPD的患者在長期慢性炎癥及服用激素治療的條件下,則可誘導(dǎo)產(chǎn)生MMPs。Ohnishi 等[17]對(duì)COPD患者內(nèi)鏡下所取肺組織利用RT-PCR、免疫斑點(diǎn)雜交、ELISA等方法,發(fā)現(xiàn)主要在肺泡細(xì)胞、成纖維細(xì)胞、肺泡巨噬細(xì)胞中觀察到MMP-2、MT1-MMP,其免疫活性和轉(zhuǎn)錄水平高于健康對(duì)照組,MMP-9的轉(zhuǎn)錄水平也高于對(duì)照組。Segura-Valdez 等[18]用免疫組化方法發(fā)現(xiàn)COPD患者支氣管肺泡灌洗液(BALF)MMP-2、MMP-9表達(dá)明顯升高,明膠酶譜分析提示MMP-9活性顯著升高,MMP-2活性中度升高。
糖皮質(zhì)激素作為一種強(qiáng)有力的抗炎藥物在抑制COPD全身炎癥反應(yīng)中占有重要地位,它可以降低促炎細(xì)胞因子的產(chǎn)生;但另一方面,糖皮質(zhì)激素的副作用之一則是骨質(zhì)疏松,它可引起血管內(nèi)皮生長因子及血管生成減少,同時(shí)會(huì)引起骨細(xì)胞凋亡的增加,成骨細(xì)胞及骨細(xì)胞的減少。Grossman 等[19]認(rèn)為全身使用糖皮質(zhì)激素會(huì)對(duì)骨密度造成影響,且沒有安全的值域范圍。Mckenzie等[20]研究發(fā)現(xiàn),口服小劑量糖皮質(zhì)激素(7.5 mg/d)即可導(dǎo)致骨密度降低,骨密度在第1年丟失最明顯(12%~20%),以后每年丟失3%左右[21]。一項(xiàng) Meta 分析提示使用糖皮質(zhì)激素的累積劑量和髖骨、腰椎的骨密度丟失強(qiáng)烈相關(guān)(r=-0.58-0.55,P<0.001)[22]。但關(guān)于吸入型糖皮質(zhì)激素(ICS)對(duì)骨密度的影響還尚有爭(zhēng)議。研究[23]表明長期小劑量使用ICS的COPD患者與對(duì)照組相比骨量減少與骨質(zhì)疏松的發(fā)病率并未上升。而Mathioudakis 等[24]研究提出,適當(dāng)劑量的ICS可改善COPD患者的全身炎癥水平,他們不僅不會(huì)加速甚至還可減緩骨質(zhì)的丟失。但Wong[25]的一項(xiàng)長達(dá)6年的研究發(fā)現(xiàn),即使是小劑量(氟替卡松單藥,800 μg/d)吸入ICS也可導(dǎo)致患者多部位的骨量丟失。
維生素D是一種類固醇激素,在骨骼鈣化及鈣穩(wěn)定中有著重要作用。近年來研究表明,維生素D的缺乏可能同許多慢性疾病有關(guān),肺部疾病如COPD及哮喘也無一例外。流行病學(xué)的調(diào)查資料也顯示炎癥反應(yīng)的增加、免疫力下降及肺功能下降可使維生素D水平下降[26]。從炎癥反應(yīng)的增加來看,維生素D主要通過Toll樣受體途徑促進(jìn)單核巨噬細(xì)胞合成抗菌肽,繼而參與固有免疫介導(dǎo)的炎癥反應(yīng)[27-28],主要通過影響T細(xì)胞分化調(diào)節(jié)適應(yīng)性免疫應(yīng)答。COPD患者因其長期存在于炎癥作用中,故消耗了大量的維生素D。其次,Janssens等[29]研究發(fā)現(xiàn),COPD患者中維生素D缺乏與GOLD分級(jí)存在顯著相關(guān)性,且維生素D缺乏越嚴(yán)重,COPD分級(jí)越高,COPD肺功能GOLD分級(jí)為Ⅲ級(jí)和Ⅳ級(jí)的患者體內(nèi)維生素D缺乏可高達(dá)60%和77%。
對(duì)于COPD患者,骨密度降低確實(shí)同營養(yǎng)狀況、炎癥因素、激素使用及維生素D的缺乏密切相關(guān)。但無論是哪種因素,COPD合并骨密度降低的狀況在近年來中外學(xué)者的調(diào)查研究中可見,這不僅為當(dāng)前學(xué)術(shù)的研究方向提供了依據(jù),也同時(shí)為此種疾病合并癥的發(fā)生發(fā)展提供了理論基礎(chǔ)。
[1] GOLD Executive Committee.Global strategy for the diagnosis,management,and prevention of chronic obstructive pulmonary disease.Revised,2011,www.goldcopd.com.
[2] Spruit MA,Watkins ML,Edwards LD,et al.Determinants of poor 6-min walking distance in patients with COPD: the ECLIPSE cohort [J].Respir Med,2010,104(6):849-857.
[3] Graat-Verboom L,Vanden-Borne BE,Smeenk FW,et al.Risk factors for osteoporosis in Caucasian patients with moderate chronic obstructive pulmonary disease: A case control study [J].Bone,2012,50: 1234-1239.
[4] Cavanagh PR,Licata AA,Rice AJ,et al.Exercise and pharmacological countermeasures for bone loss during long-duration space flight [J].Gravit Space Biol Bull,2005,18: 39-58.
[5] Elefteriou F,Ahn JD,Takeda S,et al.Leptin regulation of bone resorption by the sympathetic nervous system and CART[J].Nature,2005,434(7032): 514-520.
[6] Tomoda K,Yoshikawa M,Itoth T,et al.Elevated circulating plasma adiponectin in underweight patients with COPD [J].Chest,2007,132(1):135-140.
[7] Rubinsztajn R,Przybyfowski T,Maskey-Warzechowska M,et al.Effect of exacerbation frequency on body composition and serum ghrelin and adiponectin concentrations in patients with chronic obstructive pulmonary disease [J].Pol Arch Med Wewn,2014,124 (7-8):403-409.
[8] Sinden NJ,Stockley RA.Systemic inflammation and comorbidity in COPD: a result of ‘overspill’ of inflammatory mediators from the lungs[J].Review of the evidence Thorax,2010,65: 930-936.
[9] Keatings VM,Collins PD,Scott DM,et al.Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma [J].Am J Respir Crit Care,1996,153(2):530-534.
[10] Kong YY,Yoshida H,Sarosi I,et al.OPGL is a key regulator of osteoclastogenesis,lymphocyte development and lymphnode organogenesis [J].Nature,1999,397(6717):315-323.
[11] Bucay N,Sarosi I,Dunstan CR,et al.Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification [J].Genes and Development,1998,12(9):1260-1268.
[12] Min H,Morony S,Sarosi I,et al.Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis [J].The Journal of Experimental Medicine,2000,192(4) : 463-474.
[13] Teitelbaum SL.Osteoclasts: what do they do and how do they do it? [J].Am J Pathol,2007,170(2): 427-435.
[14] Koenders MI,Vanden-Berg WB.Novel therapeutic targets in rheumatoid arthritis[J].Trends Pharmacol Sci,2015,36: 89-195.
[15] Bon JM,Zhang Y,Duncan SR,et al.Plasma inflammatory mediators associated with bone metabolism in COPD[J].COPD,2010,7:186-191.
[16] Liang B,Feng Y.The association of low bone mineral density with systemic inflammation in clinically stable COPD[J].Endocrine,2012,42(1): 190-195.
[17] Ohnishi K,Takagi M,Kurokawa Y,et al.Matrix metalloproteinase-mediated extracellular metrix protein degradation in human pulmonary emphysema[J].Lab Invest,1998,78:1077-1087.
[18] Segura-Valdez L,Pardo A,Gaxiola M,et al.Upregulation of gelatinases A and B,collagenases 1 and 2,and increased parenchymal cell death in COPD [J].Chest,2000,117:684-694.
[19] Grossman JM,Gordon R,Ranganath VK,et al.American college of rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteopomsis[J].Arthritis Care Res,2010,62:1515-1526.
[20] Mckenzie R,Reynolds JC,O’Fallon A,et al.Decreased bone mineral density during low dose glucoconicoid administration in a randomized,placebo controlled trial [J].J Rheumatol,2000,27: 2222-2226.
[21] Rehman Q,Lane NE.Effect of glucocorticoids on bone density [J].Med Pediatr Oncol,2003,41: 1212-1216.
[22] Van Staa TP,Leufken HG,Cooper C,et al.The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis[J].Osteoporos Int,2002,13(10):777-787.
[23] Lapperre TS,Snoeck-Stroband JB,Gosman MM,et al.Effect of fluticasone with and without salmeterol on pulmonary outcomes in chronic obstructive pulmonary disease:a randomized trial[J].Ann.Intern.Med,2009,151:517-527.
[24] Mathioudakis AG,Amanetopoulou SG,Gialmanidis IP,et al.Impact of long-term treatment with low-dose inhaled corticosteroids on the bone mineral density of chronic obstructive pulmonary disease patients: Aggravating or beneficial[J].Respirology,2013,18: 147-153.
[25] Wong CA,Walsh U,Smith CJ,et al.Inhaled corticostemid use and bone mineral density in patients with asthma[J].Lancet,2000,355:1399-1403.
[26] Litonjua AA.Childhood asthma may be a consequence of vitamin D deficiency [J].Curr Opin Allergy Clin Immunol,2009,9(3): 202-207.
[27] Yu SZ,Cantorna MT.The vitamin D receptor is required for iNKT cell development [J].Proc Natl Acad Sci USA,2008,105(13): 5207-5212.
[28] Maruotti N,Cantatore FP.Vitamin D and the immune system [J].J Rheumatol,2010,37(3): 491-495.
[29] Janssens W.Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene[J].Thorax,2010,65(3): 215-220.
R563
B
1000-744X(2016)10-1100-04
2016-02-29)
△通信作者,E-mail:huxiwei1002@126.com