陳民,袁慧書(shū)
?
超短回波時(shí)間磁共振(UTE-MRI)在骨皮質(zhì)成像中的應(yīng)用
陳民,袁慧書(shū)*
[摘要]隨著社會(huì)老齡化的進(jìn)展,骨質(zhì)疏松患病率不斷增高,作為骨質(zhì)疏松最嚴(yán)重的并發(fā)癥之一,骨質(zhì)疏松骨折極大地降低了患者的生活質(zhì)量,并帶來(lái)沉重的社會(huì)經(jīng)濟(jì)負(fù)擔(dān)。近年來(lái),骨皮質(zhì)在骨質(zhì)疏松骨折中的重要作用越來(lái)越受到研究者的重視。相較于傳統(tǒng)影像學(xué)方法,磁共振超短回波時(shí)間脈沖序列能夠?qū)瞧べ|(zhì)進(jìn)行在體的定性定量研究,包括骨折等疾病觀察、骨皮質(zhì)T1、T2*時(shí)間測(cè)定、水定量、孔隙度測(cè)定、礦質(zhì)含量測(cè)定、骨皮質(zhì)灌注研究等,對(duì)骨皮質(zhì)在骨質(zhì)疏松等疾病中的改變可進(jìn)行全面的評(píng)估,具有良好的臨床應(yīng)用前景。本文將對(duì)超短回波時(shí)間磁共振序列進(jìn)行介紹,并著重對(duì)其在骨皮質(zhì)成像中的研究進(jìn)展進(jìn)行綜述。
[關(guān)鍵詞]超短回波時(shí)間;磁共振成像;骨皮質(zhì);骨質(zhì)疏松
作者單位:北京大學(xué)第三醫(yī)院放射科,北京100191
接受日期:2016-01-08
陳民, 袁慧書(shū). 超短回波時(shí)間磁共振(UTE-MRI)在骨皮質(zhì)成像中的應(yīng)用. 磁共振成像, 2016, 7(2): 156–160.
*Correspondence to: Yuan HS, E-mail: huishuy@bjmu.edu.cn
Received 10 Dec 2015, Accepted 8 Jan 2016
根據(jù)民政部統(tǒng)計(jì)年鑒[1],截至2014年底,中國(guó)60歲及以上老年人總數(shù)達(dá)2.12億,占人口總數(shù)的15.5%。骨質(zhì)疏松癥在中國(guó)老年人群中平均患病率約16%[2]。作為骨質(zhì)疏松最嚴(yán)重的并發(fā)癥之一,骨質(zhì)疏松骨折給社會(huì)和家庭帶來(lái)沉重的經(jīng)濟(jì)負(fù)擔(dān),據(jù)不完全統(tǒng)計(jì),我國(guó)不同地區(qū)老年人骨質(zhì)疏松骨折患病率約9%~26%[2]。雙能X線(xiàn)吸收法(dual energy x-ray absorptiometry, DXA)測(cè)定骨密度(bone mineral density, BMD)是目前WHO惟一推薦用于骨質(zhì)疏松診斷及骨折風(fēng)險(xiǎn)預(yù)測(cè)的影像學(xué)檢查[3],但該方法無(wú)法區(qū)分骨皮質(zhì)與骨松質(zhì),并以反映骨松質(zhì)為主[4],因此骨質(zhì)疏松患者中骨皮質(zhì)的改變往往被忽略[5]。有研究表明,65歲以上的老年人四肢骨骨量下降以骨皮質(zhì)骨量下降為主[6],此外,從60歲到80歲,骨折風(fēng)險(xiǎn)增加13倍,而DXA測(cè)得的BMD的降低只能導(dǎo)致骨折風(fēng)險(xiǎn)增加1倍[7]。因此,加強(qiáng)對(duì)骨皮質(zhì)的評(píng)價(jià)對(duì)于完善骨質(zhì)疏松的診斷和骨折風(fēng)險(xiǎn)的預(yù)測(cè)具有重要意義。超短回波時(shí)間磁共振成像(ultrashort echo-time magnetic resonance imaging, UTE-MRI)是近年來(lái)出現(xiàn)的可用于評(píng)價(jià)骨皮質(zhì)的新技術(shù),相較于顯微CT(micro-computed tomography, μCT)、高分辨外周定量CT(high resolution-peripheral quantitative computed tomography, HR-pQCT)等方法,具有能夠在體應(yīng)用、無(wú)輻射等優(yōu)勢(shì),具有很大的臨床應(yīng)用潛能。
目前廣泛應(yīng)用于臨床的磁共振序列因回波時(shí)間(echo time, TE)的限制,均以采集中等及長(zhǎng)T2組織(T2>10 ms[8])信號(hào)為主,短T2組織如跟腱、骨皮質(zhì)等在圖像中幾乎不產(chǎn)生信號(hào),為這些組織的直接觀察和磁共振性質(zhì)的研究帶來(lái)了困難。
UTE技術(shù)利用超短TE(0.008~0.50 ms[8]),能夠采集到多數(shù)短T2組織的信號(hào)。其超短TE的實(shí)現(xiàn)有賴(lài)于獨(dú)特的半射頻脈沖及K空間填寫(xiě)方式。2DUTE序列通過(guò)半射頻脈沖結(jié)合選層梯度進(jìn)行層面激發(fā),并交替變換選層梯度方向,將兩次半射頻脈沖所得數(shù)據(jù)疊加填寫(xiě)K空間,從而避免了對(duì)層面選擇射頻激發(fā)脈沖重新進(jìn)行相位編碼,縮短了TE時(shí)間。在選層梯度降至0、射頻激發(fā)脈沖開(kāi)始時(shí),K空間數(shù)據(jù)同時(shí)從中心放射狀填寫(xiě),此外,數(shù)據(jù)采集可在層面選擇梯度上升的同時(shí)及到達(dá)平臺(tái)期后持續(xù)進(jìn)行[8-9]。相似的,利用短硬激發(fā)脈沖及三維放射狀采集可實(shí)現(xiàn)3DUTE成像[10]。3DUTE獲得的信息是基于多層面的空間平均值,降低了隨機(jī)和系統(tǒng)誤差,包括采集噪聲、分段誤差及配準(zhǔn)誤差,對(duì)于提高UTE技術(shù)用于定量分析的準(zhǔn)確性具有更大的優(yōu)勢(shì)[1 1]。此外,在基本UTE序列的基礎(chǔ)上還出現(xiàn)了多種包含長(zhǎng)T2組織抑制的序列,主要包括[10]絕熱反轉(zhuǎn)恢復(fù)UTE(adiabatic inversion recovery-UTE, AIR-UTE)、偏共振飽和UTE(UTE with off-resonance saturation, UTEOSC)、雙回波剪影UTE等,通過(guò)抑制脂肪或長(zhǎng)T2的水成分,提高短T2成分的圖像對(duì)比度。
目前國(guó)內(nèi)外已有的UTE-MRI相關(guān)研究多在高場(chǎng)強(qiáng)磁共振臨床用機(jī)上進(jìn)行(如1.5 T或3.0 T MR機(jī)),并對(duì)掃描線(xiàn)圈的轉(zhuǎn)換速度(transmit-receive time, T/R時(shí)間)有一定的要求[12]。不同廠家及型號(hào)的磁共振機(jī)上UTE序列可獲得的最短TE時(shí)間略有差別,但均在0.10 ms以?xún)?nèi)[13-14]。同時(shí),根據(jù)定量及定性研究的不同要求,可應(yīng)用臨床常用的后處理技術(shù)如多平面重組技術(shù)[15]對(duì)UTE獲得的圖像進(jìn)行處理,或借助Matlab[13]、ImageJ[16]等圖像處理軟件進(jìn)行半定量、定量計(jì)算。
UTE序列結(jié)合組織抑制技術(shù)可將骨皮質(zhì)顯示為高信號(hào),因此可以對(duì)骨質(zhì)疏松、骨折等疾病中骨皮質(zhì)的改變進(jìn)行良好的觀察。Reichert I等人[17]用UTE序列在骨質(zhì)疏松病人觀察到了骨皮質(zhì)信號(hào)的增高。Robson M等人[18]觀察到急性期骨折病人骨皮質(zhì)短T2成分信號(hào)降低,而修復(fù)期信號(hào)增高,同時(shí)可觀察骨痂形成和骨膜的改變。
利用飽和恢復(fù)UTE(saturation recovery UTE,SR-UTE)序列可測(cè)得骨皮質(zhì)的T1時(shí)間。通過(guò)逐步增加飽和恢復(fù)時(shí)間,將獲得的骨皮質(zhì)信號(hào)用指數(shù)信號(hào)恢復(fù)曲線(xiàn)進(jìn)行擬合,得到骨皮質(zhì)的T1時(shí)間范圍為140~400 ms[17, 19]。骨皮質(zhì)T2*時(shí)間的測(cè)定是通過(guò)一系列的TE時(shí)間獲得相應(yīng)一系列的信號(hào)強(qiáng)度,隨后通過(guò)信號(hào)衰減指數(shù)模型進(jìn)行曲線(xiàn)擬合而得到,其范圍為0.42~0.60 ms[17, 19]。為提高T2*測(cè)量的準(zhǔn)確性,減輕渦流對(duì)信號(hào)的影響,可輔以絕熱反轉(zhuǎn)等長(zhǎng)T2抑制序列[12]。
Reichert I等人[17]發(fā)現(xiàn),UTE測(cè)得的骨皮質(zhì)T1時(shí)間隨年齡增長(zhǎng)而延長(zhǎng),提示骨皮質(zhì)的T1、T2*時(shí)間可能與年齡相關(guān)的骨改變及骨質(zhì)疏松等疾病具有相關(guān)性,因此,進(jìn)一步研究骨皮質(zhì)T1及T2*時(shí)間在不同疾病狀態(tài)下的變化情況,可能為相關(guān)疾病的診斷提供更為豐富的資料。
骨皮質(zhì)中的水質(zhì)子信號(hào)是UTE-MRI獲得信號(hào)的主要組成成分[20]。骨皮質(zhì)水包括孔隙水和結(jié)合水,前者占總水含量約1/3,指的是存在于骨哈弗斯系統(tǒng)、骨陷窩和骨小管中的水,可反映骨皮質(zhì)的孔隙度[20];后者占總水含量的約2/3,指的是與骨有機(jī)質(zhì)結(jié)合的水,反映骨有機(jī)質(zhì)的含量[20-22]。
4.1骨皮質(zhì)總水含量測(cè)定
UTE-MRI可借助水模測(cè)定骨皮質(zhì)的總含水量(bone water concentration, BWC)[12, 19, 23]。Techawiboonwong A等人[19, 24]將水模與人骨標(biāo)本或志愿者小腿同時(shí)進(jìn)行UTE序列掃描,以水模和脛骨骨皮質(zhì)信號(hào)強(qiáng)度為基礎(chǔ),結(jié)合二者的T1、T2*時(shí)間進(jìn)行計(jì)算,得到脛骨骨皮質(zhì)BWC,并通過(guò)D2OH2O交換法[25]驗(yàn)證了該UTE方法的準(zhǔn)確性。此外,他們還發(fā)現(xiàn)UTE測(cè)定的BWC在腎性骨病患者與健康人之間比DXA測(cè)得的BMD具有更顯著的差異,提示UTE進(jìn)行BWC測(cè)定可能作為區(qū)分疾病與健康人群有效且更為敏感的手段。Li C等人[23]用類(lèi)似的水模比較法對(duì)70余位不同年齡及性別的健康志愿者進(jìn)行了脛骨骨皮質(zhì)BWC測(cè)定,發(fā)現(xiàn)BWC與年齡正相關(guān),而與QCT測(cè)得的BMD負(fù)相關(guān)。
4.2骨皮質(zhì)自由水與孔隙水含量測(cè)定
Biswas R等人[26]用UTE序列結(jié)合以多TE時(shí)間掃描為基礎(chǔ)的雙成分分析法,對(duì)牛骨標(biāo)本骨皮質(zhì)的孔隙水和結(jié)合水進(jìn)行了定量分析,并利用風(fēng)干及烤干牛骨標(biāo)本的方法驗(yàn)證了其測(cè)得結(jié)果的準(zhǔn)確性。Bae W等人[27]用同樣的方法將測(cè)得的孔隙水、結(jié)合水與骨的極限應(yīng)力、彈性等生物力學(xué)性能、μCT測(cè)得的骨皮質(zhì)孔隙度進(jìn)行比較,發(fā)現(xiàn)孔隙度與孔隙水含量正相關(guān),與結(jié)合水含量負(fù)相關(guān),同時(shí),孔隙水及自由水含量與骨的機(jī)械性能參數(shù)也具有相關(guān)性。
Manhard等人[28-29]將UTE序列與T2選擇性的絕熱序列聯(lián)合得到雙絕熱全流道序列(double adiabatic full passage, DAFP)和絕熱反轉(zhuǎn)恢復(fù)序列(adiabatic inversion recovery, AIR)序列,并通過(guò)二者分別獲得骨皮質(zhì)孔隙水及結(jié)合水的定量分布圖,同時(shí),借助水模計(jì)算得到孔隙水和結(jié)合水的體積分?jǐn)?shù)。該方法對(duì)人骨標(biāo)本測(cè)得的結(jié)果與4.7 T磁共振上的CPMG(Carr-Purcell-Meiboom-Gill)回波序列進(jìn)行的T2波譜測(cè)量結(jié)果高度相關(guān),驗(yàn)證了其準(zhǔn)確性。
最近,Allen MR等人[30]用上述UTE-MRI雙成分分析模型對(duì)服用雷洛昔芬6個(gè)月的成年雌性獵狗進(jìn)行孔隙水及結(jié)合水定量分析發(fā)現(xiàn),服藥組相比較鹽水對(duì)照組結(jié)合水高出14%而孔隙水低于對(duì)照組20%,提示了UTE-MRI對(duì)于骨皮質(zhì)水定量分析在骨質(zhì)疏松藥物治療隨訪中的應(yīng)用潛能。
骨皮質(zhì)孔隙的體積占骨皮質(zhì)總體積的百分比即骨皮質(zhì)的孔隙度[31],與年齡相關(guān)的骨強(qiáng)度下降和脆性骨折的發(fā)生有關(guān)[32-34]。Chamith S[13]及Li C等人[23]用UTE-MRI對(duì)骨皮質(zhì)孔隙度進(jìn)行在體的半定量評(píng)價(jià)。Chamith S等人用雙回波UTE序列對(duì)脛骨標(biāo)本進(jìn)行掃描,并以長(zhǎng)TE及短TE獲得的信號(hào)強(qiáng)度(intensity, I)為基礎(chǔ),定義孔隙度指數(shù)(porosity index, PI)為PI=ITE長(zhǎng)/ITE短,通過(guò)人脛骨標(biāo)本的測(cè)量發(fā)現(xiàn)PI與μCT測(cè)定的真實(shí)孔隙度線(xiàn)性正相關(guān),同時(shí),與年齡和BMD均呈負(fù)相關(guān)。Li C等人提出了抑制比(suppression ratio, SR),即在UTE-MRI掃描中施加長(zhǎng)T2抑制序列前后獲得的骨皮質(zhì)信號(hào)強(qiáng)度比值,將其作為骨皮質(zhì)孔隙度評(píng)價(jià)的指標(biāo),并得到了與上述相似的結(jié)果。
骨礦鹽占骨皮質(zhì)質(zhì)量分?jǐn)?shù)的45%,主要由羥基磷灰石晶體和無(wú)定形磷酸鈣構(gòu)成[35]。骨礦質(zhì)的晶體結(jié)構(gòu)與純羥基磷灰石之間有許多差異,這些差異反映了骨代謝的過(guò)程。不同晶體結(jié)構(gòu)的羥基磷灰石晶體T1值顯著不同,因此測(cè)定其T1值可能反映骨的代謝狀態(tài)[36]。MR成像對(duì)磷信號(hào)的敏感性低于質(zhì)子信號(hào)且磷原子濃度遠(yuǎn)遠(yuǎn)低于人體中質(zhì)子含量,為骨礦質(zhì)中磷的評(píng)估和觀察帶來(lái)了極大的挑戰(zhàn)。Robson M等人[37]用TE時(shí)間為70 μs的UTE序列,將射頻脈沖設(shè)定于31P的共振頻率上,在體掃描得到了人體脛骨骨皮質(zhì)的磷成像圖,并在此基礎(chǔ)上測(cè)定了骨皮質(zhì)的T1和T2*時(shí)間。骨皮質(zhì)的磷含量是骨礦質(zhì)密度的直接反映,而傳統(tǒng)X線(xiàn)成像方法測(cè)定的骨密度主要反映了鈣質(zhì)的含量。因此,骨皮質(zhì)的磷成像為骨礦質(zhì)的評(píng)價(jià)提供了良好的補(bǔ)充和完善。此外,Anumula S等人[38]用UTE磷成像的方法,發(fā)現(xiàn)卵巢切除的大鼠與假手術(shù)大鼠之間骨皮質(zhì)的磷含量差異,并觀察到了手術(shù)組大鼠在雙膦酸鹽治療后的磷含量變化,提示UTE磷成像可能作為骨質(zhì)疏松治療反應(yīng)評(píng)價(jià)的手段。
骨血流灌注對(duì)骨骼健康的維持具有重要作用[10]。Hauge EM等人[39]在松質(zhì)骨標(biāo)本研究中發(fā)現(xiàn)了“骨重塑單元”這一血管結(jié)構(gòu),闡釋了骨灌注與骨重塑的密切關(guān)系。同時(shí),低骨量及骨質(zhì)疏松病人骨血流灌注減低,提示了骨灌注在骨代謝及相關(guān)疾病中的重要作用[40]。目前,骨灌注研究主要關(guān)注于骨松質(zhì)及骨髓脂肪,對(duì)骨皮質(zhì)灌注研究甚少。動(dòng)態(tài)增強(qiáng)MRI是血流灌注研究中廣泛應(yīng)用的一種無(wú)創(chuàng)方法,UTE-MRI的出現(xiàn)為骨皮質(zhì)的動(dòng)態(tài)增強(qiáng)顯像提供了可能[17]。Reichert I等人[17]利用UTE-MRI對(duì)健康志愿者靜脈注射釓對(duì)比劑進(jìn)行脛骨增強(qiáng)掃描,觀察到了骨皮質(zhì)的強(qiáng)化。Girard等人[41]用2DUTE序列并選取短TR時(shí)間(20 ms),對(duì)健康志愿者脛骨進(jìn)行動(dòng)態(tài)增強(qiáng)掃描,結(jié)合經(jīng)典Tofts模型,獲得了脛骨骨皮質(zhì)容積轉(zhuǎn)移常數(shù)(Ktrans)、速率常數(shù)(Kep)、對(duì)比劑血漿容積(Vp)、對(duì)比劑到達(dá)時(shí)間等血流灌注參數(shù),為進(jìn)一步研究骨皮質(zhì)血流灌注在疾病中的變化提供了基礎(chǔ)。
自1991年Bergin CJ等人[42]首次在人體中應(yīng)用UTE序列對(duì)肺組織進(jìn)行掃描,并對(duì)肺腫瘤、肺動(dòng)靜脈畸形等進(jìn)行觀察以來(lái),UTE序列逐漸進(jìn)入人們的視野。目前,應(yīng)用UTE序列的研究涉及多個(gè)系統(tǒng),如呼吸、循環(huán)、骨肌、神經(jīng)系統(tǒng)[18, 43]等,尤其以骨肌系統(tǒng)的研究最為廣泛[44]。目前,國(guó)內(nèi)學(xué)者對(duì)UTE技術(shù)應(yīng)用的相關(guān)研究也主要集中在骨肌系統(tǒng),包括對(duì)人骨標(biāo)本及健康志愿者的膝、踝關(guān)節(jié)進(jìn)行3D UTE序列顯像的參數(shù)調(diào)試[15, 45],對(duì)兔膝關(guān)節(jié)進(jìn)行UTE動(dòng)態(tài)增強(qiáng)觀察[46],健康志愿者的腰椎終板UTE T2*mapping可行性研究[16],及3D UTE用于顱骨骨折診斷的可行性研究[14]等。
相較于常規(guī)MRI序列,UTE磁共振序列最大的優(yōu)勢(shì)在于其超短TE時(shí)間、對(duì)人體短T2組織和病變的良好顯示。UTE-MRI在骨皮質(zhì)成像中方面的研究包括疾病的定性觀察、骨皮質(zhì)孔隙水及結(jié)合水定量分析、骨礦鹽定量分析、骨灌注研究等多個(gè)方面,對(duì)加深對(duì)骨代謝疾病的理解、骨微觀結(jié)構(gòu)的評(píng)價(jià)具有重要意義。其中,骨皮質(zhì)水定量與骨皮質(zhì)孔隙度評(píng)價(jià)的相關(guān)研究,尤其是最為簡(jiǎn)便的孔隙度指數(shù)測(cè)定,在完善骨質(zhì)疏松骨折風(fēng)險(xiǎn)評(píng)價(jià)、藥物療效評(píng)估等方面具有良好的臨床應(yīng)用潛能。然而,UTE-MRI在骨皮質(zhì)成像中的應(yīng)用仍主要處在“臨床前”階段,UTE序列測(cè)得的骨皮質(zhì)水含量、孔隙度指數(shù)等隨年齡、性別的變化規(guī)律,與骨質(zhì)疏松及骨質(zhì)疏松骨折的關(guān)系仍需要進(jìn)一步研究。
參考文獻(xiàn)[References]
[1]Ministry of Civil Affairs of the People’s Republic of China. China Civil Affairs’ statistical yearbook 2015(Statistics of China Social Services). Beijing: China Statistics Press, 2015: 21-24.中華人民共和國(guó)民政部. 中國(guó)民政統(tǒng)計(jì)年鑒2015(中國(guó)社會(huì)服務(wù)統(tǒng)計(jì)資料). 北京: 中國(guó)統(tǒng)計(jì)出版社, 2015: 21-24.
[2]Lin X, Xiong D, Peng YQ, et al. Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives. Clin Interv Aging, 2015, 10: 1017-1033.
[3]Genant HK, Cooper C, Poor G, et al. Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int, 1999, 10(4): 259-264.
[4]Holzer G, von Skrbensky G, Holzer LA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res, 2009, 24(3): 468-474.
[5]Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing, 2006, 35(2): 27-31.
[6]Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet, 2010,375(9727): 1729-1736.
[7]De Laet CE, van Hout BA, Burger H, et al. Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ, 1997, 315(7102): 221-225.
[8]Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed, 2006,19(7): 765-780.
[9]Holmes JE, Bydder GM. MR imaging with ultrashort TE (UTE)pulse sequences: Basic principles. Radiography, 2005, 11(3): 163-174.
[10]Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed, 2013, 26(5): 489-506.
[11]Rad H, Lam S, Magland J, et al. Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed, 2011, 24(7): 855-864.
[12]Du J, Carl M, Bydder M, et al. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. Journal of Magnetic Resonance, 2010, 207(2): 304-311.
[13]Rajapakse CS, Bashoor-Zadeh M, Li C, et al. Volumetric cortical bone porosity assessment with MR imaging: validation and clinical feasibility. Radiology, 2015, 276(2): 526-535.
[14]Wu H, Zhong YM, Nie QM, et al. Feasibility of threedimensional ultrashort echo time magnetic resonance imaging at 1.5 T for the diagnosis of skull fractures. Eur Radiol, 2016,26(1): 138-146.
[15]Ma LH, Meng QF, Chen YM. The preliminary application of the 3D ultrashort TE double echo pulse sequence in the bone and joint. Zhonghua Fang She Xue Za Zhi, 2008, 42(7): 752-757.馬立恒, 孟悛非, 陳應(yīng)明. MRI 三維超短回波時(shí)間雙回波脈沖序列在骨與關(guān)節(jié)成像中的初步應(yīng)用. 中華放射學(xué)雜志, 2008,42(7): 752-757.
[16]Pan XM, Hu MY, Jiang B. UTE-T2*mapping quantitative evaluation of lumbar cartilage endplate. Chin J Magn Reson Imaging, 2014, 5(2): 111-114.潘希敏, 胡美玉, 江波. 腰椎軟骨終板的MR三維超短回波時(shí)間T2*mapping定量評(píng)價(jià). 磁共振成像, 2014, 5(2): 111-114.
[17]Reichert IL, Robson MD, Gatehouse PD, et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging, 2005, 23(5): 611-618.
[18]Robson MD, Gatehouse PD, Bydder M, et al. Magneticresonance: an introduction to Ultrashort TE (UTE) imaging. Journal of Computer Assisted Tomography, 2003, 27(6): 825-846.
[19]Techawiboonwong A, Song HK, Leonard MB, et al. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology, 2008, 248(3): 824-833.
[20]Horch RA, Nyman JS, Gochberg DF, et al. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med, 2010, 64(3): 680-687.
[21]Ong HH, Wright AC, Wehrli FW. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res, 2012, 27(12): 2573-2581.
[22]Qingwen N, Jeffry SN, Xiaodu W, et al. Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Measurement Science and Technology, 2007, 18(3): 715.
[23]Li C, Seifert AC, Rad HS, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology, 2014, 272(3): 796-806.
[24]Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T2 species with two-dimensional and threedimensional radial sequences and applications to the measurement of cortical bone water. NMR in Biomedicine,2008, 21(1): 59-70.
[25]Fernández-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophysical Journal, 2002, 82(1): 522-529.
[26]Biswas R, Bae W, Diaz E, et al. Ultrashort echo time (UTE)imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone, 2012, 50(3): 749-755.
[27]Bae WC, Chen PC, Chung CB, et al. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res, 2012,27(4): 848-857.
[28]Manhard MK, Horch RA, Gochberg DF, et al. In vivo quantitative MR imaging of bound and pore water in cortical bone. Radiology, 2015, 277(1): 221-229.
[29]Manhard MK, Horch RA, Harkins KD, et al. Validation of quantitative bound-and pore-water imaging in cortical bone. Magnetic Resonance in Medicine, 2014, 71(6): 2166-2171.
[30]Allen MR, Territo PR, Lin C, et al. In vivo UTE-MRI reveals positive effects of raloxifene on skeletal-bound water in skeletally mature beagle dogs. Journal of Bone and Mineral Research, 2015, 30(8): 1441-1444.
[31]Chen H, Zhou X, Shoumura S, et al. Age and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int,2010, 21(4): 627-636.
[32]McCalden RW, McGeough JA, Barker MB, et al. Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am, 1993, 75(8): 1193-1205.
[33]Bala Y, Zebaze R, Ghasem-Zadeh A, et al. Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. Journal of Bone and Mineral Research, 2014, 29(6): 1356-1362.
[34]Sundh D, Mellstr?m D, Nilsson M, et al. Increased cortical porosity in older men with fracture. Journal of Bone and Mineral Research, 2015, 30(9): 1692-1700.
[35]Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop Relat Res, 1978,135(135): 192-217.
[36]Wu Y, Chesler DA, Glimcher MJ, et al. Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates. Proc Natl Acad Sci USA, 1999, 96(4): 1574-1578.
[37]Robson MD, Gatehouse PD, Bydder GM, et al. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med, 2004, 51(5): 888-892.
[38]Anumula S, Wehrli SL, Magland J, et al. Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone,2010, 46(5): 1391-1399.
[39]Hauge EM, Qvesel D, Eriksen EF, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res, 2001, 16(9): 1575-1582.
[40]Wang YX, Griffith JF, Kwok AW, et al. Reduced bone perfusion in proximal femur of subjects with decreased bone mineral density preferentially affects the femoral neck. Bone,2009, 45(4): 711-715.
[41]Girard OM, Du J. Preliminary results on bone perfusion measurement using dynamic contrast enhanced ultra-short TE imaging. Proc Intl Soc Mag Reson Med, 2011(19): 3210.
[42]Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction MR imaging. Radiology, 1991,179(3): 777-781.
[43]Yuan HS, Liu LS. Progress and clinical application of MR imaging on musculoskeletal system. Chin J Magn Reson Imaging, 2015, 6(2): 81-85.袁慧書(shū), 劉麗思. 肌骨關(guān)節(jié)系統(tǒng)磁共振成像臨床應(yīng)用及進(jìn)展.磁共振成像, 2015, 6(2): 81-85.
[44]Xu WJ, Nie P. Application and advance of MR imaging on musculoskeletal diseases. Chin J Magn Reson Imaging, 2014,5(S1): 51-55.徐文堅(jiān), 聶佩. 磁共振成像在骨關(guān)節(jié)系統(tǒng)疾病應(yīng)用及進(jìn)展. 磁共振成像, 2014, 5(S1): 51-55.
[45]Ma LH, Meng QF, Chen YM. The preliminary application of the 3D ultrashort TE double echo pulse sequence in the bone and joint MR imaging. Zhonghua Fang She Xue Za Zhi, 2011,45(4): 388-391.馬立恒, 孟悛非, 陳應(yīng)明. 影響短T2成分MR三維超短回波時(shí)間雙回波序列成像質(zhì)量因素的探討. 中華放射學(xué)雜志, 2011,45(4): 388-391.
[46]Ma LH, Chen YM, Zhang ZH. The experimental study of 3DUTE dynamic enhanced MRI in the normal rabbit knee joint. Radiol Practice, 2014, 29(7): 766-769.馬立恒, 陳應(yīng)明, 張朝暉. 正常兔膝關(guān)節(jié)的三維UTE動(dòng)態(tài)增強(qiáng)MRI實(shí)驗(yàn)研究. 放射學(xué)實(shí)踐, 2014, 29(7): 766-769.
The application of UTE-MRI in cortical bone imaging
CHEN Min, YUAN Hui-shu*
Department of Radiology, Peking University Third Hospital, Beijing 100191, China
Key wordsUltra-short echo time; Magnetic resonance imaing; Cortical bone;Osteoporosis
AbstractThe prevalence of osteoporosis(OP) is developing with the aging of the society. As the most serious complication of OP, fragility fractures bring the patients heavy economic and disease burdens. Instead of focusing on the change of trabecular bone, recently, more researchers realize the important role of cortical bone in fragility fractures. UTE-MRI is a newly emerging MRI sequence which makes the qualitative and quantitative imaging of cortical bone possible in vivo. Some studies have proved the feasibility of the application of UTE-MRI in fracture imaging, cortical water quantification, cortical porosity measurement, bone perfusion imaging, etc, both in vitro and in vivo. The aim of this review is to briefly introduce this new MRI sequence and make a summary of its applications in cortical bone imaging.
通訊作者:袁慧書(shū),E-mail: huishuy@bjmu.edu.cn
收稿日期:2015-12-10
中圖分類(lèi)號(hào):R445.2;R589.5
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.12015/issn.1674-8034.2016.02.014