丁 苗,涂 萍
(1.江西中醫(yī)藥大學(xué)2014級(jí)研究生,南昌 330004; 2.南昌市第三醫(yī)院內(nèi)分泌代謝科,南昌 330009)
miRNAs與RAS-MAPK信號(hào)通路在腫瘤發(fā)生發(fā)展中的研究進(jìn)展
丁 苗1,涂 萍2
(1.江西中醫(yī)藥大學(xué)2014級(jí)研究生,南昌 330004; 2.南昌市第三醫(yī)院內(nèi)分泌代謝科,南昌 330009)
miRNAs參與廣泛的生理和病理過程,如個(gè)體發(fā)育,細(xì)胞增殖、凋亡、周期、遷移、侵襲等,其在物種進(jìn)化中相當(dāng)保守。許多miRNAs被認(rèn)為在腫瘤中存在差異表達(dá)。高度保守的單體小分子三磷酸鳥苷酶-絲裂原活化蛋白激酶(RAS-MAPK)信號(hào)途徑涉及廣泛的細(xì)胞過程,包括細(xì)胞的分化、增殖和存活。miRNAs調(diào)控RAS-MAPK在腫瘤發(fā)生發(fā)展中起著重要作用,但具體機(jī)制未被完全闡明。miRNAs可考慮作為潛在的遺傳診斷、預(yù)后或作為藥物靶點(diǎn)治療的標(biāo)志物。
RAS-MAPK信號(hào)通路; miRNAs; 腫瘤
1.1 RAS-MAPK信號(hào)通路概述
絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一組能被不同的細(xì)胞外刺激,如細(xì)胞因子、神經(jīng)遞質(zhì)、激素、細(xì)胞應(yīng)激及細(xì)胞黏附等激活的絲氨酸-蘇氨酸蛋白激酶。MAPK通路的基本組成是一種從酵母到人類都保守的三級(jí)激酶模式,包括MAPK激酶激酶(MAP kinase kinase kinase,MKKK)、MAPK激酶(MAP kinase kinase,MKK)和MAPK,這三種激酶能依次被激活,共同調(diào)節(jié)著細(xì)胞的生長(zhǎng)、分化,對(duì)環(huán)境的應(yīng)激適應(yīng)、炎癥反應(yīng)等多種重要的細(xì)胞生理病理過程[1]。RAS-RAF-MEK1/2-ERK1/2 MAPK途徑是其最經(jīng)典最重要的信號(hào)轉(zhuǎn)導(dǎo)途徑之一,其活化過程也是根據(jù) MAPK 三級(jí)激酶模式進(jìn)行的。首先,單體小分子三磷酸鳥苷酶(RAS)與三磷酸鳥苷(GTP)結(jié)合,轉(zhuǎn)化為激活型RAS,再與絲氨酸/蘇氨酸特異性蛋白激酶(RAF)結(jié)合并使之磷酸化,活化了的RAF再激活絲裂原活化蛋白激酶(MEK),MEK經(jīng)磷酸化最后激活胞外信號(hào)調(diào)節(jié)激酶(ERK),活化絲裂原活化蛋白激酶的ERK入核,啟動(dòng)相應(yīng)轉(zhuǎn)錄子的轉(zhuǎn)錄。細(xì)胞外刺激信號(hào)借此途徑傳至細(xì)胞內(nèi),引起一系列細(xì)胞反應(yīng),從而調(diào)控細(xì)胞的增殖、分化、凋亡和轉(zhuǎn)移等功能。
1.2 RAS-MAPK信號(hào)通路與腫瘤
RAS-MAPK信號(hào)通路(也稱為RAS-RAF-MEK-ERK通路)在細(xì)胞的分裂、存活、遷移以及腫瘤侵襲能力等方面有重要的調(diào)節(jié)作用,主要參與各種生長(zhǎng)因子、細(xì)胞因子、絲裂原以及激素受體活化后的信號(hào)轉(zhuǎn)導(dǎo),參與多種腫瘤細(xì)胞的生存和增殖。這一途徑的異常激活常見于人類腫瘤中。30%的腫瘤類型存在RAS基因突變,突變?cè)谏嫌握{(diào)節(jié)器和下游效應(yīng)器也很常見[2]。例如,大鼠肉瘤病毒癌基因同源物(KRAS)被證實(shí)在超過90%的胰腺導(dǎo)管腺癌(PDAC)中存在體細(xì)胞突變[3]。鼠類肉瘤濾過性毒菌致癌同源體B1(BRAF)和成神經(jīng)細(xì)胞瘤鼠肉瘤癌基因(NRAS)在83%的黑色素瘤中有突變出現(xiàn)[4]。67%的早期前體T細(xì)胞急性淋巴細(xì)胞白血病存在RAS-MAPK信號(hào)通路中NRAS、KRAS、BRAF、神經(jīng)纖維瘤Ⅰ型基因(NF1)和蛋白酪氨酸磷酸酶非受體型11(PTPN11)基因的突變[5]。55%的結(jié)腸癌和直腸癌有KRAS、NRAS或BRAF的突變[6]。KRAS、表皮生長(zhǎng)因子受體(EGFR)、NF1和BRAF在肺腺癌中突變率分別為27%、17%、11%和3%[7]。
miRNAs是分子量在18~24核苷酸高度保守的非蛋白質(zhì)編碼RNA,具有在翻譯水平調(diào)控基因表達(dá)的功能。它在物種進(jìn)化中相當(dāng)保守,參與廣泛的生理和病理過程,如個(gè)體發(fā)育,細(xì)胞增殖、凋亡、周期、遷移、侵襲,免疫逃避和耐藥性等。許多miRNAs被認(rèn)為在腫瘤中存在差異表達(dá):上調(diào)可作為原癌基因,下調(diào)作為腫瘤抑制基因[8-9]。
根據(jù)對(duì)肺癌患者miRNAs的研究發(fā)現(xiàn),miR-29b[10]、let-7[11]、miR-145[12]、miR-128b[13]等在肺癌中的表達(dá)下調(diào),而miR-21表達(dá)上調(diào)且通過抑制抑癌因子人第10號(hào)染色體缺失的磷酸酶(PTEN)起作用。miRNAs的這些功能主要是通過其對(duì)靶基因的作用來體現(xiàn),其調(diào)控因子包括表皮生長(zhǎng)因子受體(EGFR)、KRAS、細(xì)胞周期因子(CCND1),細(xì)胞凋亡因子(BCL2)等。亦有研究[14]表明miR-21在胃癌中是上調(diào)的,可促進(jìn)胃癌細(xì)胞的增殖,抑制胃癌細(xì)胞的凋亡,通過負(fù)調(diào)節(jié)腫瘤抑癌基因人程序性細(xì)胞死亡因子4(PDCD4)的翻譯作用來促進(jìn)胃癌的發(fā)生發(fā)展。miR-21還通過作用于抑癌基因原肌球蛋白1(TPM1)促使胃癌向別處發(fā)生浸潤(rùn)和轉(zhuǎn)移[15]。miR-106a在胃癌中表達(dá)上調(diào),并且可作為診斷胃癌的潛在生物標(biāo)志物,其表達(dá)水平與胃癌的發(fā)生發(fā)展、惡性程度、腫瘤的遠(yuǎn)處轉(zhuǎn)移及預(yù)后等有關(guān)[16]。Chen 等[17]發(fā)現(xiàn)miR-421在鼻咽癌(NPC)中表達(dá)上調(diào),并且通過下調(diào)下游的叉頭樣轉(zhuǎn)錄因子04(FOX04)的表達(dá)水平可提高NPC細(xì)胞增殖活性,并抑制癌細(xì)胞的凋亡,它還與人類多種惡性腫瘤的發(fā)生發(fā)展相關(guān),如胃癌、胰腺癌、肝癌及膽道癌等。因此miR-421有望作為新的治療腫瘤的潛在靶點(diǎn)。
據(jù)統(tǒng)計(jì),15%~20%的肺腺癌存在EGFR突變,表皮生長(zhǎng)因子受體靶向酪氨酸激酶抑制劑的相關(guān)研制為治療肺腺癌提供了一個(gè)新的途徑[18]。有些miRNAs被認(rèn)為是EGFR直接監(jiān)管機(jī)構(gòu),在各種腫瘤類型中可作為腫瘤的抑制基因。Weiss等[19]發(fā)現(xiàn)在非小細(xì)胞肺癌(NSCLC)中miR-128b能通過靶向作用于EGFR抑制相關(guān)信號(hào)通路,從而抑制腫瘤的轉(zhuǎn)移和浸潤(rùn),故miR-128b在NSCLC中起到抑癌基因的作用。miR-128b的缺失將相當(dāng)于失去腫瘤抑制基因,將會(huì)促進(jìn)EGFR的表達(dá),進(jìn)而導(dǎo)致腫瘤的發(fā)生。
當(dāng)一些腫瘤細(xì)胞生長(zhǎng)因子(或其受體)的表達(dá)或功能出現(xiàn)異常時(shí),生長(zhǎng)因子與細(xì)胞表面受體結(jié)合后,細(xì)胞內(nèi)生長(zhǎng)因子受體結(jié)合蛋白2(Grb2)可以激活RAS-MAPK通路。與胃正常組織相比胃癌組織中的miR-433下調(diào),并且靶向作用于Grb2[20]。MiR-378也被證實(shí)靶向作用于Grb2。miR-378在心肌細(xì)胞中過度表達(dá),且可通過抑制RAS-MAPK信號(hào)通路來抑制心肌細(xì)胞增殖[21]。除了作用于Grb2,miR-378還直接靶向作用于RAS-MAPK信號(hào)通路的3個(gè)成員:絲裂原活化蛋白激酶1(MAPK1,別名ERK2)、胰島素樣生長(zhǎng)因子1受體(IGF1R)和激酶RAS抑制因子1(KSR1)[22]。miR-378在不同類型的腫瘤中表達(dá)下調(diào),如前列腺癌[23]和胃癌[24]。MiR-433和miR-378在腫瘤中表達(dá)下調(diào),說明它們是通過提高Grb2的活性使RAS-MAPK信號(hào)通路的活性被異常激活,從而導(dǎo)致腫瘤的發(fā)生。
牛曉兵等[25]研究表明,miR-143可通過調(diào)節(jié)KRAS、p-ERK1/2和細(xì)胞周期蛋白D1(CyclinD1)的表達(dá)抑制RAS-MAPK信號(hào)通路激活,從而抑制前列腺癌細(xì)胞的增殖和遷徙。miR-124在膠質(zhì)母細(xì)胞瘤(GBM)干細(xì)胞與腫瘤中的表達(dá)下調(diào)。miR-124由mir-124-1,2和3組成,它們從3個(gè)不同的染色體位點(diǎn)轉(zhuǎn)錄,但有相同的種子序列也可能有相同的靶點(diǎn)。miR-124在GBM中靶向NRAS基因,但miR-124也被證明靶向另一個(gè)RAS-MAPK信號(hào)通路效應(yīng)器SOS1[26]。miR-143也證明直接靶向NRAS,可能在神經(jīng)膠質(zhì)瘤中起著腫瘤抑制作用[27]。
miRNAs與腫瘤之間的聯(lián)系為腫瘤的治療提供了一種新方案,改變miRNAs的結(jié)構(gòu),如敲減或敲除癌基因的相關(guān)miRNAs,以抑制其過度表達(dá)所致的腫瘤生長(zhǎng);對(duì)因miRNAs表達(dá)不足所致的腫瘤,可通過將相關(guān)miRNAs基因敲入至癌細(xì)胞達(dá)到抑癌作用。抑制miRNAs的活動(dòng)可使用microrna抑制劑和寡聚物,包括RNAs、DNA、DNA類似物(microrna的反義療法)、小分子抑制劑、microrna海綿或microrna屏障[28]。明確miRNAs所監(jiān)管的致癌基因?qū)x擇靶向制劑、開發(fā)新型療法,或者發(fā)展疾病的早期生物標(biāo)志物等方面有深遠(yuǎn)的意義。
RAS-MAPK作為腫瘤中常見的通路之一,與miRNAs之間的聯(lián)系提示miRNAs可通過調(diào)節(jié)RAS-MAPK信號(hào)通路為腫瘤的治療提供新靶點(diǎn)。Jiang 等[29]研究發(fā)現(xiàn),曲古抑菌素A(TSA)可能具有廣譜抗癌作用,且TSA與miR-19a、miR-19b、miR-23b的關(guān)聯(lián)關(guān)系在腫瘤中出現(xiàn)的頻率最高,通過對(duì)這3個(gè)miRNAs共同的靶基因進(jìn)行通路分析發(fā)現(xiàn),它們顯著富集在MAPK和哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)信號(hào)通路中,這提示TSA可能通過調(diào)控這兩個(gè)信號(hào)通路發(fā)揮抗癌作用。
RAS-MAPK信號(hào)通路在腫瘤的發(fā)生、發(fā)展以及轉(zhuǎn)移過程都起著至關(guān)重要的作用,其信號(hào)傳導(dǎo)途徑非常精確和復(fù)雜,不同的刺激活化會(huì)傳遞不同的訊息,發(fā)生不同的生物學(xué)效應(yīng)。miRNAs可作為致癌基因也可作為抑癌基因。臨床上,miRNAs可能作為診斷和評(píng)估預(yù)后的生物標(biāo)志物,且血漿中循環(huán)的miRNAs可用于早期發(fā)現(xiàn)腫瘤。研究miRNAs在RAS-MAPK信號(hào)傳導(dǎo)通路中的作用,將有助于進(jìn)一步了解腫瘤的發(fā)生、發(fā)展機(jī)制,為腫瘤的治療提供科學(xué)、準(zhǔn)確的思路以及更加有效的方案,為尋找新的抗腫瘤藥物的靶點(diǎn)提供依據(jù)。隨著對(duì)各種信號(hào)通路的深入研究,人類腫瘤的發(fā)病機(jī)制也逐漸被闡明,相信這些研究都將為腫瘤的治療帶來新的契機(jī)。
[1] Hagemann C,Blank J L.The ups and downs of MEK kinase interactions[J].Cell Signal,2001,13(12):863-875.
[2] Biankin A V,Waddell N,Kassahn K S,et al.Pancreatic cancer genomes reveal aberrations in axon guidance pathway gen-es[J].Nature,2012,491(7424):399-405.
[3] Hodis E,Watson I R,Kryukov G V,et al.A landscape of driver mutations in melanoma[J].Cell,2012,150(2):251-263.
[4] Zhang Jinghui,Ding Li,Holmfeldt L,et al.The genetic basis of early T-cell precursor acute lymphoblastic leukaemia[J].Nature,2012,481(7380):157-163.
[5] Cancer Genome Atlas Network.Comprehensive molecular characterization of human colon and rectal cancer[J].Nature,2012,487(7407):330-337.
[6] Imielinski M,Berger A H,Hammerman P S,et al.Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing[J].Cell,2012,150(6):1107-1120.
[7] Paik P K,Arcila M E,Fara M,et al.Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations[J].J Clin Oncol,2011,29(15):2046-2051.
[8] Bueno M J,Malumbres M.MicroRNAs and the cell cycle[J].Biochim Biophys Acta,2011,1812(5):592-601.
[9] Di Leva G,Garofalo M,Croce C M.MicroRNAs in cancer[J].Annu Rev Pathol,2014,9:287-314.
[10] Fabbri M,Garzon R,Cimmino A,et al.MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J].Proc Natl Acad Sci USA,2007,104(40):15805-15810.
[11] Chin L J,Ratner E,Leng Shuguang,et al.A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated region increases non-small cell lung cancer risk[J].Cancer Res,2008,68(20):8535-8540.
[12] Cho W C,Chow A S,Au J S.miR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1[J].RNA Biol,2011,8(1):125-131.
[13] Weiss G J,Bemis L T,Nakajima E,et al.EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines[J].Ann Oncol,2008,19(6):1053-1059.
[14] Lu Z,Liu M,Stribinskis V,et al.MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 ge-ne[J].Oncogene,2008,27(31):4373-4379.
[15] Zhu Shuomin,Wu Hailong,Wu Fangting,et al.MicroRNA-21 targets tumor suppressor genes in invasion and metastasis[J].Cell Res,2008,18(3):350-359.
[16] Xiao Bingxiu,Guo Junming,Miao Ying,et al.Detection of miR-106a in gastric carcinoma and its clinical significance[J].Clin Chim Acta,2009,400(1/2):97-102.
[17] Chen Liang,Tang Yanping,Wang Jian,et al.miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4[J].Biochem Biophys Res Commun,2013,435(4):745-750.
[18] 王榮,石冬琴,謝華,等.非小細(xì)胞肺癌中EGFR基因突變及靶向藥物治療研究進(jìn)展[J].中國(guó)藥理學(xué)通報(bào),2013,29(1):22-26.
[19] Weiss G J,Bemis L T,Nakajima E,et al.EGFR regulation by microRNA in lung cancer:correlation with clinical response and survival to gefitinib and EGFR expression in cell lines[J].Ann Oncol,2008,19(6):1053-1059.
[20] Luo H,Zhang H,Zhang Z,et al.Down-regulated miR-9 and miR-433 in human gastric carcinoma[J].J Exp Clin Cancer Res CR,2009,28(1):82.
[21] Nagalingam R S,Sundaresan N R,Gupta M P,et al.A cardiac-enriched microRNA,miR-378,blocks cardiac hypertrophy by targeting Ras signaling[J].J Biol Chem,2013,288(16):11216-11232.
[22] Ganesan J,Ramanujam D,Sassi Y,et al.MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors[J].Circulation,2013,127(21):2097-2106.
[23] Avgeris M,Stravodimos K,Scorilas A.Loss of miR-378 in prostate cancer,a common regulator of KLK2 and KLK4,correlates with aggressive disease phenotype and predicts the short-term relapse of the patients[J].Biol Chem,2014,395(9):1095-1104.
[24] Wang J L,Hu Y,Kong X,et al.Candidate microRNA biomarkers in human gastric cancer:a systematic review and validation study[J].PloS One,2013,8(9):e73683.
[25] 牛曉兵,許斌,張翔翔,等.miRNA-143通過抑制KRAS降低前列腺癌細(xì)胞的增殖[J/CD].中華臨床醫(yī)師雜志:電子版,2014,8(21):3761-3764.
[26] Lv Z,Yang L.MiR-124 inhibits the growth of glioblastoma through the downregulation of SOS1[J].Mol Med Rep,2013,8(2):345-349.
[27] Wang Lin,Shi Zhumei,Jiang Chengfei,et al.MiR-143 acts as a tumor suppressor by targeting NRAS and enhances temozolomide-induced apoptosis in glioma[J].Oncotarget,2014,5(14):5416-5427.
[28] 程娜,王凱慧,孫樹漢.microRNA在人類癌癥治療中的應(yīng)用前景[J].分子診斷與治療雜志,2010,2(6):413-416.
[29] Jiang W,Chen X,Liao M,et al.Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses[J].Sci Rep,2012,2(2):282.
(責(zé)任編輯:羅芳)
Research Progress in miRNAs and RAS-MAPK Signaling Pathway in Occurrence and Development of Tumors
DING Miao1,TU Ping2
(1.2014GradeofGraduateofJiangxiUniversityofTraditionalChineseMedicine,Nanchang330004,China; 2.DepartmentofEndocrinologyofNanchangThirdHospital,Nanchang330009,China)
MicroRNAs (miRNAs) are involved in a wide range of physiological and pathological processes, such as individual development, cell proliferation, apoptosis, cycle, migration and invasion. Many miRNAs are thought to be differentially expressed in tumors. The highly conserved RAS-mitogen activated protein kinase (MAPK) signaling pathway is involved in a wide range of cellular processes, including differentiation, proliferation and survival. The miRNAs play an important role in the occurrence and development of tumors by targeting the RAS-MAPK. However, the specific mechanisms leading to miRNAs deregulation and functional consequences have not been fully elucidated. The miRNAs can be considered as potential markers for genetic diagnosis, prognosis or targeting treatment.
RAS-MAPK signaling pathway; miRNAs; tumors
2016-06-17
國(guó)家自然科學(xué)基金(81260133);上海市糖尿病重點(diǎn)實(shí)驗(yàn)室開放課題資助項(xiàng)目(SHKLD-KF-1302)
丁苗(1990—),女,碩士研究生,主要從事內(nèi)分泌學(xué)的研究。
涂萍,主任醫(yī)師,E-mail:tuping8877@126.com。
R730.2
A
1009-8194(2016)10-0093-03
10.13764/j.cnki.lcsy.2016.10.036