駱家晨 戴黎明 綜述 魏毅東 審校
?
急性心肌梗死后新發(fā)心房顫動的機制及風(fēng)險預(yù)測的研究進展
駱家晨戴黎明 綜述魏毅東 審校
急性心肌梗死后新發(fā)心房顫動(new-onset atrial fibrillation,NOAF)是心肌梗死后常見的心律失常,其發(fā)病率為5%~23%。多項臨床研究已證實NOAF能顯著提高患者住院期間及出院后的長期死亡率。本文就近年來關(guān)于急性心肌梗死后NOAF的發(fā)病機制及風(fēng)險預(yù)測方法的文獻進行綜述。目前針對這類心律失常的治療仍缺乏足夠的循證醫(yī)學(xué)證據(jù),而這對NOAF的預(yù)防工作顯得尤為重要;其中了解其病理生理機制,掌握盡早識別這類心律失常高?;颊叩姆椒ǔ蔀轭A(yù)防工作的關(guān)鍵。
急性心肌梗死;新發(fā)心房顫動;發(fā)病機制;預(yù)測價值
R540.41
A
2095-9354(2016)04-0298-05
心房顫動是最常見的心律失常之一,在急性心肌梗死(acute myocardial infarction,AMI)患者中比例為5%~23%[1]。此前的GUSTO-3研究[2]發(fā)現(xiàn),心肌梗死合并心房顫動患者的30 d及1年死亡率顯著高于無心房顫動的患者,并且根據(jù)二者發(fā)病的時間關(guān)系分為AMI前已經(jīng)存在的心房顫動和AMI后的新發(fā)心房顫動(new-onset atrial fibrillation,NOAF)亞組后進行分析,結(jié)果同樣顯示二者均提高短期和長期的心血管病事件發(fā)生率。盡管目前國內(nèi)外的指南[3-4]對心房顫動合并急性冠脈綜合征的治療有明確的建議,但是對于AMI后的新發(fā)心房顫動這一特殊類型的心房顫動,無論從診斷還是治療上均存在爭議。此外,目前已經(jīng)有多項研究發(fā)現(xiàn),對于這部分患者,無論其心房顫動的類型是哪種[1,5-6]、是否伴隨臨床癥狀[7]以及持續(xù)時間的長短[8-9],短期及長期的主要心血管不良事件(MACE)發(fā)生率均顯著高于無NOAF者[2,10-15];同時也有研究[2]顯示,如果對這部分人群進行早期有效的干預(yù),甚至是針對性的預(yù)防,有可能改善他們的預(yù)后情況。因此,認識該病的發(fā)病機制,并根據(jù)患者早期的臨床、血生化及影像學(xué)檢查進行NOAF發(fā)病風(fēng)險的分層顯得尤為重要。本文回顧了近年來有關(guān)心肌梗死后NOAF的發(fā)病機制及風(fēng)險預(yù)測因素的研究并綜述如下。
1.1心房缺血
心房缺血甚至梗死時,心房肌細胞表面多種離子通道蛋白表達的變化導(dǎo)致的電生理重構(gòu)為NOAF的發(fā)生提供了可能。Sinno等[16]在動物實驗中發(fā)現(xiàn),堵塞狗的冠狀動脈心房支后,頻率依賴的心房顫動持續(xù)時間較未缺血組明顯延長,且阻塞的時間越長,其心房顫動的持續(xù)時間也越長,反映了心房缺血參與心房顫動的維持機制。更深入的研究發(fā)現(xiàn),這與心肌缺血時局部心肌的傳導(dǎo)速度減慢相關(guān),隨著缺血時間的延長,傳導(dǎo)阻滯的情況也越發(fā)嚴重。Jayachandran等[17]則從離子通道的角度進一步解釋了心房缺血引發(fā)心房顫動的內(nèi)在機制,他們發(fā)現(xiàn)心房缺血時心房Na+/H+交換子(NHE)的激活造成有效不應(yīng)期的縮短是誘發(fā)心房顫動的電生理基礎(chǔ)之一,而在使用特異性的NHE抑制劑后,心房缺血對心房有效不應(yīng)期的影響則消失。此外,Alasady等[18]開展的一項臨床研究同樣顯示,心房缺血是獨立于左心房容積指數(shù)、E/e′、PCI術(shù)后TIMI血流分級以及發(fā)病至PCI間隔時間等混雜因素的NOAF危險因素(P=0.02)。
1.2房內(nèi)壓升高及心房牽張力的變化
AMI患者由于心室收縮功能以及乳頭肌短暫或永久性的功能障礙,心室收縮末期容積增加、收縮期瓣膜返流量增多,促進心房內(nèi)壓升高、心房壁的張力增大,經(jīng)過一系列的電生理重構(gòu)后最終誘發(fā)心房顫動。目前,臨床中廣泛應(yīng)用的多項反映左心室功能、左心房內(nèi)壓力變化的參數(shù)多被認為是AMI后NOAF的主要危險因素,如左心室射血分數(shù)的下降[19]、N末端腦鈉肽原(NT-pro-BNP)的升高[20]、左心房內(nèi)徑的增加[21]及二尖瓣返流[22]的出現(xiàn)等。與此同時,近年來相關(guān)的基礎(chǔ)研究也有了進展。Ravelli等[23]的一項動物研究顯示,心房內(nèi)壓力的升高將明顯提高心房顫動的誘發(fā)率,這一過程主要依賴于房內(nèi)壓升高時心房壁牽張力增加導(dǎo)致心房有效不應(yīng)期(atrial effective refractory period,AERP)明顯縮短。當(dāng)他們將房內(nèi)壓逐步降低后的3 min內(nèi),AERP即可恢復(fù)至正常水平,心房顫動也得以完全終止。更深入的研究發(fā)現(xiàn),心房的這種電生理變化與心房肌細胞表面牽張相關(guān)離子通道蛋白(SAC)在房內(nèi)壓升高時表達增加有關(guān)。Bode等[24]在使用釓(Gd3+)抑制家兔心房肌細胞SAC后發(fā)現(xiàn),隨著Gd3+劑量的增加,誘發(fā)心房顫動所需要的閾電位降低,提示心房內(nèi)壓力升高引起心房肌牽張力的增加可以通過增加SAC的表達提高心房顫動的易感性;此后,他們在應(yīng)用Tarantula peptide抑制SAC后也獲得了類似的結(jié)果,再次佐證了SAC抑制劑對降低心房內(nèi)壓升高時心房顫動易感性的作用,也進一步證實SAC對心房牽張促進心房顫動發(fā)生的重要影響。
1.3炎癥反應(yīng)的激活
既往的研究已經(jīng)指出炎癥反應(yīng)與心房顫動的關(guān)系,Psychari等[25]發(fā)現(xiàn)在心房顫動患者中IL-6的水平明顯高于非心房顫動者,因此AMI時伴隨著的全身炎癥反應(yīng)的激活也為心房顫動的發(fā)生提供了條件。Yoshizaki等[26]的研究已經(jīng)證實,AMI后NOAF患者體內(nèi)白細胞(WBC)及C反應(yīng)蛋白(CRP)水平顯著高于無NOAF的患者。他汀類藥物除了具備抑制膽固醇合成的作用外,其抗炎的作用也使其廣泛運用于冠心病的二級預(yù)防中,Kulik等[27]對AMI或進行過冠狀動脈血運重建的患者出院后30 d內(nèi)使用他汀類藥物的情況進行回顧性分析,發(fā)現(xiàn)使用他汀類藥物的心?;颊逳OAF的風(fēng)險較未使用者下降了16%(HR=0.84,95%CI:0.76~0.9),從側(cè)面反映出炎癥反應(yīng)對AMI后NOAF發(fā)生的影響。
AMI后NOAF對患者住院期間及長期預(yù)后的不良影響使得早期發(fā)現(xiàn)、積極預(yù)防和控制NOAF的發(fā)生顯得尤為關(guān)鍵。目前人們已經(jīng)從患者的臨床特征,入院后的生化、電生理及影像學(xué)檢查等多個方面對預(yù)測AMI后NOAF展開了研究。
2.1臨床特征對AMI后NOAF的預(yù)測價值
根據(jù)AMI患者入院時的癥狀、心肺聽診及肺部平片結(jié)果評定的Killip分級,作為有效的心功能評價方法廣泛應(yīng)用于臨床,但較高的Killip分級是否預(yù)示著更大的NOAF風(fēng)險目前仍存在爭議。Guenancia等[28]指出Killip分級越高表明左心收縮功能的受損程度越重,通過增加心房內(nèi)充盈壓而觸發(fā)心房顫動。而在一個納入5項研究的Meta分析中,Zhang等[29]發(fā)現(xiàn)Killip分級>1級的AMI患者罹患NOAF的風(fēng)險是Killip分級為1級的2.29倍(OR=2.29,95%CI:1.96~2.67,P<0.001)。此外,肥胖也被認為是預(yù)測AMI患者發(fā)生NOAF的因素之一。Guenancia等[28]研究發(fā)現(xiàn),肥胖(BMI≥30 kg/m2)的AMI患者NOAF風(fēng)險較非肥胖患者高出128%(OR=2.28,95%CI:1.33~3.91,P=0.003),他們推測這種差異可能與心外膜脂肪細胞介導(dǎo)的炎癥反應(yīng)對心臟電生理結(jié)構(gòu)的影響密切相關(guān)。進一步的分析顯示,肥胖僅對男性AMI患者NOAF產(chǎn)生影響(OR=2.51,95%CI:1.26~4.99,P=0.009);在女性患者中,肥胖并不與AMI后NOAF獨立相關(guān)。他們認為男性肥胖患者較高的交感神經(jīng)系統(tǒng)活性可能是造成這一結(jié)果的原因[30]。
2.2實驗室檢查對AMI后NOAF的預(yù)測價值
如前文所述,全身炎癥反應(yīng)和心功能狀況是AMI后NOAF的潛在機制,因此目前的很多研究試圖通過患者血漿檢測得到的炎癥及心功能指標(biāo)預(yù)測NOAF的發(fā)生風(fēng)險。Dorje等[31]的研究發(fā)現(xiàn),NT-pro-BNP是預(yù)測AMI后NOAF的重要指標(biāo),在他們的研究中共計發(fā)現(xiàn)4項預(yù)測NOAF的危險因素,包括年齡(OR=1.127)、左心房擴大(OR=1.152)、低eGFR(OR=0.979)和logNT-pro-BNP(OR=5.133),其中血漿NT-pro-BNP水平升高與NOAF的發(fā)生關(guān)系最為密切。此外,他們的研究還指出NT-pro-BNP≥796 pg/mL是預(yù)測AMI后NOAF的最佳閾值(敏感性和特異性分別為100%和53.4%);Asanin等[32]則指出腦鈉肽(BNP)是PCI術(shù)后STEMI患者發(fā)生NOAF的一項重要風(fēng)險預(yù)測因素(OR=3.70,95%CI:1.40~9.77,P=0.008),并且BNP的最佳預(yù)測閾值為720 pg/mL。此外,Aronson等[33]的一項納入1 209名AMI患者的前瞻性研究顯示:C反應(yīng)蛋白(CRP)是預(yù)測住院期間NOAF的獨立風(fēng)險因素,同時在出院后1年的隨訪期間共有55名患者發(fā)生NOAF,并且隨著CRP水平的升高其發(fā)生心房顫動的比例也增加(隨著CRP三分位水平的遞增,NOAF的比例分別為2.3%、5.1%和6.3%,P=0.006)。而在一篇納入6項有關(guān)CRP與AMI后NOAF關(guān)系的觀察性研究的Meta分析中,Ren等[34]發(fā)現(xiàn)CRP水平的升高與AMI后NOAF的發(fā)生風(fēng)險顯著相關(guān)(SMD=1.32,95%CI:1.01~1.30),進一步佐證了CRP水平高低對預(yù)測AMI后NOAF的價值。
2.3影像學(xué)檢查對AMI后NOAF的預(yù)測價值
此前的研究表明,AMI后心臟功能及各心腔內(nèi)壓力變化(尤其是左右心房)是發(fā)生NOAF的潛在機制之一。與實驗室檢查相比,影像學(xué)檢查(心臟彩超、心臟MRI等)則通過準(zhǔn)確地獲取心臟各腔室的大小、壓力及血流動力學(xué)狀態(tài)等參數(shù),更加直觀地評估心臟功能,為預(yù)測NOAF的發(fā)生提供相對準(zhǔn)確的依據(jù)。早年的一項納入62名AMI伴心功能不全(LVEF≤40%)患者的臨床研究顯示:舒張功能異常的AMI伴LVEF≤40%的患者NOAF風(fēng)險要顯著高于無舒張功能異常者(HR=5.30,95%CI:1.68~16.75,P=0.004 5)[34]。AMI后由于乳頭肌缺血常常導(dǎo)致一過性的二尖瓣關(guān)閉不全,進而增加二尖瓣返流量,導(dǎo)致左心房房內(nèi)壓升高、心房壁張力增加,促進心房重構(gòu),最終誘發(fā)心房顫動。Bahouth等[22]利用經(jīng)胸多普勒彩超檢測到功能性二尖瓣反流(FMR)是預(yù)測AMI后NOAF的重要參考因素;研究結(jié)果還顯示AMI后NOAF在無FMR、輕度FMR和中重度FMR三組間中的發(fā)生率分別為5.0%、11.2%和18.7%,且這種差異有顯著統(tǒng)計學(xué)意義(P<0.001)。除了心房組織一過性的血流動力學(xué)狀態(tài)改變以外,心電活動的改變也是誘發(fā)心房顫動的重要因素。Antoni等[36]發(fā)現(xiàn)利用經(jīng)胸多普勒超聲檢查獲得的反映心房內(nèi)電傳導(dǎo)總時間的參數(shù)(PA-DTI duration,即從體表心電圖的P波起點到心房組織多普勒顯像所記錄到的A′波頂點的時間間隔)同樣能夠預(yù)測心肌梗死后NOAF的發(fā)生風(fēng)險(HR=1.04,95%CI:1.03~1.05,P<0.001)。
2.4心電圖及電生理檢查對AMI后NOAF的預(yù)測價值
作為目前確診NOAF最簡單有效的手段,心電圖對NOAF的預(yù)測價值也備受重視。早年由Rosiak等[37]開展的一項小樣本研究發(fā)現(xiàn),心電圖上P波的時限(P wave duration,PWD)>125 ms是預(yù)測NOAF的重要危險因素之一(OR=6.2,95%CI:1.4~26.5),其敏感性和特異性分別為74%和77%。近年來一些新的研究進一步佐證了心電圖及電生理檢查對預(yù)測AMI后NOAF的價值,例如2010年,van Diepen等[38]的一項納入630名AMI患者的巢式病例對照研究結(jié)果顯示,應(yīng)用“Liu minor criterion1”對患者入院心電圖P波形態(tài)(M型、W型、不規(guī)則型及切跡型)進行分析,滿足以上心電圖標(biāo)準(zhǔn)的AMI患者是發(fā)生NOAF的高風(fēng)險人群(調(diào)整OR=1.68,95%CI:1.03~2.73,P=0.038)。
2.5目前已有的危險分層系統(tǒng)及其效果
CHADS2和CHA2DS2-VASc評分是目前指南推薦的進行非瓣膜性心房顫動患者腦卒中風(fēng)險危險分層的重要工具。對于評分超過1分者需要啟動包括阿司匹林、華法林的抗栓治療;而對于≥2分者,除非有使用禁忌證,否則必須使用華法林抗凝治療[4]。Zhang等[39]則將CHADS2應(yīng)用于預(yù)測AMI后NOAF的可能性,他們的研究共納入1 035名AMI患者,其中心房顫動組的CHADS2評分顯著高于非心房顫動組[(2.17 ± 1.41)vs.(1.45 ± 1.24),P<0.001]。多元logistic回歸分析結(jié)果表明CHADS2評分是AMI后NOAF的獨立預(yù)測因子(OR=0.133 9,95%CI:1.002~1.789,P=0.048),同時隨著CHADS2分值的增加,NOAF的發(fā)生率逐漸升高[2.51%(CHADS20分)—7.46%(CHADS21~2分)—13.11%(CHADS2≥3分),P≤0.001]。
隨著臨床工作中對AMI后NOAF高患病率及致死風(fēng)險認識的提升,以及對此類心房顫動發(fā)生機制的探索,目前對于此類心律失常的預(yù)測研究已經(jīng)取得了不小的進展。從前文中不難發(fā)現(xiàn),無論是患者的臨床特征還是實驗室、影像學(xué)檢查,均可作為預(yù)測NOAF的重要參考。但是目前仍然僅有少數(shù)研究探討對尚未發(fā)生NOAF的AMI患者預(yù)防性的治療(包括抗心律失常藥物等)及其對患者預(yù)后情況的影響。因此,對于是否需要對可能發(fā)生NOAF的高危AMI患者實施早期預(yù)防性治療及其對患者預(yù)后的影響這一問題,還有待進一步的大規(guī)模臨床研究給出答案。
[1] Podolecki T,Lenarczyk R,Kowalczyk J,et al. Effect of type of atrial fibrillation on prognosis in acute myocardial infarction treated invasively[J].Am J Cardiol,2012,109(12):1689-1693.
[2] Wong CK,White HD,Wilcox RG,et al. Significance of atrial fibrillation during acute myocardial infarction, and its current management: insights from the GUSTO-3 trial[J].Card Electrophysiol Rev,2003,7(3):201-207.
[3] 中華醫(yī)學(xué)會心血管病學(xué)分會,中華心血管病雜志編輯委員會.急性ST段抬高型心肌梗死診斷和治療指南[J].中華心血管病雜志,2015,43(5):380-393.
[4] January CT,Wann LS,Alpert JS,et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society[J].J Am Coll Cardiol,2014,64(21):e1-e76.
[5] Batra G,Svennblad B,Held C,et al. All types of atrial fibrillation in the setting of myocardial infarction are associated with impaired outcome[J].Heart,2016,102(12):926-933.
[6] Karl-Heinz Kuck.經(jīng)體表和心內(nèi)膜標(biāo)測的轉(zhuǎn)子識別及其對房顫消融的影響[J].實用心電學(xué)雜志,2014,23(5): 305-318.
[7] Stamboul K,Zeller M,F(xiàn)auchier L,et al. Incidence and prognostic significance of silent atrial fibrillation in acute myocardial infarction[J].Int J Cardiol,2014,174(3):611-617.
[8] Wi J,Shin DH,Kim JS,et al. Transient new-onset atrial fibrillation is associated with poor clinical outcomes in patients with acute myocardial infarction[J].Circ J,2016,80(7):1615-1623.
[9] Asanin M,Vasiljevic Z,Matic M,et al.Outcome of patients in relation to duration of new-onset atrial fibrillation following acute myocardial infarction[J].Cardiology,2007,107(3):197-202.
[10] Angeli F,Reboldi G,Garofoli M,et al. Atrial fibrillation and mortality in patients with acute myocardial infarction: a systematic overview and meta-analysis[J].Curr Cardiol Rep,2012,14(5):601-610.
[11] Lubitz SA,Yin X,Rienstra M,et al. Long-term outcomes of secondary atrial fibrillation in the community: the Framingham Heart Study[J].Circulation,2015,131(19):1648-1655.
[12] Jabre P,Roger VL,Murad MH,et al. Mortality associated with atrial fibrillation in patients with myocardial infarction: a systematic review and meta-analysis[J].Circulation,2011,123(15):1587-1593.
[13] Rene AG,Généreux P,Ezekowitz M,et al. Impact of atrial fibrillation in patients with ST-elevation myocardial infarction treated with percutaneous coronary intervention (from the HORIZONS-AMI [harmonizing outcomes with revascularization and stents in acute myocardial infarction] trial)[J].Am J Cardiol,2014,113(2):236-242.
[14] Bang CN,Gislason GH,Greve AM,et al.New-onset atrial fibrillation is associated with cardiovascular events leading to death in a first time myocardial infarction population of 89 703 patients with long-term follow-up: a nationwide study[J].J Am Heart Assoc,2014,3(1):e000382.
[15] Jons C,Jacobsen UG,Joergensen RM,et al. The incidence and prognostic significance of new-onset atrial fibrillation in patients with acute myocardial infarction and left ventricular systolic dysfunction: a CARISMA substudy[J].Heart Rhythm,2011,8(3):342-348.
[16] Sinno H,Derakhchan K,Libersan D,et al.Atrial ischemia promotes atrial fibrillation in dogs[J].Circulation,2003,107(14):1930-1936.
[17] Jayachandran JV,Zipes DP,Weksler J,et al. Role of the Na(+)/H(+) exchanger in short-term atrial electrophysiological remodeling[J].Circulation,2000,101(15):1861-1866.
[18] Alasady M,Abhayaratna WP,Leong DP,et al. Coronary artery disease affecting the atrial branches is an independent determinant of atrial fibrillation after myocardial infarction[J].Heart Rhythm,2011,8(7):955-960.
[20] Parashar S,Kella D,Reid KJ,et al.New-onset atrial fibrillation after acute myocardial infarction and its relation to admission biomarkers (from the TRIUMPH registry)[J].Am J Cardiol,2013,112(9):1390-1395.
[21] Galv?o Braga C,Ramos V,Vieira C,et al. New-onset atrial fibrillation during acute coronary syndromes:predictors and prognosis.[J].Rev Port Cardiol,2014,33(5):281-287.
[22] Bahouth F,Mutlak D,F(xiàn)urman M,et al.Relationship of functional mitral regurgitation to new-onset atrial fibrillation in acute myocardial infarction[J].Heart,2010,96(9):683-688.
[23] Ravelli F,Allessie M.Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart[J].Circulation,1997,96(5):1686-1695.
[24] Bode F,Katchman A,Woosley RL,et al. Gadolinium decreases stretch-induced vulnerability to atrial fibrillation[J].Circulation,2000,101(18):2200-2205.
[25] Psychari SN,Apostolou TS,Sinos L,et al. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation[J].Am J Cardiol,2005,95(6):764-767.
[26] Yoshizaki T,Umetani K,Ino Y,et al. Activated inflammation is related to the incidence of atrial fibrillation in patients with acute myocardial infarction[J].Intern Med,2012,51(12):1467-1471.
[27] Kulik A,Singh JP,Levin R,et al. Association between statin use and the incidence of atrial fibrillation following hospitalization for coronary artery disease[J].Am J Cardiol,2010,105(12):1655-1660.
[28] Guenancia C,Stamboul K,Garnier F,et al. Obesity and new-onset atrial fibrillation in acute myocardial infarction: a gender specific risk factor[J].Int J Cardiol,2014,176(3):1039-1041.
[29] Zhang EY,Cui L,Li ZY,et al.High killips class as a predictor of new-onset atrial fibrillation following acute myocardial infarction: systematic review and meta-analysis[J].Chin Med J(Engl),2015,128(14):1964-1968.
[30] Dart AM,Du XJ,Kingwell BA. Gender, sex hormones and autonomic nervous control of the cardiovascular system[J].Cardiovasc Res,2002,53(3):678-687.
[31] Dorje T,Wang X,Shao M,et al.Plasma N-terminal pro-brain natriuretic peptide levels predict new-onset atrial fibrillation in patients with acute myocardial infarction[J].Int J Cardiol,2013,168(3):3135-3137.
[32] Asanin M,Stankovic S,Mrdovic I,et al. B-type natriuretic peptide predicts new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention[J].Peptides,2012,35(1):74-77.
[33] Aronson D,Boulos M,Suleiman A,et al. Relation of C-reactive protein and new-onset atrial fibrillation in patients with acute myocardial infarction[J].Am J Cardiol,2007,100(5):753-757.
[34] Ren Y,Zeng RX,Li JJ,et al. Relation of C-reactive protein and new-onset atrial fibrillation in patients with acute myocardial infarction: A systematic review and meta-analysis[J].Int J Cardiol,2015,190:268-270.
[35] Jons C,Joergensen RM,Hassager C,et al. Diastolic dysfunction predicts new-onset atrial fibrillation and cardiovascular events in patients with acute myocardial infarction and depressed left ventricular systolic function: a CARISMA substudy[J]. Eur J Echocardiogr,2010,11(7):602-607.
[36] Antoni ML,Bertini M,Atary JZ,et al.Predictive value of total atrial conduction time estimated with tissue Doppler imaging for the development of new-onset atrial fibrillation after acute myocardial infarction[J].Am J Cardiol,2010,106(2):198-203.
[37] Rosiak M,Ruta J,Bolińska H. Usefulness of prolonged P-wave duration on signal averaged ECG in predicting atrial fibrillation in acute myocardial infarction patients[J].Med Sci Monit,2003,9(8):Mt85-88.
[38] van Diepen S,Siha H,F(xiàn)u Y,et al. Do baseline atrial electrocardiographic and infarction patterns predict new-onset atrial fibrillation after ST-elevation myocardial infarction? Insights from the assessment of pexelizumab in acute myocardial infarction trial[J].J Electrocardiol,2010,43(4):351-358.
[39] Zhang X,Li G,Zhao Z,et al. The value of CHADS2 score in predicting new-onset atrial fibrillation in Chinese patients with acute myocardial infarction[J].Int J Cardiol,2014,176(3):1235-1237.
New insight into the mechanisms of new-onset atrial fibrillation after acute myocardial infarction and methods for risk prediction
Luo Jia-chen, Dai Li-ming, Wei Yi-dong
(Department of Cardiology, the Tenth People’s Hospital of Tongji University, Shanghai 200072, China)
New-onset atrial fibrillation(NOAF) after acute myocardial infarction(AMI) is a kind of arrhythmia commonly seen after myocardial infarction, with an incidence rate ranging from 5% to 23%. It has been verified by several clinical research that NOAF can significantly increase the mortality during hospitalization of AMI patients or out-of-hospital long-term risk of death. This paper reviews the pathogenic mechanisms of NOAF after AMI and risk prediction methods in recent years. At present, there is still no enough evidence of evidence-based medicine for the treatment of this kind of arrhythmia, which is especially important for the prevention of NOAF. It is critical for its prevention to understand its pathophysiological mechanism and thus to master the method for identifying the high-risk patients as early as possible.
acute myocardial infarction; new-onset atrial fibrillation; pathogenic mechanism; predictive value
200072 上海,同濟大學(xué)附屬第十人民醫(yī)院心內(nèi)科
駱家晨,同濟大學(xué)碩士研究生在讀,主要從事冠心病的臨床研究,E-mail:messichen@aliyun.com
10.13308/j.issn.2095-9354.2016.04.019
2016-07-19)(本文編輯:李政萍)