閆劍群,王 楠,呂 波,孫 波,羅 肖,孟 凱(西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院生理及病理生理系,陜西西安 710061)
?
◇專家述評(píng)◇
圍產(chǎn)期母體營(yíng)養(yǎng)狀態(tài)對(duì)子代下丘腦食欲調(diào)控網(wǎng)絡(luò)胚胎編程的研究進(jìn)展
閆劍群,王 楠,呂 波,孫 波,羅 肖,孟 凱
(西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院生理及病理生理系,陜西西安 710061)
圍產(chǎn)期的不良營(yíng)養(yǎng)因素對(duì)子代相關(guān)組織的發(fā)育具有程控作用,可能引起能量代謝異常并導(dǎo)致代謝相關(guān)性疾病的發(fā)病。下丘腦是各種食欲調(diào)節(jié)信號(hào)的主要整合中樞,目前已發(fā)現(xiàn)多種食欲調(diào)節(jié)肽在下丘腦食欲調(diào)節(jié)網(wǎng)絡(luò)中都扮演了重要的角色。研究表明,下丘腦的食欲調(diào)節(jié)網(wǎng)絡(luò)在出生前就已建立,孕晚期及斷奶前是食欲調(diào)控神經(jīng)系統(tǒng)的分化發(fā)育的關(guān)鍵時(shí)期。食欲的調(diào)控是一個(gè)復(fù)雜的生理過(guò)程,多種遞質(zhì)、調(diào)質(zhì)或肽類物質(zhì)參與介導(dǎo)這一機(jī)制。其中,脂肪細(xì)胞釋放的瘦素(leptin)是調(diào)控食欲和能量代謝的重要因子。Leptin在圍產(chǎn)期母體肥胖程控子代肥胖及代謝異常中可能同樣扮演著重要角色,下丘腦食欲調(diào)控神經(jīng)網(wǎng)絡(luò)的正常發(fā)育也一定程度地依賴于出生早期leptin水平的迅速升高。下丘腦的多個(gè)腦區(qū),包括攝食調(diào)控中樞神經(jīng)元均表達(dá)瘦素受體。研究圍產(chǎn)期營(yíng)養(yǎng)狀態(tài)對(duì)子代下丘腦leptin神經(jīng)調(diào)控網(wǎng)絡(luò)發(fā)育的胚胎編程作用對(duì)揭示代謝性疾病發(fā)病的先天因素具有重要意義。
圍產(chǎn)期;胚胎編程;下丘腦;瘦素;食欲調(diào)控
英國(guó)科學(xué)家Barker在1989年提出“巴克假說(shuō)”,即“成人疾病的胚胎根源”假說(shuō),認(rèn)為母體孕期營(yíng)養(yǎng)不良將引起子代罹患多種疾病的幾率增高,包括高血壓、胰島素抵抗、血脂異常以及多種心血管疾病。而越來(lái)越多的流行病學(xué)資料及動(dòng)物研究表明,這種“胚胎編程”同樣受到母體肥胖及糖尿病等的影響。由此認(rèn)為出生體質(zhì)量及成年期肥胖發(fā)生率呈“U”形的關(guān)系,即過(guò)低或過(guò)高的出生體質(zhì)量均可引發(fā)肥胖發(fā)生率升高。這個(gè)概念指出圍產(chǎn)期的不良營(yíng)養(yǎng)因素對(duì)子代相關(guān)組織具有程控作用,可能引起能量代謝異常并導(dǎo)致代謝相關(guān)性疾病的發(fā)病。下丘腦是各種食欲調(diào)節(jié)信號(hào)的主要整合中樞,目前已發(fā)現(xiàn)多種食欲調(diào)節(jié)肽在下丘腦食欲調(diào)節(jié)網(wǎng)絡(luò)中都扮演了重要的角色。研究表明,下丘腦的食欲調(diào)節(jié)網(wǎng)絡(luò)在出生前就已建立,孕晚期及斷奶前是食欲調(diào)控神經(jīng)系統(tǒng)的分化發(fā)育的關(guān)鍵時(shí)期[1]。食欲的調(diào)控是一個(gè)復(fù)雜的生理過(guò)程,多種遞質(zhì)、調(diào)質(zhì)或肽類物質(zhì)參與介導(dǎo)這一機(jī)制。其中,脂肪細(xì)胞釋放的瘦素(leptin)即是調(diào)控食欲和能量代謝的重要因子[2-3]。研究提示,leptin抑制禁食引起的食欲增強(qiáng),減少攝食量,其作用可能是通過(guò)抑制下丘腦促進(jìn)食欲的神經(jīng)肽Y(neuropeptide-Y, NPY)、刺鼠相關(guān)蛋白(agouti-related protein, AgRP)的轉(zhuǎn)錄表達(dá),并促進(jìn)抑制食欲的調(diào)節(jié)肽,如阿片-促黑素細(xì)胞皮質(zhì)素原(pro-opiomelanocortin, POMC)的轉(zhuǎn)錄和表達(dá)完成[4]。值得關(guān)注的是,leptin在圍產(chǎn)期母體肥胖程控子代肥胖及代謝異常中可能同樣扮演著重要角色[5],下丘腦食欲調(diào)控神經(jīng)網(wǎng)絡(luò)的正常發(fā)育也一定程度地依賴于出生早期leptin水平的迅速升高[6]。下丘腦的多個(gè)腦區(qū),包括攝食調(diào)控中樞神經(jīng)元均表達(dá)瘦素受體[7]。以下主要探討圍產(chǎn)期營(yíng)養(yǎng)狀態(tài)對(duì)子代下丘腦leptin神經(jīng)調(diào)控網(wǎng)絡(luò)發(fā)育的胚胎編程作用。
下丘腦在調(diào)節(jié)攝食及能量平衡中有十分重要的作用。下丘腦弓狀核(arcuate nucleus, ARC)中的神經(jīng)元在這個(gè)調(diào)節(jié)中尤為重要。ARC位于正中隆起(median eminence)的上方,并與室周器(circumventricular organs)毗鄰,這個(gè)解剖位置使其可以接收并整合來(lái)自外周的激素信號(hào),如leptin和胰島素(insulin)。許多研究表明,ARC 與肥胖密切相關(guān),并且含有許多l(xiāng)eptin敏感神經(jīng)元[8-11]。此外,近期的遺傳學(xué)研究明確地提出了ARC神經(jīng)元中l(wèi)eptin受體信號(hào)轉(zhuǎn)導(dǎo)的重要性。在leptin缺失的小鼠中,恢復(fù)ARC神經(jīng)元的leptin受體信號(hào)轉(zhuǎn)導(dǎo),可以通過(guò)減少攝食與脂肪組織來(lái)降低體質(zhì)量增長(zhǎng)[12-13]。這些資料表明,ARC是leptin中樞調(diào)節(jié)能量平衡的重要位點(diǎn)。ARC中包含兩組重要的神經(jīng)元:一組表達(dá)神經(jīng)肽Y(neuropeptide Y, NPY)和刺鼠相關(guān)肽(agouti-related peptide, AgRP),主要轉(zhuǎn)導(dǎo)促進(jìn)食欲的信號(hào);另一組表達(dá)阿黑皮素原(proopiomelanocortin, POMC)衍生肽,如α-促黑素細(xì)胞激素(α-melanocyte stimulating hormone, α-MSH),主要轉(zhuǎn)導(dǎo)抑制食欲的信號(hào)。ARC中的這些神經(jīng)元向下丘腦中其他控制攝食的關(guān)鍵部位發(fā)出神經(jīng)纖維投射。這些部位包括室旁核(paraventricular nuclei, PVN),背內(nèi)側(cè)核(dorsomedial nuclei, DMN)及外側(cè)下丘腦(lateral hypothalamus, LH)。
除了調(diào)節(jié)攝食及體質(zhì)量,許多研究還表明,下丘腦是維持外周葡萄糖穩(wěn)態(tài)的一個(gè)關(guān)鍵部位。向基底內(nèi)側(cè)下丘腦(medial basal hypothalamus, MBH)中注入胰島素可通過(guò)增強(qiáng)肝臟胰島素敏感性來(lái)降低肝糖原異生[14]。此外,在大鼠,MBH內(nèi)胰島素受體信號(hào)轉(zhuǎn)導(dǎo)的下調(diào)可導(dǎo)致胰島素抵抗[15-16]。所有的這些資料都表明,對(duì)于葡萄糖穩(wěn)態(tài)的調(diào)節(jié),下丘腦的胰島素信號(hào)轉(zhuǎn)導(dǎo)是非常重要的。近期的研究也表明,leptin對(duì)葡萄糖穩(wěn)態(tài)的調(diào)節(jié)主要通過(guò)作用于下丘腦來(lái)實(shí)現(xiàn)。在leptin受體缺失的動(dòng)物,恢復(fù)ARC內(nèi)leptin受體功能,可以明顯地改善葡萄糖穩(wěn)態(tài)及胰島素敏感性[12]。因此,下丘腦通過(guò)介導(dǎo)leptin及胰島素的信號(hào)轉(zhuǎn)導(dǎo),在調(diào)節(jié)能量平衡及葡萄糖穩(wěn)態(tài)中發(fā)揮重要的作用(圖1)。
Douglas Colemen的研究提出了“來(lái)自脂肪組織的因子通過(guò)作用于下丘腦在調(diào)節(jié)體質(zhì)量中發(fā)揮關(guān)鍵作用”的概念[18],然而這個(gè)因子被認(rèn)定為leptin是由Friedman的研究小組完成的[19]。Leptin受體(obese receptor, Ob-R)的發(fā)現(xiàn)進(jìn)一步促進(jìn)了對(duì)leptin的研究;leptin在許多生理機(jī)制中發(fā)揮重要作用,如能量平衡,生殖及骨生成等[20]。Leptin將營(yíng)養(yǎng)狀態(tài)傳遞給下丘腦的調(diào)節(jié)中樞,在能量平衡的調(diào)節(jié)中起到重要作用[4,7]。無(wú)論是中樞還是外周注射leptin都可以降低攝食和體質(zhì)量。在人類及嚙齒類動(dòng)物,由于leptin或leptin受體基因突變?cè)斐傻膌eptin功能缺失都可以導(dǎo)致肥胖[21]。此外,在leptin缺失的小鼠中,給予leptin可以改善肥胖相關(guān)的代謝及內(nèi)分泌缺陷[22]。
圖1 下丘腦調(diào)節(jié)能量平衡的通路[17]
Fig.1 Regulating pathway of energy balance in hypothalamus[17]
Leptin受體是細(xì)胞因子受體家族中的一員。在六種leptin受體的亞型中,Ob-Rb在下丘腦中介導(dǎo)leptin的信號(hào)轉(zhuǎn)導(dǎo)。Ob-Rb在下丘腦中大量表達(dá),并且?guī)缀跛械膌eptin敏感神經(jīng)元都表達(dá)leptin受體[23]。在下丘腦中,Janus kinase 2(JAK2)-signal transducerand activator of transcription 3(STAT3)通路是leptin信號(hào)轉(zhuǎn)導(dǎo)的主要通路[24](圖2)。在下丘腦的幾種STAT蛋白中,leptin只增加STAT3的磷酸化及STAT3的DNA結(jié)合力,尤其是在ARC、LH、下丘腦腹內(nèi)側(cè)核(ventromedial nucleus, VMN)和DMN。許多l(xiāng)eptin敏感的神經(jīng)元(包括NPY、POMC)都表達(dá)STAT3[25]。
細(xì)胞因子信號(hào)轉(zhuǎn)導(dǎo)抑制因子3(suppressor of cytokine signaling 3, SOCS3)可對(duì)leptin的JAK2-STAT3信號(hào)轉(zhuǎn)導(dǎo)通路進(jìn)行負(fù)反饋調(diào)控。盡管在哺乳動(dòng)物的細(xì)胞系中,SOCS3的過(guò)表達(dá)可以降低JAK-STAT的信號(hào)轉(zhuǎn)導(dǎo);leptin能引起下丘腦中SOCS3的表達(dá),并激活NPY及POMC神經(jīng)元中的SOCS3[27];但下丘腦內(nèi)SOCS3在leptin信號(hào)轉(zhuǎn)導(dǎo)中的作用仍然是不清楚的。蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B, PTP1B)是另外一種調(diào)節(jié)leptin信號(hào)轉(zhuǎn)導(dǎo)的蛋白,在下丘腦中與Ob-Rb表達(dá)在相同的部位[28];PTP1B敲除的小鼠對(duì)攝食引起的肥胖產(chǎn)生耐受,且對(duì)leptin更敏感,說(shuō)明PTP1B在下丘腦的leptin信號(hào)轉(zhuǎn)導(dǎo)中起重要作用[29]。SOCS3和PTP1B之間的相互作用在正常的leptin信號(hào)轉(zhuǎn)導(dǎo)中可能扮演關(guān)鍵的作用。
圖2 下丘腦中l(wèi)eptin 胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)示意圖[26]
Fig.2 Schematic diagram of intracellular signal transduction of leptin in hypothalamus[26]
Leptin是一種由脂肪組織分泌的激素,通過(guò)作用于腦組織中不同的部位來(lái)影響攝食和能量平衡[30]。在ARC中,leptin作用于其長(zhǎng)型受體Ob-Rb,激活JAK-STAT信號(hào)途徑,引起STAT3的磷酸化。磷酸化的STAT3調(diào)節(jié)控制攝食和能量平衡的神經(jīng)肽的表達(dá),如NPY和POMC。在下丘腦發(fā)育的過(guò)程中,leptin也是一個(gè)非常關(guān)鍵的神經(jīng)營(yíng)養(yǎng)因子[31];在leptin 缺失的小鼠,從ARC發(fā)出的神經(jīng)纖維投射出現(xiàn)異常。下丘腦從妊娠早期便開始快速發(fā)育并且一直持續(xù)到出生后。在嚙齒類動(dòng)物,下丘腦的神經(jīng)形成發(fā)生在妊娠中期,而不同核團(tuán)間的神經(jīng)投射則發(fā)生在出生后早期[32]。在這些關(guān)鍵發(fā)育時(shí)期內(nèi)的環(huán)境變化,如母鼠懷孕和哺乳期間的高脂飲食,可能擾亂下丘腦的發(fā)育并對(duì)子代的代謝產(chǎn)生長(zhǎng)期作用。
Ob-Rb是介導(dǎo)leptin JAK2信號(hào)轉(zhuǎn)導(dǎo)通路的受體。在胚胎期第10.5天,便可檢測(cè)到小鼠腦中的leptin受體;但是,在胚胎期及出生后早期,Ob-Rb的mRNA 的表達(dá)都局限在第三腦室的室管膜細(xì)胞。給予出生后第4天的小鼠注射leptin可以引起第三腦室周圍的細(xì)胞內(nèi)產(chǎn)生強(qiáng)烈的SOCS3 mRNA表達(dá);在出生后第7天之前,在ARC 及其他下丘腦核團(tuán)中只有非常弱的Ob-Rb的表達(dá)及l(fā)eptin引起的SOCS3的表達(dá)。不過(guò),在出生后第10天,在下丘腦的許多部位,如ARC、VMN、DMN及LH,都有Ob-Rb mRNA的大量表達(dá)[33](圖3);此外,給予出生后第10天的小鼠注射leptin可以引起這些下丘腦結(jié)構(gòu)中STAT3的激活。在出生后小鼠的大腦皮質(zhì)、海馬以及丘腦背外側(cè)核中,Ob-Rb mRNA的水平也短暫升高。但是,在leptin注射后,這些腦區(qū)并沒有磷酸化STAT3的免疫反應(yīng),說(shuō)明:①這些受體并不感受外周的leptin;②在leptin注射后激活其他的轉(zhuǎn)導(dǎo)通路如分裂素激活的蛋白激酶(mitogen-activated protein kinase,MAPK)通路;③在這些腦區(qū)Ob-Rb mRNA并不翻譯成蛋白。
圖3 發(fā)育的腦組織中l(wèi)eptin 的作用位點(diǎn)[36]
Fig.3 The acting sites of leptin in the developing brain[36]
除了在成年期調(diào)節(jié)攝食及能量平衡,在出生后早期下丘腦發(fā)育過(guò)程中,leptin也調(diào)節(jié)攝食相關(guān)神經(jīng)肽的表達(dá)。在出生后第10天的大鼠,給予leptin可增加ARC 中POMCmRNA的水平,但降低ARC中NPY mRNA的水平。此外,長(zhǎng)期給予新生大鼠leptin可以降低VMN中所有亞型的leptin受體mRNA的表達(dá),升高VMN中促腎上腺皮質(zhì)激素釋放激素(corticotropin-releasing factor, CRF)受體-2 mRNA的表達(dá)[34]。早在出生后第6天,leptin就可以引起ARC神經(jīng)元中cFos的表達(dá)。然而,在新生小鼠,這些轉(zhuǎn)錄水平的變化與攝食的減少是不匹配的;給予正常小鼠或leptin敲除小鼠注射leptin直到斷奶后才能影響攝食、耗氧量、體質(zhì)量或脂肪含量[35]。因此,在出生后早期,盡管leptin可以調(diào)節(jié)下丘腦神經(jīng)肽的表達(dá),但并不調(diào)節(jié)攝食。斷奶前l(fā)eptin抑制食欲作用的下降可以讓動(dòng)物盡可能多的攝入食物,以保障生長(zhǎng)及維持高代謝率。
在器官發(fā)育的敏感時(shí)期,有害的子宮內(nèi)營(yíng)養(yǎng)環(huán)境、出生后早期營(yíng)養(yǎng)環(huán)境及激素水平都增加成年后代謝性疾病的易感性。從一般意義上來(lái)講,相對(duì)于成年大腦,發(fā)育中的大腦對(duì)環(huán)境的變化更為敏感。越來(lái)越多的研究表明,圍產(chǎn)期環(huán)境變化對(duì)攝食通路發(fā)育的調(diào)節(jié)是導(dǎo)致肥胖的可能因素[38](圖4)。除了在成年動(dòng)物中調(diào)節(jié)能量平衡,leptin也是下丘腦代謝通路發(fā)育過(guò)程中的重要營(yíng)養(yǎng)因子。嚙齒類動(dòng)物在出生后兩周內(nèi)leptin水平升高,但此時(shí)leptin對(duì)體質(zhì)量和攝食并沒有影響。對(duì)于這個(gè)leptin高峰的來(lái)源,目前的信息是非常有限的,可能有一部分來(lái)自胎兒的脂肪組織。因?yàn)橛醒芯堪l(fā)現(xiàn),新生動(dòng)物白色及棕色脂肪組織內(nèi)升高的leptin mRNA表達(dá)與外周循環(huán)的leptin水平相一致。圍產(chǎn)期的leptin也可能來(lái)自其他器官,如胃。此外,許多研究也表明,對(duì)于新生動(dòng)物來(lái)講,母乳對(duì)血漿leptin水平有非常重要的作用[39]。有趣的是,新生動(dòng)物的leptin高峰與下丘腦的攝食通路發(fā)育相一致[40]。神經(jīng)解剖學(xué)的實(shí)驗(yàn)也顯示,在新生動(dòng)物,leptin是下丘腦控制能量平衡通路發(fā)育的重要營(yíng)養(yǎng)因子,對(duì)于攝食及體質(zhì)量無(wú)明顯影響;在leptin缺失的小鼠,向ARC注入順行性示蹤劑,結(jié)果顯示ARC通路的形成被明顯擾亂。在leptin缺失的新生小鼠,從ARC神經(jīng)元到其他核團(tuán)(如PVN、DMN、LH)的神經(jīng)纖維投射密度明顯下降(圖5),并且在以后持續(xù)減少。在leptin受體缺失的動(dòng)物模型,如Zucker大鼠,也能發(fā)現(xiàn)相似的破壞。Leptin缺失可以同時(shí)影響促進(jìn)食欲(NPY/AgRP)和抑制食欲(POMC)的神經(jīng)纖維投射,說(shuō)明leptin對(duì)ARC內(nèi)調(diào)節(jié)能量代謝的神經(jīng)元的發(fā)育有廣泛的影響。體外實(shí)驗(yàn)也顯示,leptin可以直接作用于ARC神經(jīng)元,從而引起軸突生長(zhǎng)[41]。此外,leptin對(duì)軸突生長(zhǎng)的作用主要局限在出生后的一段時(shí)期內(nèi);在出生后第4天到第12天給予leptin缺失的小鼠注射leptin可以使ARC到PVN的神經(jīng)纖維投射恢復(fù)正常;相反,給予成熟動(dòng)物注射leptin并不能改善這些纖維投射。這些資料表明,leptin神經(jīng)發(fā)育的作用有一個(gè)關(guān)鍵的時(shí)期,局限在出生后數(shù)周內(nèi);在這段關(guān)鍵時(shí)期內(nèi)leptin水平的變化可能引起長(zhǎng)期的代謝影響。
圖4 圍產(chǎn)期代謝環(huán)境引起成年期肥胖的可能機(jī)制[37]
Fig.4 Possible mechanisms by which the perinatal metabolic environment may program adult obesity[37]
營(yíng)養(yǎng)因素可以直接調(diào)節(jié)leptin的水平,所以營(yíng)養(yǎng)環(huán)境的變化可以通過(guò)leptin來(lái)影響下丘腦發(fā)育。近期的研究發(fā)現(xiàn),錯(cuò)誤的leptin高峰出現(xiàn)時(shí)間可以對(duì)代謝產(chǎn)生長(zhǎng)期影響。利用一種子宮內(nèi)營(yíng)養(yǎng)不足的小鼠模型,Yura發(fā)現(xiàn)出生前營(yíng)養(yǎng)不良可導(dǎo)致leptin高峰提前出現(xiàn),并對(duì)體質(zhì)量調(diào)節(jié)及葡萄糖穩(wěn)態(tài)產(chǎn)生有害影響[42];這個(gè)提前出現(xiàn)的leptin高峰也和減弱的leptin抑制食欲的作用相關(guān)。從出生后第2天到第13天,給予新生大鼠特異性的leptin拮抗劑,可以使leptin高峰降低,導(dǎo)致長(zhǎng)期的leptin敏感性降低及對(duì)攝食引起肥胖的易感性增加。
綜上所述,這些資料表明,對(duì)于下丘腦攝食通路的發(fā)育來(lái)講,leptin是一個(gè)非常重要的營(yíng)養(yǎng)因子。
我們近期的研究表明,在出生后第10天,不論是出生前的母體高脂飲食,還是出生后的母體高脂飲食,都降低雄性子代大鼠pSTAT3的激活;但只有出生前的母體高脂飲食降低雌性子代大鼠pSTAT3的激活。在出生后第21天,這個(gè)性別差異便消失,哺乳期間由高脂飲食母鼠撫養(yǎng)的雄性子代大鼠和雌性子代大鼠leptin的敏感性均降低。我們目前還不清楚為什么對(duì)leptin反應(yīng)的性別差異會(huì)出現(xiàn)在出生后第10天,并且在出生后第21天消失。之前的研究顯示,子代大鼠在成年期對(duì)母體高脂飲食的反應(yīng)有性別差異。由此可以引發(fā)一個(gè)令人極為感興趣的推論:雄性和雌性對(duì)代謝規(guī)劃的差異起源于出生后的早期階段,甚至在青春期之前,并且與發(fā)育期由受損的leptin信號(hào)轉(zhuǎn)導(dǎo)引起的下丘腦發(fā)育缺陷有關(guān)。
圖5 Leptin對(duì)下丘腦攝食通路發(fā)育的神經(jīng)營(yíng)養(yǎng)作用[37]
Fig.5 Neurotrophic action of leptin on hypothalamic feeding pathways[37]
許多研究發(fā)現(xiàn),自愿轉(zhuǎn)輪運(yùn)動(dòng)在多個(gè)腦部位增強(qiáng)leptin信號(hào)轉(zhuǎn)導(dǎo)[43],并改變下丘腦調(diào)節(jié)能量平衡的神經(jīng)肽的表達(dá)[44]。盡管在我們的實(shí)驗(yàn)中,運(yùn)動(dòng)并沒有降低體質(zhì)量,但我們發(fā)現(xiàn),斷奶3周后的運(yùn)動(dòng)改善母體高脂飲食子代大鼠的中樞l(wèi)eptin 敏感性及信號(hào)轉(zhuǎn)導(dǎo)。我們之前的研究發(fā)現(xiàn),懷孕或哺乳期間的母體高脂飲食在斷奶前改變子代大鼠的leptin敏感性。在這個(gè)實(shí)驗(yàn)中,即使斷奶后給予普通飲食,母體懷孕和哺乳期間的高脂飲食仍然降低成年子代大鼠的中樞l(wèi)eptin敏感性,這和FEREZOU-VIALA的研究結(jié)果一致。PATTERSON的結(jié)果顯示,在DIO大鼠,3周的斷奶后運(yùn)動(dòng)可以增加運(yùn)動(dòng)停止后4周leptin的厭食作用,但是在運(yùn)動(dòng)停止后10周,無(wú)論是之前運(yùn)動(dòng)的大鼠還是一直久坐的大鼠對(duì)leptin都沒有反應(yīng)[45]。我們的結(jié)果顯示,在運(yùn)動(dòng)停止后7周,3周的斷奶后運(yùn)動(dòng)可以增加母體高脂飲食子代大鼠的leptin的厭食作用。在這個(gè)實(shí)驗(yàn)中,增強(qiáng)的leptin的厭食作用與ARC中增強(qiáng)的leptin信號(hào)轉(zhuǎn)導(dǎo)相一致。對(duì)于改變的中樞l(wèi)eptin敏感性及信號(hào)轉(zhuǎn)導(dǎo),一個(gè)可能的解釋是調(diào)節(jié)能量平衡的中樞通路的變化。在我們的研究中,母體高脂飲食升高子代大鼠ARC中NPY的表達(dá),但斷奶后運(yùn)動(dòng)可以使其降低。KOZAK也發(fā)現(xiàn)母體高脂飲食的子代大鼠在成年期有較高的ARC中NPY的濃度[46];PATTERSON的研究發(fā)現(xiàn),在DIO大鼠,斷奶后運(yùn)動(dòng)對(duì)ARC中NPY的表達(dá)沒有影響[47]。DMN 中NPY的表達(dá)與ARC中NPY的表達(dá)有相似的趨勢(shì),但無(wú)顯著性差異。與之前的研究不同,我們發(fā)現(xiàn)運(yùn)動(dòng)大鼠降低ARC中POMC的表達(dá)。如果這個(gè)結(jié)果可以導(dǎo)致抑制食欲的α-MSH的釋放減少,運(yùn)動(dòng)的大鼠便有增高的食欲,這和我們的實(shí)驗(yàn)結(jié)果一致——在運(yùn)動(dòng)的最后1周及運(yùn)動(dòng)后1周,與久坐組大鼠相比,運(yùn)動(dòng)組大鼠有較高的攝食量。我們今后的研究會(huì)探索剛剛結(jié)束運(yùn)動(dòng)時(shí),ARC中POMC的表達(dá)是否有變化?ARC中l(wèi)eptin受體的表達(dá)在各組間無(wú)明顯差異,但母體高脂飲食的子代大鼠有較低的VMN中l(wèi)eptin受體的表達(dá),這可能是中樞l(wèi)eptin敏感性降低的一個(gè)原因。許多研究表明,PVN和VMN中的BDNF可能通過(guò)與MC4R相互作用,降低能量攝入并增加能量消耗[48]。我們并沒有發(fā)現(xiàn)PVN中BDNF、VMN中BDNF及VMN中MC4R的改變。但是,運(yùn)動(dòng)組大鼠的PVN中的MC4R有升高的趨勢(shì),這可能導(dǎo)致運(yùn)動(dòng)組大鼠即使在運(yùn)動(dòng)后仍然有增強(qiáng)的能量代謝。研究表明,LH中的orexin和MCH參與能量平衡及獎(jiǎng)賞相關(guān)的攝食調(diào)節(jié)[49]。我們的實(shí)驗(yàn)結(jié)果顯示,母體高脂飲食及早期斷奶后運(yùn)動(dòng)都可以降低LH中orexin及MCH的表達(dá)。目前,雖然我們不清楚這個(gè)現(xiàn)象的原因,不過(guò),mRNA表達(dá)的變化不一定代表神經(jīng)肽釋放或受體功能的改變,此后的研究將會(huì)進(jìn)一步探討在蛋白水平的變化。
[1] GROVE KL, GRAYSON BE, GLAVAS MM, et al. Development of metabolic systems[J]. Physiol Behav, 2005,86(5):646-660.
[2] DJIANE J, ATTIG L. Role of leptin during perinatal metabolic programming and obesity [J]. J Physiol Pharmacol, 2008, 59 Suppl 1:55-63.
[3] HILL JW, ELMQUIST JK, ELIAS CF. Hypothalamic pathways linking energy balance and reproduction [J]. Am J Physiol Endocrinol Metab, 2008, 294(5):E827-832.
[4] SCHWARTZ MW, WOODS SC, PORTE D JR, et al. Central nervous system control of food intake [J]. Nature, 2000,404(6778):661-671.
[5] PICO C, JILKOVA ZM, KUS V, et al. Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis[J]. Am J Clin Nutr, 2011, 94(6 Suppl): 1830S-1837S.
[6] AHIMA RS, PRABAKARAN D, FLIER JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function[J]. J Clin Invest, 1998,101(5):1020-1027.
[7] FRIEDMAN JM, HALAAS JL. Leptin and the regulation of body weight in mammals[J]. Nature, 1998,395(6704):763-770.
[8] ELMQUIST JK, BJ?RBAEK C, AHIMA RS, et al. Distributions of leptin receptor mRNA isoforms in the rat brain[J]. J Comp Neurol, 1998,395(4):535-547.
[9] COWLEY MA, SMART JL, RUBINSTEIN M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus[J]. Nature, 2001,411(6836):480-484.
[10] ELMQUIST JK, AHIMA RS, MARATOS-FLIER E, et al. Leptin activates neurons in ventrobasal hypothalamus and brainstem[J]. Endocrinology, 1997,138(2):839-842.
[11] ELIAS CF, SAPER CB, MARATOS-FLIER E, et al.Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area[J]. J Comp Neurol, 1998,402(4):442-459.
[12] COPPARI R, ICHINOSE M, LEE CE, et al. The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity[J]. Cell Metab, 2005,1(1):63-72.
[13] BALTHASAR N, COPPARI R, MCMINN J, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis[J]. Neuron, 2004,42(6):983-991.
[14] OBICI S, ZHANG BB, KARKANIAS G, et al. Hypothalamic insulin signaling is required for inhibition of glucose production[J]. Nat Med, 2002,8(12):1376-1382.
[15] GELLING RW, MORTON GJ, MORRISON CD, et al. Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes [J]. Cell Metab, 2006,3(1):67-73.
[16] OBICI S, FENG Z, KARKANIAS G, et al. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats [J]. Nat Neurosci, 2002,5(6):566-572.
[17] BOURET SG. Early life origins of obesity: role of hypothalamic programming[J]. J Pediatr Gastroenterol Nutr, 2009, 48 Suppl 1:S31-38.
[18] COLEMAN DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice[J]. Diabetologia, 1978, 14(3):141-148.
[19] ZHANG Y, PROENCA R, MAFFEI M, et al. Positional cloning of the mouse obese gene and its human homologue[J]. Nature, 1994, 372(6505):425-432.
[20] TARTAGLIA LA, DEMBSKI M, WENG X, et al. Identification and expression cloning of a leptin receptor, OB-R[J]. Cell, 1995, 83(7):1263-1271.
[21] O’RAHILLY S, FAROOQI IS, YEO GS, et al. Minireview: human obesity-lessons from monogenic disorders[J]. Endocrinology, 2003,144(9):3757-3764.
[22] AHIMA RS, PRABAKARAN D, MANTZOROS C, et al. Role of leptin in the neuroendocrine response to fasting[J]. Nature, 1996,382(6588):250-252.
[23] MEISTER B. Control of food intake via leptin receptors in the hypothalamus[J]. Vitam Horm, 2000, 59:265-304.
[24] VAISSE C, HALAAS JL, HORVATH CM, et al. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice[J]. Nat Genet, 1996,14(1):95-97.
[25] MüNZBERG H1, HUO L, NILLNI EA, et al. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin[J]. Endocrinology, 2003,144(5):2121-2131.
[26] SAHU A. Minireview: A hypothalamic role in energy balance with special emphasis on leptin[J]. Endocrinology, 2004,145(6):2613-2620.
[27] BASKIN DG, BREININGER JF, SCHWARTZ MW. SOCS-3 expression in leptin-sensitive neurons of the hypothalamus of fed and fasted rats[J]. Regul Pept, 2000,92(1-3):9-15.
[28] LAWRENCE CB, CELSI F, BRENNAND J, et al. Alternative role for prolactin-releasing peptide in the regulation of food intake[J]. Nat Neurosci, 2000,3(7):645-646.
[29] ELCHEBLY M, PAYETTE P, MICHALISZYN E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene[J]. Science, 1999,283(5407):1544-1548.
[30] ELMQUIST JK, AHIMA RS, ELIAS CF, et al. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei [J]. Proc Natl Acad Sci USA, 1998,95(2):741-746.
[31] SIMERLY RB. Wired on hormones: endocrine regulation of hypothalamic development [J]. Curr Opin Neurobiol, 2005,15(1):81-85.
[32] BOURET SG. Development of hypothalamic neural networks controlling appetite [J]. Forum Nutr, 2010, 63:84-93.
[33] COTTRELL EC, CRIPPS RL, DUNCAN JS, et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat [J]. Am J Physiol Regul Integr Comp Physiol, 2009,296(3):R631-639.
[34] PROULX K, RICHARD D, WALKER CD. Leptin regulates appetite-related neuropeptides in the hypothalamus of developing rats without affecting food intake [J]. Endocrinology, 2002,143(12):4683-4692.
[35] MISTRY AM, SWICK A, ROMSOS DR. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice [J]. Am J Physiol, 1999,277(3 Pt 2):R742-747.
[36] CARON E, SACHOT C, PREVOT V, et al. Distribution of leptin-sensitive cells in the postnatal and adult mouse brain [J]. J Comp Neurol, 2010,518(4):459-476.
[37] BOURET SG. Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development [J]. J Nutr, 2010,140(3):653-657.
[38] HORVATH TL, BRUNING JC. Developmental programming of the hypothalamus:a matter of fat [J]. Nat Med, 2006,12(1):52-53.
[39] MCFADIN EL, MORRISON CD, BUFF PR, et al. Leptin concentrations in periparturient ewes and their subsequent offspring [J]. J Anim Sci, 2002,80(3):738-743.
[40] BOURET SG, SIMERLY RB. Development of leptin-sensitive circuits [J]. J Neuroendocrinol, 2007,19(8):575-582.
[41] BOURET SG, DRAPER SJ, SIMERLY RB. Trophic action of leptin on hypothalamic neurons that regulate feeding [J]. Science, 2004,304(5667):108-110.
[42] ATTIG L, SOLOMON G, FEREZOU J, et al. Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats [J]. Int J Obes (Lond), 2008,32(7):1153-1160.
[43] SHAPIRO A, CHENG KY, GAO Y, et al. The act of voluntary wheel running reverses dietary hyperphagia and increases leptin signaling in ventral tegmental area of aged obese rats [J]. Gerontology, 2011, 57(4):335-342.
[44] BI S, SCOTT KA, HYUN J, et al. Running wheel activity prevents hyperphagia and obesity in Otsuka long-evans Tokushima Fatty rats: role of hypothalamic signaling [J]. Endocrinology, 2005,146(4):1676-1685.
[45] PATTERSON CM, BOURET SG, DUNN-MEYNELL AA, et al. Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling [J]. Am J Physiol Regul Integr Comp Physiol, 2009,296(3):R537-548.
[46] KOZAK R, BURLET A, BURLET C, et al. Dietary composition during fetal and neonatal life affects neuropeptide Y functioning in adult offspring [J]. Brain Res Dev Brain Res, 2000, 125(1-2):75-82.
[47] PATTERSON CM, DUNN-MEYNELL AA, LEVIN BE. Three weeks of early-onset exercise prolongs obesity resistance in DIO rats after exercise cessation[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 294(2):R290-301.
[48] WANG C, GODAR RJ, BILLINGTON CJ, et al. Chronic administration of brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reverses obesity induced by high-fat diet [J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(5):R1320-1332.
[49] BANKS WA. Is obesity a disease of the blood-brain barrier? Physiological, pathological, and evolutionary considerations [J]. Curr Pharm Des, 2003, 9(10):801-809.
(編輯 胡愛玲)
The research progress of the fetal programming effects of maternal nutritional status on the hypothalamus appetite regulation network in offspring
YAN Jian-qun, WANG Nan, Lü Bo, SUN Bo, LUO Xiao, MENG Kai
(Department of Physiology and Pathophysiology, School of Basic Medicine,Xi’an Jiaotong University, Xi’an 710061, China)
Perinatal adverse nutritional factors may program the development of related tissue in offspring, and cause energy metabolism disorders and lead to the pathogenesis of related metabolic diseases. The hypothalamus is the main integration center of various appetite regulating signals. A variety of peptides which play important role in the hypothalamus appetite regulation network have been found. Studies have shown that the hypothalamus appetite regulation network has been established before birth. Late pregnancy and weaning may be the key period for the differentiation of appetite regulation system. Appetite regulation is a complex physiological process, and a variety of neurotransmitters, neuromodulators or peptides are involved in mediating the mechanism. Among them, leptin, which is released by fat cells, is the important factor of the control appetite and energy metabolism. Leptin may also play an important role in the programming effects of perinatal maternal obesity on obesity and metabolic disorders in offspring. The normal development of the hypothalamus appetite regulation network must rely on early birth leptin surge. Multiple regions of the hypothalamus, including appetite regulating centers, express leptin receptors. The investigation on the effects of perinatal nutritional status on the development of hypothalamic leptin neural regulation network may help to clarify the congenital factors of metabolic diseases.
perinatal renod; fetal programming; hypothalamus; leptin; appetite regulation
1990~1996年先后在瑞典隆德大學(xué)和美國(guó)特拉華大學(xué)做博士后研究或任研究員;近年來(lái)主持或參與科學(xué)研究項(xiàng)目和教學(xué)研究項(xiàng)目30余項(xiàng);主譯專著1部,主編、副主編或參編國(guó)家級(jí)教材13本;培養(yǎng)碩士、博士20余人;發(fā)表研究論文百余篇;曾分享“全國(guó)科學(xué)大會(huì)獎(jiǎng)”1項(xiàng)、省科技成果一等獎(jiǎng)1項(xiàng);主持陜西省國(guó)家級(jí)教學(xué)成果獎(jiǎng)3項(xiàng);現(xiàn)任中國(guó)生理學(xué)會(huì)常務(wù)理事,教育部基礎(chǔ)醫(yī)學(xué)專業(yè)類教學(xué)指導(dǎo)委員會(huì)副主委,國(guó)家自然科學(xué)基金委生命科學(xué)部、醫(yī)學(xué)部評(píng)審專家。
2015-08-15
2015-09-20
閆劍群. E-mail: jqyan@mail.xjtu.edu.cn
R338.2
A
10.7652/jdyxb201601001
閆劍群,男,博士、教授(二級(jí)),現(xiàn)為西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院“生理學(xué)” 國(guó)家重點(diǎn)學(xué)科帶頭人之一,“生理學(xué)”國(guó)家精品課程、“生理學(xué)”國(guó)家級(jí)教學(xué)團(tuán)隊(duì)負(fù)責(zé)人,享受國(guó)務(wù)院特殊津貼。主要研究領(lǐng)域:味覺生理學(xué);攝食調(diào)控與代謝神經(jīng)生物學(xué);高等醫(yī)學(xué)教育。
優(yōu)先出版:http://www.cnki.net/kcms/detail/61.1399.R.20151209.1741.030.html(2015-12-09)