吳樹(shù)才,楊永輝,李輝,郭素敏,李秀武,杜杰杰,宋利超,高莉(河北省胸科醫(yī)院,石家莊05004;河北師范大學(xué)生命科學(xué)學(xué)院)
?
人胎盤(pán)間充質(zhì)干細(xì)胞對(duì)小鼠肺纖維化的影響及機(jī)制
吳樹(shù)才1,楊永輝1,李輝1,郭素敏1,李秀武2,杜杰杰2,宋利超2,高莉2(1河北省胸科醫(yī)院,石家莊050041;2河北師范大學(xué)生命科學(xué)學(xué)院)
摘要:目的觀察人胎盤(pán)間充質(zhì)干細(xì)胞對(duì)小鼠肺纖維化的影響,并探討其作用機(jī)制。方法采用組織塊貼壁法分離并體外培養(yǎng)人胎盤(pán)間充質(zhì)干細(xì)胞。將30只C57BL/6小鼠隨機(jī)均分為觀察組、對(duì)照組,均給予氣管內(nèi)注入博來(lái)霉素8.5 mg/kg建立肺纖維化模型。造模成功后,觀察組尾靜脈輸注體外培養(yǎng)的人胎盤(pán)間充質(zhì)干細(xì)胞0.3 mL(細(xì)胞數(shù)為1.0×106個(gè)),對(duì)照組注射等量生理鹽水,1次/d,連續(xù)注射3天;處死小鼠,取肺組織,檢測(cè)肺組織羥脯氨酸含量,采用Western blotting法檢測(cè)肺組織血管內(nèi)皮生長(zhǎng)因子(VEGF)、內(nèi)皮素1(ET-1)和血管生成素2(Ang-2)蛋白。結(jié)果觀察組肺組織羥脯氨酸含量為(5.76±0.13)μg/mL,對(duì)照組為(8.13±0.87)μg/mL,兩組比較P<0.01。觀察組肺組織VEGF的相對(duì)表達(dá)量為52.7±4.7、ET-1為68.1±5.4、Ang-2為59.6±2.8,均較對(duì)照組(100)降低(P均<0.05)。結(jié)論人胎盤(pán)間充質(zhì)干細(xì)胞可抑制小鼠肺組織纖維化形成;降低肺組織VEGF、ET-1和Ang-2表達(dá)可能是其作用機(jī)制。
關(guān)鍵詞:肺纖維化;胎盤(pán)間充質(zhì)干細(xì)胞;博來(lái)霉素;血管內(nèi)皮生長(zhǎng)因子;內(nèi)皮素1;血管生成素2;小鼠
肺纖維化是各種內(nèi)外致病原引起慢性肺疾病的共同結(jié)局,是涉及細(xì)胞、細(xì)胞因子、細(xì)胞外基質(zhì)(ECM)等多因素、多環(huán)節(jié)的復(fù)雜疾病[1],但其發(fā)生的確切機(jī)制仍不明確。激素和非激素免疫抑制劑、抗纖維化、抗細(xì)胞因子及免疫調(diào)節(jié)等是目前臨床常用治療肺纖維化的方法,但效果均不佳,患者病死率高[2,3]。研究發(fā)現(xiàn),干細(xì)胞移植可以抑制病變器官修復(fù)過(guò)程中的組織重塑與纖維化過(guò)程[4]。胎盤(pán)間充質(zhì)干細(xì)胞是從胎盤(pán)獲取的一類干細(xì)胞,是介于胚胎干細(xì)胞和成體干細(xì)胞之間的新型干細(xì)胞,具有不被受體免疫系統(tǒng)拒絕的優(yōu)點(diǎn)[5]。2014年3月~2015年11月,我們觀察了人胎盤(pán)間充質(zhì)干細(xì)胞對(duì)小鼠肺纖維化的影響,并探討其作用機(jī)制。
1材料與方法
1.1材料C57BL/6小鼠30只,雌性,6~8周齡,平均體質(zhì)量19.8 g,購(gòu)自中國(guó)科學(xué)院上海實(shí)驗(yàn)動(dòng)物中心,飼養(yǎng)于河北師范大學(xué)實(shí)驗(yàn)動(dòng)物中心SPF級(jí)動(dòng)物房。博萊霉素粉針劑購(gòu)于哈爾濱萊博通藥業(yè)有限公司,生理鹽水稀釋,配制成終濃度為1.7 mg/mL的博來(lái)霉素溶液。CD73、CD90、CD105、HLA-DR、CD19、CD34、CD45、鼠抗人IgG2a和IgG1抗體均購(gòu)自BioSciences公司,血管內(nèi)皮生長(zhǎng)因子(VEGF)、內(nèi)皮素1(ET-1)和血管生成素2(Ang-2)抗體購(gòu)自美國(guó)Santa Cruz CA公司。
1.2人胎盤(pán)間充質(zhì)干細(xì)胞分離、培養(yǎng)和鑒定剪取健康新生兒廢棄胎盤(pán)的胎盤(pán)絨毛膜面組織(厚1~2 cm),剪成1 mm×1 mm×1 mm的碎塊,PBS漂洗至無(wú)色,轉(zhuǎn)入細(xì)胞培養(yǎng)瓶中,加入3 mL間充質(zhì)干細(xì)胞培養(yǎng)液,放入37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)。選取處于對(duì)數(shù)生長(zhǎng)期的第三代胎盤(pán)間充質(zhì)干細(xì)胞,0.25%胰蛋白酶消化,收集細(xì)胞懸液于離心管中,制備成細(xì)胞密度為1×105/mL的細(xì)胞懸液;取9只試管,分別加入150 μL細(xì)胞懸液,再分別加入鼠抗人單克隆抗體CD73、CD90、CD105、HLA-DR、CD19、CD34、CD45,以鼠抗人IgG2a-FITC、IgG1-PE作為陰性對(duì)照,室溫避光放置10 min。流式細(xì)胞儀檢測(cè)結(jié)果顯示,培養(yǎng)的人胎盤(pán)間充質(zhì)干細(xì)胞高表達(dá)間充質(zhì)干細(xì)胞表面標(biāo)志物CD73、CD90、CD105,不表達(dá)HLA-DR、CD19、CD34、CD45,證明其具有間充質(zhì)干細(xì)胞特性,細(xì)胞培養(yǎng)成功。
1.3動(dòng)物分組及處理將小鼠隨機(jī)分為觀察組及對(duì)照組各15只。兩組均制備肺纖維化模型[5,6]:經(jīng)腹腔注射速眠新針麻醉,暴露氣管,氣管內(nèi)注入博來(lái)霉素溶液(8.5 mg/kg)0.1 mL,旋轉(zhuǎn)小鼠變換體位,使博萊霉素均勻分布。造模第4天,對(duì)照組經(jīng)尾靜脈注射生理鹽水0.3 mL,觀察組經(jīng)尾靜脈注射體外培養(yǎng)的人胎盤(pán)間充質(zhì)干細(xì)胞0.3 mL(細(xì)胞數(shù)為1.0×106個(gè)),均每天注射1次,連續(xù)注射3天。X-半乳糖(X-gal)染色結(jié)果顯示,干細(xì)胞經(jīng)靜脈注射進(jìn)入體內(nèi)后能夠在肺臟中定植。處死小鼠,取肺組織。
1.4相關(guān)指標(biāo)觀察
1.4.1肺組織羥脯氨酸含量將左肺組織烘干,研碎成為組織粉末。兩組均稱取7.5 mg肺組織粉末置于水解管中,加入3 mL 6 mol/L鹽酸震蕩懸浮,110 ℃酸解18 h。取1 mL酸解液中和、還原、沸水浴及萃取后,DMBA顯色,采用標(biāo)準(zhǔn)曲線法計(jì)算羥脯氨酸含量。
1.4.2肺組織VEGF、ET-1、Ang-2蛋白相對(duì)表達(dá)量采用Western blotting法。提取右肺組織總蛋白,進(jìn)行聚丙烯酰胺變性凝膠電泳,將特異性條帶電轉(zhuǎn)移至硝酸纖維素膜,脫脂奶粉封閉,分別與VEGF(1∶500)、ET-1(1∶500)、Ang-2(1∶300)特異性抗體孵育,辣根過(guò)氧化物酶標(biāo)記抗體,攝片。將同一張蛋白印跡膜曝光后,采用洗脫抗體再進(jìn)行孵育雜交。以GAPDH作為內(nèi)參照。將對(duì)照組的表達(dá)量計(jì)為100,計(jì)算觀察組相對(duì)表達(dá)量。每項(xiàng)實(shí)驗(yàn)重復(fù)檢測(cè)3批次以上的不同樣本,取平均值。
2結(jié)果
2.1兩組肺組織羥脯氨酸含量比較觀察組肺組織羥脯氨酸含量為(5.76±0.13)μg/mL,對(duì)照組為(8.13±0.87)μg/mL,兩組比較P<0.01。
2.2兩組肺組織VEGF、ET-1和Ang-2蛋白相對(duì)表達(dá)量比較觀察組肺組織VEGF的相對(duì)表達(dá)量為52.7±4.7、ET-1為68.1±5.4、Ang-2為59.6±2.8,均較對(duì)照組(100)降低(P均<0. 05)。
3討論
間充質(zhì)干細(xì)胞具有多向分化、支持造血、促進(jìn)造血干細(xì)胞植入、調(diào)節(jié)免疫以及分離培養(yǎng)操作相對(duì)簡(jiǎn)單等特點(diǎn)。間充質(zhì)干細(xì)胞作為種子細(xì)胞,在臨床上主要用于治療機(jī)體無(wú)法自然修復(fù)的組織細(xì)胞和器官損傷的多種難治性疾病,在修復(fù)器官功能方面具有無(wú)可比擬的優(yōu)勢(shì)[7,8]; 作為免疫調(diào)節(jié)細(xì)胞, 治療免疫排斥和自身免疫性疾病[9]。胎盤(pán)間充質(zhì)干細(xì)胞是從胎盤(pán)獲取的一類干細(xì)胞,與從臍帶血或骨髓中提取的干細(xì)胞相比,其提取干細(xì)胞數(shù)量更多、可分化的組織細(xì)胞更廣泛[10],且不存在免疫排斥反應(yīng)。胎盤(pán)來(lái)源干細(xì)胞取自母體生產(chǎn)后的胎盤(pán)組織,其提取過(guò)程對(duì)母體和新生兒不會(huì)造成任何損傷,來(lái)源不受倫理學(xué)和臨床醫(yī)學(xué)的限制,是最理想的干細(xì)胞保存和利用資源。胎盤(pán)來(lái)源的間充質(zhì)干細(xì)胞有可能成為骨髓間充質(zhì)干細(xì)胞的理想替代物,并具有更大的應(yīng)用潛能。Lazarus等[11]提取并培養(yǎng)緩解期血液腫瘤患者的自體胎盤(pán)間充質(zhì)干細(xì)胞,在體外擴(kuò)增培養(yǎng)4~7周后靜脈注射入患者體內(nèi),注射后未觀察到機(jī)體出現(xiàn)不良反應(yīng)。目前自體胎盤(pán)間充質(zhì)干細(xì)胞的臨床應(yīng)用逐漸增多,病種涉及放療及化療后造血重建、移植物抗宿主病、心臟系統(tǒng)疾病等,均證實(shí)經(jīng)靜脈輸注胎盤(pán)間充質(zhì)干細(xì)胞安全可靠。Ninichuk等[12]將原始的成血管細(xì)胞注射進(jìn)入肝臟纖維化模型大鼠的病變肝臟中,發(fā)現(xiàn)肝臟纖維化程度減輕。給予慢性腎損傷模型小鼠每周注射多能間充質(zhì)干細(xì)胞(6~10周),可減少腎臟的間質(zhì)容量、間質(zhì)膠原含量及表達(dá)平滑肌肌動(dòng)蛋白的間質(zhì)細(xì)胞數(shù)量,從而減輕腎臟纖維化。上述研究結(jié)果提示,干細(xì)胞移植可抑制病變器官修復(fù)過(guò)程中的組織重塑與纖維化過(guò)程,有利于器官功能的修復(fù)。
肺纖維化的病理特征為肺泡壁(肺泡炎)受損,成纖維細(xì)胞/肌成纖維細(xì)胞異常聚集,膠原蛋白和其他ECM過(guò)度沉積,異常組織修復(fù)導(dǎo)致肺功能喪失[13,14]。羥脯氨酸是膠原蛋白的主要組分,其水平反映膠原蛋白含量。本研究給予肺纖維化小鼠連續(xù)3天靜脈注射人胎盤(pán)間充質(zhì)干細(xì)胞,結(jié)果顯示觀察組肺組織羥脯氨酸含量降低,提示人胎盤(pán)間充質(zhì)干細(xì)胞可抑制肺纖維化小鼠肺組織纖維化形成。研究發(fā)現(xiàn),VEGF、ET-1和Ang-2可促進(jìn)內(nèi)皮細(xì)胞遷移、增殖及血管生成;Ang-2還能抑制脈絡(luò)膜新生血管的生成和成熟,促進(jìn)瘢痕形成,引起肺結(jié)構(gòu)重塑,刺激肺成纖維細(xì)胞增殖,并調(diào)節(jié)成纖維細(xì)胞的趨化、增殖,合成膠原,導(dǎo)致膠原和纖維素沉積增多,造成肺泡壁基底膜增厚和彌漫性上皮下纖維化[15~17]。本研究結(jié)果顯示,觀察組肺組織VEGF、ET-1和Ang-2蛋白表達(dá)明顯降低,提示人胎盤(pán)間充質(zhì)干細(xì)胞可通過(guò)降低以上三種蛋白的表達(dá)進(jìn)而抑制微血管形成、延緩肺組織纖維化進(jìn)程。
總之,胎盤(pán)間充質(zhì)干細(xì)胞可抑制肺組織纖維化形成;降低肺組織VEGF、ET-1和Ang-2蛋白表達(dá)可能是其作用機(jī)制。
參考文獻(xiàn):
[1] Micheletti VC, Moreira Jda S, Ribeiro MO, et al. Drug-resistant tuberculosis in subjects included in the Second National Survey on Antituberculosis Drug Resistance in Porto Alegre Brazil[J]. J Bras Pneumol, 2014,40(2):155-163.
[2] Swaminathan S. Tuberculosis in India-Can we ensure a test, treatment & cure for all[J]. Indian J Med Res, 2014,139(3):333-336.
[3] Syal K, Joshi H, Chatterji D, et al. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacteriumsmegmatis[J]. FEBS J, 2015,282(19):3773-3785.
[4] Kordes C, Sawitza I, G?tze S, et al. Beyond fibrosis: stellate cells as liver stem cells[J]. Z Gastroenterol, 2015,53(12):1425-1431.
[5] Passipieri JA, Kasai-Brunswick TH, Suhett G, et al. Improvement of cardiac function by placenta-derived mesenchymal stem cells does not require permanent engraftment and is independent of the insulin signaling pathway[J]. Stem Cell Res Ther, 2014,5(4):102.
[6] Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease[J]. Lancet, 2011,378(9795):1015-1026.
[7] Guillaume-Gentil O, Semenov OV, Zisch AH, et al. pH-controlled recovery of placenta-derived mesenchymal stem cell sheets[J]. Biomaterials, 2011,32(19):4376-4384.
[8] Di Bernardo J, Maiden MM, Jiang G, et al. Paracrine regulation of fetal lung morphogenesis using human placenta-derived mesenchymal stromal cells[J]. J Surg Res, 2014,190(1):255-263.
[9] Amendola D, Nardella M, Guglielmi L, et al. Human placenta-derived neurospheres are susceptible to transformation after extensive in vitro expansion[J]. Stem Cell Res Ther, 2014,5(2):55.
[10] Miki T, Grubbs B. Therapeutic potential of placenta-derived stem cells for liver diseases: current status and perspectives[J]. J Obstet Gynaecol Res, 2014,40(2):360-368.
[11] Lazarus HM, Haynesworth SE, Gerson SL, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use[J]. Bone Marrow Transplant, 1995,16(4):557-564.
[12] Ninichuk V, Gross O, Segerer S, et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice[J]. Kidney Int, 2006,70(1):121-129.
[13] Raja A. Immunology of tuberculosis[J]. Indian J Med Res, 2004,120(4):213-232.
[14] Stubenrauch K, Wessels U, Essig U, et al. An immunodepletion procedure advances free angiopoietin-2 determination in human plasma samples during anti-cancer therapy with bispecific anti-Ang2/VEGF CrossMab[J]. J Pharm Biomed Anal, 2014(102C):459-467.
[15] Vandenbunder B. Angiopoietin-2, a new molecular actor involved in vascular tree morphogenesis[J]. Bull Cancer, 1997,84(11):1079-1080.
[16] Rey AD, Mahuad CV, Bozza VV, et al. Endocrine and cytokine responses in humans with pulmonary tuberculosis[J]. Brain Behav Immun, 2007,21(2):171-179.
[17] Serrano CJ, Castaeda-Delgado JE, Trujillo-Ochoa JL, et al. Regulatory T-cell subsets in response to specific Mycobacterium tuberculosis antigens in vitro distinguish among individuals with different QTF and TST reactivity[J]. Clin Immunol, 2015,157(2):145-155.
Effect of placenta-derived mesenchymal stem cells on pulmonary fibrosis in mice and its mechanism
WUShucai1,YANGYonghui,LIHui,GUOSumin,LIXiuwu,DUJiejie,SONGLichao,GAOLi
(1HebeiProvinceChestHospital,Shijiazhuang050041,China)
Abstract:ObjectiveTo observe the effect of placenta-derived mesenchymal stem cells on the pulmonary fibrosis in mice and to explore its mechanism. MethodsHuman placenta-derived mesenchymal stem cells were isolated and cultured in vitro by tissue explants adherent method. Thirty C57BL/6 mice were randomly divided into the observation group and the control group, and all mice were injected with 8.5 mg/kg to establish the model of pulmonary fibrosis. After the models were successful established, mice in the observation group received intravenous injection of placenta-derived mesenchymal stem cells 0.3 mL (cell number of 1.0×106), and mice in the control group were injected with the same amount of normal saline, once a day for 3 days. Then, the mice were killed to collect the lung tissues to determine the content of hydroxyproline. The expression of vascular endothelial growth factor (VEGF), endothelin 1 (ET-1) and angiogenin 2 (Ang-2) proteins was determined by Western blotting. ResultsThe hydroxyproline contents in the lung tissue of observation group and control group were respectively (5.76±0.13) μ/mL and (8.13±0.87) μg/mL, and significant difference was found between the two groups (P<0.01). The expression of VEGF, ET-1 and Ang-2 in the lung tissues of the observation group was respectively 52.7±4.7, 68.1±5.4 and 59.6±2.8, which was all lower than that of the control group (all P<0.05). ConclusionPlacenta-derived mesenchymal stem cells can inhibit the formation of pulmonary fibrosis and its mechanism may be related with the decreased expression of VEGF, ET-1 and Ang-2 protein in lung tissue.
Key words:pulmonary fibrosis; placenta-derived mesenchymal stem cells; bleomycin; vascular endothelial growth factor; endothelin 1; angiogenin 2; mice
(收稿日期:2015-12-02)
中圖分類號(hào):R563
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-266X(2016)12-0013-03
doi:10.3969/j.issn.1002-266X.2016.12.004
通信作者簡(jiǎn)介:楊永輝(1972-),男,主任醫(yī)師,主要研究方向?yàn)椴±韺W(xué)診斷及細(xì)胞免疫治療。E-mail: yonghuiyang@vip.163.com
第一作者簡(jiǎn)介:吳樹(shù)才(1963-),男,主任醫(yī)師,主要研究方向?yàn)榻Y(jié)核及呼吸系統(tǒng)疾病。E-mail: shucaiwu2009@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(31101638);河北省省級(jí)重大醫(yī)學(xué)科研課題(ZD2013060)。