王凌云 ,杜曉輝 ,2,張方方 ,李岸林 ,孫道恒
(1.廈門大學(xué)機(jī)電工程系,廈門 361005;2.機(jī)械工業(yè)儀器儀表綜合技術(shù)經(jīng)濟(jì)研究所,北京 100055)
硅作為機(jī)械材料,使微傳感器和執(zhí)行器系統(tǒng)在航空領(lǐng)域有著越來越廣泛的應(yīng)用。但隨著對航空飛行器智能控制的迫切需求,硅基MEMS傳感器和執(zhí)行器已難以滿足惡劣運(yùn)行環(huán)境的巨大挑戰(zhàn)。在超過150℃時(shí),硅基電子元器件中的PN結(jié)性能開始改變;在超過600℃時(shí),硅基微機(jī)械結(jié)構(gòu)的楊氏模量會降低。因此,即使將傳感器和變換器分離,硅基MEMS器件也難以在超過400℃的惡劣環(huán)境(例如發(fā)動機(jī)內(nèi)部)中正常工作。幸運(yùn)的是,以碳化硅(SiC)[1]為代表的多種先進(jìn)耐高溫功能材料被相繼開發(fā)和應(yīng)用,使高溫MEMS技術(shù)得以不斷改進(jìn)和提升,進(jìn)而能應(yīng)用于具有腐蝕和侵蝕等特點(diǎn)的惡劣工作環(huán)境。
航空領(lǐng)域惡劣環(huán)境常用的傳感器和執(zhí)行器有溫度傳感器[2]、壓力傳感器[3-6]、諧振器[7]、霧化器[8]和應(yīng)力傳感器[9-10]等。據(jù)文獻(xiàn)分析可知,目前航空MEMS傳感器和執(zhí)行器核心器件的制備主要涉及碳化硅、金剛石、氮化鋁(AlN)、藍(lán)寶石、低溫共燒陶瓷、高溫共燒陶瓷和聚合物前驅(qū)體陶瓷(Polymer Derived Ceramics,PDC)等多種先進(jìn)功能材料的加工成型技術(shù),尤其是微納結(jié)構(gòu)的加工技術(shù)。在不考慮成本的前提下,材料的MEMS工藝兼容性越好,被應(yīng)用的可能性自然就越高。但是這些功能材料的可加工性卻遠(yuǎn)不如單晶硅材料,因?yàn)閷毫迎h(huán)境的抗蝕性和加工難度往往來源于材料的同一特點(diǎn),例如SiC材料具有極好的化學(xué)穩(wěn)定性,能夠?qū)勾蠖鄶?shù)酸堿環(huán)境;然而,普通的各向同性或異性濕法腐蝕工藝難以進(jìn)行SiC材料的圖案化處理。因此,對此類功能材料物化特性的充分了解是實(shí)現(xiàn)材料微納加工的基礎(chǔ)。
碳化硅從20世紀(jì)90年代開始被研究[11],此材料有極好的機(jī)械和化學(xué)穩(wěn)定性,還有適合用于高溫電子的寬能帶間隙[12-13],因而常被用作高溫和侵蝕環(huán)境下的壓阻或電容性的結(jié)構(gòu)材料。金剛石有與SiC相似的高溫兼容性,它的高溫應(yīng)用依賴于鈍化層的防氧化保護(hù)[14],一般通過硅基底沉積的方法獲得,但是高昂的材料成本是限制此類材料應(yīng)用的重要原因[15]。AlN是一種高溫條件下仍有壓電特性的特殊材料[16],單晶的本征AlN壓電薄膜通過沉積工藝即可獲得,因而不需要特殊基底,也不存在真實(shí)的居里點(diǎn),它的工作溫度僅受限于Al-N化學(xué)鍵的高溫?cái)嗔眩延袦y試結(jié)果表明,AlN在1150℃下仍有壓電效應(yīng)[17]。藍(lán)寶石的高溫潛在應(yīng)用得益于高的熔點(diǎn)、化學(xué)惰性和眾所周知的材料光學(xué)特點(diǎn)和強(qiáng)度,但是現(xiàn)有的MEMS加工技術(shù)難以實(shí)現(xiàn)藍(lán)寶石基微納器件的制備,超快脈沖激光切削技術(shù)有望實(shí)現(xiàn)此材料的初步加工[18],但仍需進(jìn)一步研究。高/低溫共燒陶瓷主要用作傳感器的結(jié)構(gòu)支撐材料,有較好的高頻和高速傳輸特性,共燒溫度決定了陶瓷使用溫度的上限,適合用于高溫?zé)o線無源傳感器和執(zhí)行器的框架制作。PDC材料有良好的硬度、抗氧化和抗熱沖擊等機(jī)械特性[19-21],由PDC制備的SiCN[22]材料強(qiáng)度(500~1200MPa)和熱沖擊穩(wěn)定性比SiC等材料具有明顯優(yōu)勢,低的密度(2.2g/cm3)和熱膨脹系數(shù)(0.5×10-6/K)為材料兼容性打下了良好基礎(chǔ),材料熱導(dǎo)率的熱變化量可控制在1W/(m·K)(1500℃之內(nèi)),楊氏模量的熱變化量可以控制在 1GPa(1000℃以內(nèi))[23];材料經(jīng)摻雜還可形成電導(dǎo)、磁導(dǎo)和壓阻等電學(xué)特性[24-29],這樣的機(jī)電特性為PDC基傳感器近高溫場的直接測量提供了可能。
在上述材料中,兼具機(jī)械和電學(xué)兩方面應(yīng)用的主要有SiC、AlN和PDC 3種材料,而SiC材料是移植硅基微納加工技術(shù)最為成熟的一種,圓片級材料已較為成熟,可批量制備,其機(jī)電特性可參考文獻(xiàn)[22,30-31]。相比其他只有機(jī)械性能的材料而言,這3種材料在普遍使用電信號的傳感器和執(zhí)行器領(lǐng)域有更為廣泛的應(yīng)用可能。從結(jié)構(gòu)和工藝層面出發(fā),滿足機(jī)電功能的器件結(jié)構(gòu)形式自然相對復(fù)雜,因而對微納加工工藝的多樣性要求要比其他材料更多。下文將分別對這3種材料的成型成性關(guān)鍵微納制造技術(shù)進(jìn)行介紹。
SiC分單晶、多晶和無定形3種類型,多晶和無定形SiC可用等離子體增強(qiáng)化學(xué)氣相沉積(PECVD)的方法獲得,對基底材料選擇性較低。單晶SiC常用低壓力化學(xué)氣相沉積(LPCVD)的方法制備[32],條件為二氯甲烷(DCS)和二氯乙烯(DCE)氣體按一定比例混合,溫度為850~950℃、壓力為33.25Pa左右。薄膜的殘余應(yīng)力和類型可通過改變DCS和DCE氣流流量進(jìn)行改善。碳源充足時(shí),有利于生成附帶壓縮應(yīng)力的六方α-SiC晶體;硅源充足時(shí),有利于生成附帶拉伸應(yīng)力的立方β-SiC晶體。
初始制備的SiC薄膜的電阻率很大,表面粗糙度也很大(RMS約為50nm),因此在電子器件和功能器件應(yīng)用之前,必要的摻雜和CMP(Chemical Mechanical Polishing)平滑工藝必不可少。n型SiC:N可通過添加NH3獲得,氮?dú)饬髁吭礁?,薄膜電阻率越低?0-3Ω·cm的電阻率是此種方法能達(dá)到的最低值。除此之外,絕緣層是SiC用于電子器件的必要結(jié)構(gòu),而SiC的氧化比單晶硅的氧化要困難,原因是SiC與O2反應(yīng)生成SiO2和CO,SiC的化學(xué)性質(zhì)比Si穩(wěn)定,化學(xué)鍵斷裂再氧化的用時(shí)比Si長,而且CO擴(kuò)散出SiO2也需要時(shí)間。在SiC的氧化層難以滿足高功率和高溫電子的應(yīng)用需求時(shí),厚的多晶硅氧化層或硅酸磷玻璃(PSG)層可改善此問題。
單晶SiC一般從單晶硅基底上直接生長獲得,因而傳統(tǒng)MEMS表面工藝難以實(shí)現(xiàn)懸空的單晶SiC結(jié)構(gòu)。而多晶SiC和無定形SiC卻可以通過多種不同基底上生長和沉積獲得,例如多晶硅基底上生長多晶SiC、氧化層或金屬基底上沉積無定形SiC(沉積溫度低于400℃)等,這些基底可作為可動結(jié)構(gòu)的犧牲層,硅基MEMS的濕法腐蝕工藝(視工藝兼容性選擇KOH、TMAH或者HF溶液)可被移植用于犧牲層的腐蝕,可獲得類似圖1所示的諧振器等懸空可動結(jié)構(gòu)[33]。
圖1 表面加工工藝制備的SiC側(cè)向諧振結(jié)構(gòu)Fig.1 SEM micrograph of a SiC lateral resonant structure fabricated by surface micromachining
圖2 金屬Al做掩膜導(dǎo)致的SiC底面粗糙現(xiàn)象Fig.2 Al has been linked to micro masking,which can result in severe etch field roughening
在犧牲層刻蝕之前,SiC層需通過反應(yīng)離子刻蝕(RIE)技術(shù)進(jìn)行圖案化。在SiC刻蝕時(shí),刻蝕氣體中會混合較大量的O2,導(dǎo)致普通的掩膜材料難以使用,而常用金屬掩膜Al會導(dǎo)致刻蝕面變粗糙,如圖2所示,這會導(dǎo)致接觸型電容壓力傳感器無法正常工作。大量試驗(yàn)證明,金屬Ni是目前較為合適的掩膜金屬,有較高的選擇比,也幾乎不會出現(xiàn)長草現(xiàn)象,本課題組采用Ni掩膜刻蝕結(jié)果如圖3所示。另一種利用微模塑原理的方法也能避免干法刻蝕引起的缺點(diǎn),基本方法是在硅凹槽內(nèi)的犧牲層上沉積一定厚度SiC材料,再經(jīng)過研拋減薄和犧牲層釋放,即可獲得SiC基可動結(jié)構(gòu),如圖4所示[34]。
圖3 Ni做掩膜,干法刻蝕獲得的光滑凹槽底面Fig.3 Ni has been the mask, and the etching bottom is smooth
圖4 利用微模塑原理制備的SiC側(cè)向諧振器Fig.4 SEM micrograph of a SiC lateral resonant structure fabricated by micromolding
隨著單晶SiC材料制備技術(shù)的不斷發(fā)展,厚度只有幾μm的表面加工工藝無法滿足3D-SiC器件的應(yīng)用需求,因而對單晶SiC體材料加工技術(shù)的需求日益迫切。如前所述,濕法腐蝕工藝難以對單晶SiC材料進(jìn)行有效的體加工,而濕法腐蝕單晶硅基底的方法并不是嚴(yán)格意義上的SiC材料體加工技術(shù)[35]。因而,結(jié)合物理和化學(xué)刻蝕的深反應(yīng)離子刻蝕(DRIE)技術(shù)被廣泛研究和應(yīng)用,刻蝕氣體的化學(xué)組分和掩膜技術(shù)的改進(jìn)是兩個(gè)主要的研究方面。多種反應(yīng)氣體組合被探究和使用,包括CF4/O2、SF6/O2、NF3/O2、CHF3/O2、CBrF3/O2、CHF3/CF4,NF3/CHF3、SF6/CHF3和HBr/Cl2[36-43]。在掩膜方面,除了Ni這一類的金屬掩膜,還研究了氧化硅、氮化硅和氮化鋁等[36-39,42]非金屬掩膜??涛g深度達(dá)到幾十μm,甚至上百μm的DRIE工藝條件早已獲得[44],如圖5所示,但目前仍無法獲得深寬比和硅相比擬的梳齒類結(jié)構(gòu)。
除了傳統(tǒng)MEMS制備工藝移植的方法之外,類似激光打孔的技術(shù)也被用于SiC材料的微加工處理,與DRIE刻蝕的單晶硅通孔(圖6(a))相比,可獲得如圖6(b)所示的SiC圓孔,側(cè)壁陡直度和光滑度都有待進(jìn)一步改善[45]。
圖5 利用DIRE技術(shù)刻蝕出的深度達(dá)46μm的SiC凹槽Fig.5 46μm-deep SiC groove etched by DRIE
圖6 不同加工技術(shù)制備孔的SEM圖Fig.6 SEM of holes prepared by different techniques
復(fù)雜3D器件的制備離不開結(jié)構(gòu)層的粘接技術(shù),硬質(zhì)材料鍵合的方法是實(shí)現(xiàn)低遲滯和低蠕變性能的基礎(chǔ),因此借鑒單晶硅的鍵合工藝,SiC與7740玻璃、單晶硅和SiC 3種材料的鍵合均有研究。課題組實(shí)現(xiàn)了SiC與7740玻璃的陽極鍵合,如圖7所示;PSG作為介質(zhì)層能有效實(shí)現(xiàn)SiC與單晶硅的熱壓鍵合,如圖8所示;而LPCVD制備的SiO2也可作為介質(zhì)層以實(shí)現(xiàn)單晶SiC與單晶SiC的鍵合,如圖9所示。在后兩種鍵合中,鍵合面的鏡面拋光和1100℃的退火條件是成功鍵合的關(guān)鍵。
圖7 SiC與7740玻璃陽極鍵合斷面SEM圖Fig.7 Sectional SEM view of SiC and 7740 bonded with anodic bonding
圖8 SiC與單晶硅通過PSG介質(zhì)層鍵合的紅外圖像Fig.8 IR image of the bonded wafers of SiC and single crystal silicon with PSG dielectric layer
圖9 單晶SiC與單晶SiC通過LPCVD-SiO2介質(zhì)層鍵合的斷面SEM圖Fig.9 Sectional SEM view of SiC and SiC bonded with LPCVD-SiO2 dielectric layer
AlN薄膜可通過濺射沉積的方法獲得[46],通過控制反應(yīng)壓力、基底溫度和射頻偏壓,可獲得晶型(002)一致的AlN薄膜;也可以通過物理氣相轉(zhuǎn)移(PVT)的方法制備,在SiC基底上能實(shí)現(xiàn)異質(zhì)外延,在AlN基底上能實(shí)現(xiàn)同質(zhì)外延[47-48]。
AlN常被用作壓電器件的主要結(jié)構(gòu)層,而所用厚度一般在10μm以下,因此體加工工藝使用相對較少,使用較多的圖案化工藝為干法刻蝕工藝[49-51],可用 Cl2/BCl3/Ar混合氣體刻蝕,SiO2是合適的掩膜材料[51],配合類似硅基器件的犧牲層工藝,可獲得如圖10[46]所示的懸空AlN復(fù)合薄膜諧振器。體加工工藝方面,近100℃的H3PO4溶液可以腐蝕AlN,如圖11所示[52];70℃左右的KOH溶液也可以腐蝕AlN,如圖12所示[53]。但是腐蝕表面形貌很差,遠(yuǎn)未達(dá)到單晶硅腐蝕界面的光滑程度。
圖10 干法刻蝕并釋放的AlN懸空諧振器Fig.10 Dry etched AlN microresonator
圖11 AlN薄膜在90℃的H3PO4溶液中的腐蝕結(jié)果Fig.11 Results of wet etched AlN with H3PO4 and temperature is 90℃
圖12 N極AlN的腐蝕結(jié)果Fig.12 Etched results of N-polar AlN
AlN鍵合的可行性已被證實(shí)。AlN通過濺射沉積在4寸單晶硅片上獲得表面粗糙度RMS為0.13nm的AlN薄膜;氬等離子活化后,表面粗糙度RMS為0.33nm;預(yù)鍵合溫度、時(shí)間為450℃、1h;最后在300℃、氮?dú)夥諊鷥?nèi)退火3h,完成鍵合。圖13為鍵合后的Si/AlN-AlN/Si組合片的紅外圖像;圖14為鍵合界面的TEM圖,結(jié)果表明,AlN和AlN可實(shí)現(xiàn)良好鍵合,鍵合界面為高O低N的AlNO物質(zhì)[54-55]。
圖13 鍵合后的Si/AlN-AlN/Si組合片的紅外圖像Fig.13 IR image of the bonded Si/AlN-AlN/Si
PDC材料的制備工藝流程一般為合成→交聯(lián)→熱分解?;诹己玫囊合嘀圃焯匦院蜔岱€(wěn)定性,在PDC的工藝加工方面,基本形成了如圖15所示的兩種PDC成型流程,即基于微模具的加成工藝和基于光刻技術(shù)的減成工藝[26]。幾種典型的SiCN陶瓷結(jié)構(gòu)如圖16所示[21,56-57]。
目前,雖然國外對PDC材料及其初步的應(yīng)用開展了部分工作,但PDC的成膜工藝仍是阻礙其與MEMS技術(shù)充分結(jié)合的最大障礙,目前可查知的最大PDC陶瓷膜片尺寸約為1cm[58],這與傳統(tǒng)MEMS工藝的寸級圓片批量制備有很大差距。另外,SiCN材料在交聯(lián)和熱解的過程中會有高達(dá)38%的收縮,退火溫度對材料性質(zhì)也會產(chǎn)生嚴(yán)重的影響[19,20,59]。
本文梳理了航空惡劣環(huán)境中應(yīng)用的微型傳感器和執(zhí)行器,獲得實(shí)現(xiàn)傳感器和執(zhí)行器核心器件的主要特種材料,包括碳化硅、金剛石、氮化鋁、藍(lán)寶石、低溫共燒陶瓷、高溫共燒陶瓷和聚合物前驅(qū)體陶瓷等。就以上材料的機(jī)電特性做了概述,明確兼具機(jī)械和電學(xué)特性的材料主要有SiC、AlN和PDC 3種,而這3種材料的微納加工技術(shù)發(fā)展現(xiàn)狀分別代表了MEMS領(lǐng)域新材料研發(fā)的3個(gè)階段。
圖14 鍵合后的Si/AlN-AlN/Si界面的TEM圖像Fig.14 TEM image of the bonded Si/AlN-AlN/Si
圖15 PDC成型流程Fig.15 PDC fabrication process
圖16 典型的SiCN制備的MEMS結(jié)構(gòu)微觀圖Fig.16 SEM micrographs showing typical MEMS structures made from SiCN
(1)SiC材料的微納加工技術(shù)代表了成熟階段。此材料已有商業(yè)化的圓片級原材可購買,大部分的硅基MEMS微納加工技術(shù)都能成功移植。但畢竟是滿足惡劣環(huán)境應(yīng)用的航空特種材料,加工技術(shù)的移植效果并不全都十分理想,例如DRIE技術(shù),因此諸如激光加工等新手段正在被嘗試應(yīng)用。
(2)AlN材料的微納加工技術(shù)代表了半成熟階段。此材料的晶體和非晶體制備工藝已完全攻克,材料成型方面的下一步工作主要是獲得尺寸可自由定制的商業(yè)化基材;而此階段的微納加工工藝主要以非同質(zhì)基底上生長和沉積為主,進(jìn)而試驗(yàn)面向圖案化的表面加工工藝和面向3D器件成型的片級鍵合工藝。
(3)PDC材料的微納加工技術(shù)代表了初級階段。此階段主要開展材料從粉末到可用基材的推進(jìn)工作,液相制造和材料成型技術(shù)是研究較多的熱點(diǎn);而在微納加工工藝方面,微模具技術(shù)是常用的手段,傳統(tǒng)微納加工技術(shù)移植的時(shí)機(jī)還未成熟。
以上的發(fā)展歷程可以揭示,隨著MEMS微納加工技術(shù)的不斷完善,航空特種材料從基材到器件的研發(fā)周期將會不斷縮短,而加工技術(shù)的持續(xù)儲備是掌握前沿微納器件核心技術(shù)的重要基礎(chǔ)。
[1]MEHREGANY M, ZORMAN C A,RAJAN N, et al.Silicon carbide MEMS for harsh environments[J].Proceedings of the IEEE,1998,86(8):1594-1609.
[2]TAN Q, LUO T, XIONG J, et al.A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology[J].Sensors, 2014,14(3):4154-4166.
[3]XIONG J, ZHENG S, HONG Y, et al.Measurement of wireless pressure sensors fabricated in high temperature co-fired ceramic MEMS technology[J].Journal of Zhejiang University Science C, 2013,14(4):258-263.
[4]PULLIAM W , RUSSLER P M,F(xiàn)IELDER R S.High-temperature highbandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing[C]//Proceedings of the Conference on Fiber Optic Sensor Technology and Applications,Newton MA, 2002.
[5]YOUNG D J, DU J, ZORMAN C A,et al.High-temperature single-crystal 3C-SiC capacitive pressure sensor[J].Sensors Journal,IEEE, 2004,4(4):464-470.
[6]FONSECA M A, ENGLISH J M,VON ARX M, et al.Wireless micromachined ceramic pressure sensor for high-temperature applications[J].Journal of Microelectromechanical Systems, 2002,11(4):337-343.
[7]TAN Q, WEI T, CHEN X, et al.Antenna-resonator integrated wireless passive temperature sensor based on low-temperature cofired ceramic for harsh environment[J].Sensors and Actuators A: Physical, 2015,236:299-308.
[8]MEHREGANY M, ZORMAN C A.SiC MEMS: opportunities and challenges for applications in harsh environments[J].Thin Solid Films, 1999,355:518-524.
[9]AZEVEDO R G, JONES D G, JOG A V, et al.A SiC MEMS resonant strain sensor for harsh environment applications[J].Sensors Journal, IEEE, 2007,7(4):568-576.
[10]MILLS D A, BLOOD D, SHEPLAK M.Characterization of a sapphire optical wall shear stress sensor for high-temperature applications[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, 2016.
[11]WIJESUNDARA M B, AZEVEDO R.Silicon carbide microsystems for harsh environments[M].New York: Springer Science &Business Media, 2011.
[12]SOO M T, CHEONG K Y, NOOR A F M.Advances of SiC-based MOS capacitor hydrogen sensors for harsh environment applications[J].Sensors and Actuators B:Chemical, 2010,151(1):39-55.
[13]PHAN H P, DAO D V, NAKAMURA K, et al.The piezoresistive effect of SiC for MEMS sensors at high temperatures: A review[J].Journal of Microelectromechanical Systems,2015,24(6):1663-1677.
[14]JOHN P, POLWART N, TROUPE C E, et al.The oxidation of (100) textured diamond[J].Diamond and Related Materials,2002,11(3):861-866.
[15]KOHN E, GLUCHE P, ADAMSCHIK M.Diamond MEMS—a new emerging technology[J].Diamond and Related Materials,1999,8(2):934-940.
[16]JIANG X, KIM K, ZHANG S, et al.High-temperature piezoelectric sensing[J].Sensors, 2013,14(1):144-169.
[17]PATEL N D, FULFORD S X,NICHOLSON P S.High frequency-high temperature ultrasonic transducers[M].New York:Springer, 1990:823-828.
[18]GRIFFIN B A, MILLS D A,SCHMITZ T, et al.A sapphire based fiber optic dynamic pressure sensor for harsh environments:fabrication and characterization[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, USA, 2011.
[19]LEWINSON C A, COLOMBO P,REIMANIS I, et al.Stress occurring during joining of ceramics using preceramic polymers[J].Journal of the American Ceramic Society,2001,84(10):2240-2244.
[20]HALUSCHKA C, KLEEBE H J,F(xiàn)RANKE R, et al.Silicon carbonitride ceramics derived from polysilazanes Part I.Investigation of compositional and structural properties[J].Journal of the European Ceramic Society,2000,20(9):1355-1364.
[21]LIEW L A, ZHANG W, BRIGHT V M, et al.Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique[J].Sensors and Actuators A: Physical,2001,89(1):64-70.
[22]COLOMBO P, MERA G, RIEDEL R, et al.Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J].Journal of the American Ceramic Society,2010,93(7):1805-1837.
[23]NAGAIAH N R.Novel conceptual design and analysis of polymer derived ceramicmems sensors for gas turbine environment[D].Florida: University of Central Florida Orlando, 2006.
[24]張宗波, 曾凡, 羅永明, 等.聚硅氮烷的應(yīng)用研究進(jìn)展[J].有機(jī)硅材料,2013,27(3):216-222.
ZHANG Zongbo, ZENG Fan, LUO Yongming, et al.The research progress of the poly silazane application[J].Silicone Material,2013,27(3):216-222.
[25]GARRETT B.Introduction to sporian microsystems, Inc.oil and gas innovation show case[R].Sporian Microsystems, 2008.
[26]JUNG S.Fabrication and characterization of heat flux sensor using polymer derived ceramics[D].Columbia: University of Missouri-Columbia, 2011.
[27]DUAN H, LI C, YANG W, et al.Near-field electrospray microprinting of polymer-derived ceramics[J].Journal of Microelectromechanical Systems, 2013,22(1):1-3.
[28]JANAKIRAMAN N, ALDINGER F.Fabrication and characterization of fully dense Si-C-N ceramics from a poly (ureamethylvinyl)silazane precursor[J].Journal of the European Ceramic Society, 2009,29(1):163-173.
[29]REN X, EBADI S, CHEN Y, et al.Characterization of SiCN ceramic material dielectric properties at high temperatures for harsh environment sensing applications[J].IEEE Transactions on Microwave Theory and Techniques, 2013,61(2):960-971.
[30]ZHANG N.4H-silicon carbide PN diode for harsh environment temperature sensing applications[D].Berkeley: University of California, 2014.
[31]LIEN W C.Harsh environment silicon carbide UV sensor and junction field-effect transistor[D].Berkeley: University of California,2013.
[32]HABERMEHL S, RODRIGUEZ M,SIMMONS B.Formation of stress-controlled,highly textured, α-SiC thin films at 950℃ [J].Journal of Applied Physics, 2012,112(1):013535.
[33]ROY S, DEANNA R G, ZORMAN C A, et al.Fabrication and characterization of polycrystalline SiC resonators[J].IEEE Transactions on Electron Devices, 2002,49(12):2323-2332.
[34]MEHREGANY M, ZORMAN C A, ROY S, et al.Silicon carbide for microelectromechanical systems[J].International Materials Reviews, 2000,45(3):85-108.
[35]MABOUDIAN R, CARRARO C, SENESKY D G, et al.Advances in silicon carbide science and technology at the microand nanoscales[J].Journal of Vacuum Science &Technology A, 2013,31(5):050805.
[36]GAO D, WIJESUNDARA M B J,CARRARO C, et al.Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology[J].Sensors Journal,IEEE, 2004,4(4):441-448.
[37]YIH P H, SAXENA V, STECKL A J.A review of SiC reactive ion etching in fluorinated plasmas[J].Physica Status Solidi (B),1997,202(1):605-642.
[38]DI G, HOWE R T, MABOUDIAN R.High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma[J].Applied Physics Letters,2003,82(11):1742-1744.
[39]GAO D, WIJESUNDARA M B J, CARRARO C, et al.Transformer coupled plasma etching of 3C-SiC films using fluorinated chemistry for microelectromechanical systems applications[J].Journal of Vacuum Science &Technology B, 2004,22(2):513-518.
[40]KHAN F A, ADESIDA I.High rate etching of SiC using inductively coupled plasma reactive ion etching in SF-6-based gas mixture[J].Applied Physics Letters, 1999,75(15):2268-2270.
[41]LANOIS F, PLANSON D,LOCATELLI M L, et al.Chemical contribution of oxygen to silicon carbide plasma etching kinetics in a distributed electron cyclotron resonance(DECR) reactor[J].Journal of Electronic Materials, 1999,28(3):219-224.
[42]SENESKY D G, PISANO A P.Aluminum nitride as a masking material for the plasma etching of silicon carbide structures[C]//Proceedings of 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems(MEMS 2010), Hong Kong, China, 2010.
[43]TANAKA S, RAJANNA K, ABE T, et al.Deep reactive ion etching of silicon carbide[J].Journal of Vacuum Science & Technology B,2001,19(6):2173-2176.
[44]BEHEIM G, SALUPO C S.Deep RIE process for silicon carbide power electronics and MEMS[C]// Materials Research Society Symposium Proceedings, 2000,622:1-6.
[45]VANKO G, HUDEK P, ZEHETNER J, et al.Bulk micromachining of SiC substrate for MEMS sensor applications[J].Microelectronic Engineering, 2013,110:260-264.
[46]GRIFFIN B A, HABERMEHL S D, CLEWS P J.Development of an aluminum nitride-silicon carbide material set for hightemperature sensor applications[C]//Proceedings of the Conference on Sensors for Extreme Harsh Environments.Baltimore, MD, 2014.
[47]HARTMANN C, DITTMAR A,WOLLWEBER J, et al.Bulk AlN growth by physical vapour transport[J].Semiconductor Science and Technology, 2014,29(8):084002.
[48]HERRO Z G, ZHUANG D,SCHLESSER R, et al.Growth of AlN single crystalline boules[J].Journal of Crystal Growth,2010,312(18):2519-2521.
[49]ZUO C, VAN DER SPIEGEL J,PIAZZA G.1.05-GHz CMOS oscillator based on lateral-field-excited piezoelectric AlN contourmode MEMS resonators[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010,57(1):82-87.
[50]RINALDI M, ZUNIGA C, ZUO C, et al.Super-high-frequency two-port AlN contourmode resonators for RF applications[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010,57(1):38-45..
[51]HEIDARI A, YOON Y J, LEE M I, et al.A novel checker-patterned AlN MEMS resonator as gravimetric sensor[J].Sensors and Actuators A: Physical, 2013,189:298-306.
[52]TANNER S M, FELMETSGER V V.Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering[J].Journal of Vacuum Science & Technology A, 2010,28(1):69-76.
[53]GUO W, XIE J, AKOUALA C, et al.Comparative study of etching high crystalline quality AlN and GaN[J].Journal of Crystal Growth, 2013,366:20-25.
[54]BAO S, LEE K H, CHONG G Y, et al.AlN-AlN wafer bonding and its thermal characteristics[J].ECS Transactions,2014,64(5):141-148.
[55]BAO S, LEE K H, CHONG G Y,et al.AlN-AlN layer bonding and its thermal characteristics[J].ECS Journal of Solid State Science and Technology, 2015,4(7):200-205.
[56]LIEW L A, LIU Y, LUO R, et al.Application of microforging in SiCN MEMS structure fabrication[J].Sens.Actuators A,2002,95(2/3):120.
[57]LIEW L A, ZHANG W, LINAN A N,et al.Ceramic MEMS new materials, innovative processing and future applications[J].American Ceramic Society Bulletin, 2001,80(5):25-30.
[58]DALCANALE F, GROSSENBACHER J, BLUGAN G, et al.Influence of carbon enrichment on electrical conductivity and processing of polycarbosilane derived ceramic for MEMS applications[J].Journal of the European Ceramic Society, 2014,34(15):3559-3570.
[59]BAKUMOV V, BLUGAN G, ROOS S, et al.Mechanical and tribological properties of polymer-derived Si/C/N sub-millimetre thick miniaturized components fabricated by direct casting[J].Journal of the European Ceramic Society, 2012,32(8):1759-1767.