范若靜,陳秀萍,張 芳,張 菁,郭寅龍
(中國科學院上海有機化學研究所金屬有機化學國家重點實驗室,上海國家有機質(zhì)譜中心,上?!?00032)
?
液相色譜-離子淌度-四極桿/飛行時間串聯(lián)質(zhì)譜法快速檢測煙葉中蔗糖酯
范若靜,陳秀萍,張芳,張菁,郭寅龍
(中國科學院上海有機化學研究所金屬有機化學國家重點實驗室,上海國家有機質(zhì)譜中心,上海200032)
摘要:本研究利用液相色譜-離子淌度-四極桿/飛行時間串聯(lián)質(zhì)譜(LC-IM-Q TOF MS)技術,建立了快速檢測煙葉中蔗糖酯的定性分析方法。采用甲酸-甲醇-水混合流動相系統(tǒng)和正離子模式下的電噴霧離子化技術,使煙葉甲醇提取液中的蔗糖酯分子形成加鈉的準分子離子,然后通過離子淌度漂移管的分離,被四極桿/飛行時間串聯(lián)質(zhì)譜儀檢測。從煙葉中共檢測出6類蔗糖四酯,它們在色譜柱上的分離相差0.2~0.8 min,在漂移管中的分離相差0.4~0.5 ms,質(zhì)譜檢測中的離子質(zhì)量相差14 u。在此基礎上,利用二級質(zhì)譜解析,準分子離子的元素組成測定以及碰撞截面的測定等手段,對煙葉中6類蔗糖四酯進行結構上的定性分析。結果表明,LC-IM-Q TOF MS技術可以快速檢測復雜樣品中的蔗糖酯,結合多維數(shù)據(jù)定性技術能夠顯著提高定性分析的準確性。
關鍵詞:液相色譜-離子淌度-四極桿/飛行時間質(zhì)譜(LC-IM-Q TOF MS);蔗糖酯;定性分析;煙葉
蔗糖酯(SE)全稱蔗糖脂肪酸酯,是由蔗糖的一個或多個羥基與脂肪酸或芳香酸酯化產(chǎn)生的[1]。研究表明,煙草中的蔗糖酯是由煙葉表面腺毛分泌產(chǎn)生的,是煙葉表面主要的化學成分之一。近年來,蔗糖酯因其特有的化學屬性和功能性,在卷煙產(chǎn)業(yè)中的應用受到廣泛關注。蔗糖酯不僅是煙草中一種重要的致香物質(zhì)[2],還可以使煙葉表面具有抗蟲和抗微生物作用[3-4],此外也具有抗菌活性和調(diào)節(jié)植物生長的作用。因此,對煙葉中蔗糖酯進行檢測和分析,有利于深入研究煙葉品質(zhì),可以為煙葉制品的生產(chǎn)和監(jiān)控提供指導。
蔗糖酯的相對分子質(zhì)量較大,分布在500~800 u之間,結構中含有多個游離羥基,揮發(fā)性較差。針對此類化合物的檢測,早期多采用衍生化結合氣相色譜(GC)[5]或氣相色譜-質(zhì)譜聯(lián)用技術(GC/MS)[6-7],涉及到的衍生化試劑多為硅烷化試劑[8]。這些檢測方法能夠有效地實現(xiàn)蔗糖單、雙、多酯異構體的分析,但必要的衍生化處理過程較繁瑣。目前,液相色譜(LC)[9]和液相色譜-質(zhì)譜聯(lián)用技術(LC/MS)[10-12]已成為分離分析蔗糖酯的有效手段,特別是后者,不但具備LC對高沸點化合物的分離性能,避免了繁瑣的衍生化過程,還能夠利用MS組分鑒定能力,獲取更多的蔗糖酯結構信息。除此以外,薄層色譜法[13-15]、紅外光譜法[16-17]、核磁共振技術[18-20]等也被嘗試用于蔗糖酯的檢測分析。然而,無論采用GC或GC/MS,還是LC或LC/MS對蔗糖酯進行分析,都存在市場上沒有蔗糖酯標準樣品這一較大問題。因此,如何在缺失蔗糖酯標準樣品的情況下提高此類化合物定性鑒別的準確性是分析煙草中蔗糖酯的關鍵問題之一。
離子淌度質(zhì)譜(IM-MS)[21-23]是離子淌度分離(IMS)[24-25]與質(zhì)譜聯(lián)用的分析技術,是在傳統(tǒng)有機質(zhì)譜儀中增加離子淌度這一新的分離和測量因素,從而構成的新型二維質(zhì)譜分析系統(tǒng)。IMS的原理是基于離子在漂移管中與緩沖氣體碰撞時的碰撞截面不同,將離子按大小和形狀進行分離。因此,IM-MS除了按質(zhì)量和電荷數(shù)分離外,還可以根據(jù)離子的尺寸和形狀提供傳統(tǒng)質(zhì)譜所不能獲取的分子結構信息,如漂移時間(DT)[26]、碰撞截面積(CCS)[27]等,這在未知物[28]、大分子化合物[29-31]、同分異構體[32-33]等方面的分析具有明顯優(yōu)勢。
本研究擬采用LC與離子淌度-四極桿/飛行時間串聯(lián)質(zhì)譜(LC-IM-Q TOF MS)聯(lián)用技術,通過離子淌度分離和高分辨率的質(zhì)量分離,實現(xiàn)煙葉中蔗糖酯的定性分析;并利用二級質(zhì)譜解析、準分子離子的元素組成測定以及碰撞截面的測定等手段,對煙葉中6類蔗糖酯進行檢測,以實現(xiàn)復雜樣品中蔗糖酯的定性分析。
1實驗部分
1.1儀器與試劑
6560離子淌度四極桿飛行時間(IM-Q TOF)液質(zhì)聯(lián)用系統(tǒng):美國Agilent公司產(chǎn)品,配有雙噴頭噴射流電噴霧電離源,MassHunter LC/MS Data Acquisition B.07.00、MassHunter Qualitative Analysis B.07.00和MassHunter IM-MS Browser B.07.01等儀器控制及數(shù)據(jù)處理軟件。
煙葉粉末:由上海煙草集團責任有限公司提供;甲酸(色譜純):美國Sigma-Aldrich公司產(chǎn)品;甲醇(色譜純):美國Fisher Scientific公司產(chǎn)品;超純水:經(jīng)Millipore純水系統(tǒng)凈化;Q TOF MS質(zhì)量校正溶液和調(diào)諧溶液(含化合物甜菜堿和氟代三磷氰化物):美國Agilent公司產(chǎn)品。
1.2實驗條件
1.2.1液相色譜條件Agilent Poroshell 120 SB-C18色譜柱(2.1 mm×100 mm×2.7 μm);流動相:0.1%甲酸甲醇溶液-0.1%甲酸水溶液(80∶20,V/V),等度洗脫;流速0.2 mL/min;進樣體積5 μL。
1.2.2質(zhì)譜條件ESI正離子模式檢測,離子源溫度325 ℃,干燥氣(N2)流速12 L/min,霧化氣(N2)溫度350 ℃,氣壓2.41×105Pa,毛細管、噴嘴和碎裂電壓分別為4 000、1 000和400 V,Q TOF MS采集速率為每秒0.9個譜圖,一級質(zhì)譜掃描范圍m/z200~1 500,二級質(zhì)譜掃描范圍和轟擊能量依據(jù)母離子進行優(yōu)化,Q TOF MS在正離子模式下以調(diào)諧溶液中系列氟代三磷氰化物(HP-0321、HP-0621、HP-0921)離子進行精確質(zhì)量校正。
1.2.3淌度條件漂移氣為N2,漂移管內(nèi)氣壓和溫度分別為533 Pa和25 ℃;漂移管前3個離子漏斗射頻電壓分別為:前端100 V、捕集100 V、后端150 V;漂移管前后端的電壓差為1 700 V。
1.3樣品制備
稱取0.5 g煙葉粉末樣品,加入5 mL甲醇,超聲提取10 min,以8 000 r/min離心10 min,取上清液過濾,待LC-IM-Q TOF MS分析。
2結果與討論
2.1煙葉中蔗糖酯的LC-IM-Q TOF MS檢測
圖1 煙葉中蔗糖酯的化學結構
普通煙草中的蔗糖酯在結構上具有共同特點,即蔗糖酯中葡萄糖C6位羥基被乙酸酯化,C2、C3、C4位羥基被碳鏈長度為C3~C8的脂肪酸酯化,而果糖上的羥基是完全游離的,其結構示于圖1[2]。本實驗采用LC-IM-Q TOF MS法檢測煙葉提取物,在10 min分析周期內(nèi)所得的總離子流色譜圖(TIC)示于圖2a。可見,基質(zhì)干擾非常嚴重,導致無法明顯地觀察到有效的蔗糖酯信號。由于缺失蔗糖酯標準品,在查找蔗糖酯的過程中,參考相關文獻數(shù)據(jù)[7,19,34],通過選擇離子流圖(EIC)確認保留時間為1.8、2.0、2.4、2.8、3.2、4.2 min處的系列組分峰可能為蔗糖四酯,其EIC圖示于圖2b~2g。同時,因蔗糖酯結構中含有多個活潑氫,在電噴霧離子化方式下,此類化合物易以加鈉準分子離子的形式存在。利用飛行時間高分辨質(zhì)譜進行元素組成測定時,該系列峰的分子質(zhì)量相差—CH2—基團,說明與葡萄糖相連的3條脂肪酸總碳數(shù)相差1。
圖2 LC-IM-Q TOF MS檢測煙葉提取物的總離子流色譜圖(a)和蔗糖酯選擇離子流圖(b~g)
圖3 蔗糖酯(Ⅴ)的二級質(zhì)譜圖
通過碰撞誘導解離方式研究蔗糖酯類化合物的二級質(zhì)譜(MS/MS)行為,以檢測到的蔗糖四酯(ⅴ)為例,其二級質(zhì)譜圖示于圖3。在二級質(zhì)譜中,蔗糖四酯的O-糖苷鍵最易斷裂,失去果糖部分的中性碎片,得到相對豐度最高的碎片離子峰[M+Na-162]+,如m/z673→511;[M+Na-162]+可進一步丟失葡萄糖上的脂肪鏈部分,如m/z673→511→409。此外,低豐度碎片離子m/z185來自蔗糖四酯中O-糖苷鍵的斷裂,失去葡萄糖部分的中性碎片;信號微弱的碎片離子[M+Na-102]+,如m/z673→571,則來自蔗糖四酯的準分子離子直接丟失葡萄糖上的脂肪酸部分。
使用離子淌度分析煙草中蔗糖酯,6組蔗糖四酯在結構上的差異使它們在漂移管中的分離相差了0.4~0.5 ms,其漂移時間分離及獲得的離子強度示于圖4。盡管離子淌度的分辨率較常規(guī)LC的分辨能力低,使其單獨分離復雜混合物變得困難,但作為一種前質(zhì)量分析器,提供的二維“淌度/質(zhì)荷比”(2-D IM/MS)模式能夠?qū)崿F(xiàn)對復雜混合物的高分辨分離。在2-D IM/MS中,不同離子的不同漂移時間可作為一個新的鑒定標準。此外,還可將2-D IM/MS中產(chǎn)生的正交分離用于譜圖清理,1.5~5 min保留時間內(nèi)的總離子DT與質(zhì)荷比(m/z)的2-D IM/MS譜圖示于圖5a,在基質(zhì)離子的信號強度背景下,較高信號強度的離子及其同位素斑點極易分辨。從局部放大圖(圖5b)可以看出,相對背景信號強度較高的6個目標組分(Ⅰ~Ⅵ)的離子及其同位素斑點更為明顯,鎖定目標斑點進行提取,可獲得干凈的單一組分的MS圖、二級質(zhì)譜圖和IM漂移圖。
圖4 蔗糖酯(Ⅰ~Ⅵ)的淌度漂移譜圖
圖5 蔗糖酯的2-D IM/MS全譜圖(a)和局部放大圖(b)
需要指出的是,圖2b~2g中每個蔗糖四酯組分峰可能含有同分異構體,即分子質(zhì)量相同,與葡萄糖相連的3條脂肪酸總碳數(shù)也相同,但排列組合不同。在快速分離條件下,這些可能的同分異構體無論是LC還是IM均顯現(xiàn)出相同的保留時間和漂移時間,無法將它們有效地分離。這一問題可通過GC/MS檢測結合二級特征離子提取的方法解決。依據(jù)LC-IM-Q TOF MS檢測結果,歸納了煙葉提取物中可能的蔗糖酯的MS和IM信息,其結果列于表1。通過這些信息可方便快捷地對其他同系列化合物進行定性分析。
表1 煙葉提取物中蔗糖酯的分析結果
注:*參考文獻[7, 27]
2.2蔗糖酯的碰撞截面積(CCS)測定
淌度分離是通過離子與漂移氣體分子碰撞過程實現(xiàn)的,離子的碰撞截面是決定離子漂移速度的最主要因素,而漂移氣體的質(zhì)量數(shù)、管內(nèi)氣壓、溫度、離子質(zhì)量和電荷等都直接影響分離過程。離子的碰撞截面作為離子的特征結構屬性之一,如同GC中的保留指數(shù),可以用于化合物分析中的結構判定。本研究采用IM-MS法,可以在一個分析周期中,通過設定和采集包括漂移氣、離子精確質(zhì)量等相關的參數(shù),計算目標離子的CCS,原理基于Mason-Schamp公式:
(1)
其中,Ω為目標離子的CCS;e為電子的電荷;z為目標離子的電荷;kb為玻爾茲曼常數(shù);N為漂移氣體的數(shù)密度;T和P分別為漂移管內(nèi)的溫度和氣壓;V為漂移管前后端電壓差;L為漂移管的長度;mgas和mion分別為漂移氣和目標離子的精確質(zhì)量。
利用Mason-Schamp公式計算時,環(huán)境溫度、漂移氣的波動、以及漂移管到檢測器的距離(死長度)等都會給CCS的測定結果帶來偏差。因此,本研究采用內(nèi)標法,利用已知CCS的離子對相關參數(shù)進行校正,再代入式(1),從而實現(xiàn)蔗糖酯CCS的準確測定。整個測定過程中,只需在保留時間1.5~5 min區(qū)域內(nèi),通過噴射流電噴霧電離源的第2個噴頭直接引入系列內(nèi)標化合物(IS: Betaine, HP-03321, HP-0621, HP-0921),使這些內(nèi)標分子與蔗糖酯同時離子化,穿過漂移管,最后被Q TOF MS檢測。內(nèi)標化合物及6組蔗糖酯的CCS結果列于表2。可以看出,內(nèi)標化合物CCS的理論值和測定值的相對誤差較小,并且其測定值的相對標準偏差(RSD)都小于0.3%,這說明內(nèi)標法能夠精確的校正CCS計算中的相關參數(shù),可用于6組蔗糖酯CCS的準確測定。分析測得的蔗糖酯CCS,并結合表1可知,漂移時間長的離子,其CCS數(shù)值較大。
表2 煙葉中蔗糖酯的碰撞截面積測定
注:*表示平行測定3次
3結論
本研究采用LC與IM-Q TOF MS聯(lián)用技術快速檢測煙葉中的蔗糖酯,通過離子淌度分離和高分辨率的質(zhì)量分離,共檢測出煙葉中6類蔗糖四酯,它們在色譜柱上的分離相差0.2~0.8 min,在漂移管中的分離相差0.4~0.5 ms,質(zhì)譜檢測中的離子質(zhì)量相差14 u。利用多維定性手段二級質(zhì)譜解析、準分子離子的元素組成測定以及碰撞截面的測定等,可提高定性分析的準確性和效率,使定性結果更可靠。綜上,LC-IM Q TOF MS法可以快速檢測復雜樣品中的蔗糖酯,結合多維數(shù)據(jù)定性技術能夠顯著提高定性分析的準確性。
參考文獻:
[1]陽會兵,周清明. 煙草蔗糖酯的研究進展[J]. 作物研究,2005,(S1):370-376.
YANG Huibing, ZHOU Qingming. The research progress of sucrose ester in tobacco[J]. Crop Research, 2005, (S1): 370-376(in Chinese).
[2]王海燕,王鴻旻,劉百戰(zhàn),等. 煙草糖酯的分類、檢測及其應用研究進展[J]. 現(xiàn)代食品科技,2010,26(8):866-870.
WANG Haiyan, WANG Hongmin, LIU Baizhan, et al. Advances in classification, determination and application of sucrose esters from tobacco leaves[J]. Modern Food Science and Technology, 2010, 26(8): 866-870(in Chinese).
[3]張現(xiàn),程新勝,王方曉. 煙葉蔗糖酯研究進展[J]. 煙草化學,2007,(1):46-49.
ZHANG Xian, CHENG Xinsheng, WANG Fangxiao. Advances in sucrose esters in tobacco leaf[J]. Tobacco Chemistry, 2007, (1): 46-49(in Chinese).
[4]SONG Z J, LI S J,CHEN X, et al. Synthesis of insecticidal sucrose esters[J]. Forestry Studies in China, 2006, 8 (3): 26-29.
[5]KARRER R, HERBERG H. Analysis of sucrose fatty acid esters by high temperature gas chromatography[J]. Journal of High Resolution Chromatography, 1992, 15(9): 585-589.
[6]UEMATSU Y, HIRATA K, SUZUKI K, et al. Determination of sucrose esters of fatty acids in food additive premixes by gas chromatography and confirmation of identity by gas chromatography/mass spectrometry[J]. Food Composition and Additives, 2001, 84(2): 498-506.
[7]王瑞玲,王瑩瑩,毛多斌,等. 煙草中蔗糖四酯類化合物的GC-MS分析[J]. 化學研究與應用,2011,23(8):1 030-1 035.
WANG Ruiling, WANG Yingying, MAO Duobin, et al. Analysis of sucrose tetra-esters from tobaccos by GC-MS[J]. Chemical Research and Application, 2011, 23 (8): 1 030-1 035(in Chinese).
[8]ASHRAF-KHORASSANI M, NAZEM N, TAYLOR L T, et al. Isolation, fractionation, and identification of sucrose esters from various oriental tobaccos employing supercritical fluids[J]. Beitr?ge zur Tabakforschung International, 2008, 23(1): 32-45.
[9]朱金麗,李建華,孫同明,等. 蔗糖酯的HPLC-ELSD法分離與測定[J]. 精細化工,2009,26(7):633-638.
ZHU Jinli, LI Jianhua, SUN Tongming, et al. Separation and determination of sucrose esters by HPLC-ELSD[J]. Fine Chemicals, 2009, 26(7): 633-638(in Chinese).
[10]DING L, XIE F, ZHAO M, et al. Rapid characterization of the sucrose esters from oriental tobacco using liquid chromatography/ion trap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2006, 20(19): 2 816-2 822.
[11]DING L, XIE F, ZHAO M, et al. Rapid quantification of sucrose esters in oriental tobacco by liquid chromatography-ion trap mass spectrometry[J]. Journal of Separation Science, 2007, 30(1): 35-41.
[12]MOHA M H, TANGA T S, TANB G H. Improved separation of sucrose ester isomers using gradient high performance liquid chromatography with evaporative light scattering detection[J]. Food Chemistry, 2000, 69(1): 105-110.
[13]楊勤萍,徐國梁,施邑屏,等. 高效液相色譜及薄層色譜分析蔗糖脂肪酸酯[J]. 分析測試學報,1999,18(1):28-30.
YANG Qinping, XU Guoliang, SHI Yiping, et al. Determination of sucrose fatty acid esters by HPLC and thin layer chromatography scanning[J]. Journal of Instrumental Analysis, 1999, 18(1): 28-30(in Chinese).
[14]陽會兵,周清明,楊虹琦,等. 薄層色譜掃描法測定煙葉表面蔗糖酯含量[J]. 湖南農(nóng)業(yè)大學學報,2007,33(2):177-179.
YANG Huibing, ZHOU Qingming, YANG Hongqi, et al. Determination of sucrose esters on leave surface of tobacco by TLC scanning[J]. Journal of Hunan Agricultural University, 2007, 33(2): 177-179(in Chinese).
[15]李延科,張淑芬,楊錦宗. 蔗糖酯的薄層色譜分析[J]. 色譜,2002,20(5):476-478.
LI Yanke, ZHANG Shufen, YANG Jinzong. Anylysis of sucrose esters by thin-layer chromatography[J]. Chinese Journal of Chromatography, 2002, 20(5): 476-478(in Chinese).
[16]曾盔,黃才斌,黃高山,等. 油茶籽油脂肪酸蔗糖酯的合成研究[J]. 湖南農(nóng)業(yè)大學學報,2006,32(3):309-312.
ZENG Kui, HUANG Caibin, HUANG Gaoshan, et al. On synthesis of sucrose esters of fatty acids of camellia oil[J]. Journal of Hunan Agricultural University, 2006, 32(3): 309-312(in Chinese).
[17]ARTAMONOV A F, ALDABERGENOVA M T, NIGMATULLINA F S, et al. Synthesis of saccharose esters[J]. Chemistry of Natural Compounds, 2000, 36(4): 345-348.
[18]FANUN M, WACHTEL E, ANTALEK B, et al. A study of the microstructure of four-component sucrose ester microemulsions by SAXS and NMR[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181(1/2): 173-186.
[19]SEVERSON R F, ARRENDALE R F, CHORTYK T, et al. Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf[J]. J Agrlc Food Chem, 1985, 33(5): 870-875.
[20]MOLINIER V, FENET B, FITREMANN J, et al. PFGSE-NMR study of the self-diffusion of sucrose fatty acid monoesters in water[J]. Journal of Colloid and Interface Science, 2005, 286(1): 360-368.
[21]DAMEN C W, CHEN W, CHAKRABORTY A B, et al. Electrospray ionization quadrupole ion-mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity inN-glycosylation profile of the therapeutic monoclonal antibody trastuzumab[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(11): 2 021-2 033.
[22]HOAGLUND-HYZER C S, CLEMMER D E. Ion trap/ion mobility/quadrupole/time-of-flight mass spectrometry for peptide mixture analysis[J]. Analytical Chemistry, 2001, 73(2): 177-184.
[23]GUO S, ZHANG F, WANG H Y, et al. Behaviors of leucine and isoleucine in ion mobility-quadrupole time of flight mass spectrometry[J]. Chinese Journal of Chemistry, 2015, 33(12): 1 359-1 364.
[24]姜杰,宋慶浩,林靜,等. 離子淌度譜技術[J]. 科學儀器與裝置,2008,(2):74-78.
JIANG Jie, SONG Qinghao, LIN Jing. Ion mobility spectrometry[J]. Scientific Instrument and Equipment, 2008, (2): 74-78(in Chinese).
[25]許峰,王海龍,關亞風. 離子遷移譜研究進展[J]. 化學進展,2005,17(3):514-522.
XU Feng, WANG Hailong, GUAN Yafeng. Progress in ion mobility spectrometry[J]. Progress in Chemistry, 2005, 17(3): 514-522(in Chinese).
[26]WANG H Y, ZHANG J T, SUN S H, et al. Study on the accelerated Gutknecht self-cyclocondensation of amino-sugars under atmospheric pressure chemical ionization conditions[J]. RSC Advances, 2015, 5(127): 105 079-105 083.
[27]ZHANG F, GUO S, ZHANG M Y, et al. Characterizing ion mobility and collision cross section of fatty acids using electrospray ion mobility mass spectrometry[J]. Journal of Mass Spectrometry, 2015, 50(7): 906-913.
[28]ZHANG W, QUERNHEIM M, RDER H J, et al. Collision-induced dissociation ion mobility mass spectrometry for the elucidation of unknown structures in strained polycyclic aromatic hydrocarbon macrocycles[J]. Analytical Chemistry, 2016, 88(1): 952-959.
[29]ALLEN S J, SCHWARTZ A M, BUSH M F. Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase[J]. Analytical Chemistry, 2013, 85(24):12 055-12 061.
[30]ZHONG Y Y, FENG J, RUOTOLO B T. Robotically assisted titration coupled to ion mobility-mass spectrometry reveals the interface structures and analysis parameters critical for multiprotein topology apping[J]. Analytical Chemistry, 2013, 85(23): 11 360-11 368.
[31]VAHIDI S, STOCKS B B, KONERMANN L. Partially disordered proteins studied by ion mobility-mass spectrometry: Implications for the preservation of solution phase structure in the gas phase[J]. Analytical Chemistry, 2013, 85(21): 10 471-10 478.
[32]JIA C X, CHRISTOPHER B, LI L J, et al. Site-specific characterization of (D)-amino acid containing peptide epimers by ion mobility spectrometry[J]. Analytical Chemistry, 2013, 86(6): 2 972-2 981.
[33]GAYE M M, NAGY G, CLEMMER D E, et al. Multidimensional analysis of 16 glucose isomers by ion mobility spectrometry[J]. Analytical Chemistry, 2016, 88(4): 2 335-2 344.
[34]ASHRAF-KHORASSANI M, NAZEM N, TAYLOR L T, et al. Identification and quantification of sucrose esters in various turkish tobaccos[J]. Contributions to Tobacco Research, 2005, 21(8): 441-450.
收稿日期:2015-12-31;修回日期:2016-03-16
作者簡介:范若靜(1988—),女(漢族),山東菏澤人,博士研究生,有機質(zhì)譜專業(yè)。E-mail: fanrj@sioc.ac.cn 通信作者:郭寅龍(1962—),男(回族),河南開封人,研究員,從事有機質(zhì)譜研究。E-mail: ylguo@sioc.ac.cn
中圖分類號:O657.63
文獻標志碼:A
文章編號:1004-2997(2016)04-0301-09
doi:10.7538/zpxb.youxian.2016.0029
Fast Detection of Sucrose Esters in Tobacco Leaf Using Liquid Chromatography Coupled with Ion Mobility-Quadrupole/Time of Flight Mass Spectrometry
FAN Ruo-jing, CHEN Xiu-ping, ZHANG Fang, ZHANG Jing, GUO Yin-long
(StateKeyLaboratoryofOrgan-metallicChemistryandNationalCenterforOrganicMassSpectrometryinShanghai,ShanghaiInstituteofOrganicChemistry,ChineseAcademyofSciences,Shanghai200032,China)
Abstract:Ion mobility spectrometry combined with mass spectrometry (IM-MS) has grown in popularity as a powerful analytical technique. IM is capable of separating ionized molecules in the gas phase based on their mobility in a carrier buffer gas, whereas MS is effective to measure the weight of these ions. It brings a two-dimensional correlation spectrum to obtain the relationship between the ratios of shape-to-charge from IM and the ratios of mass-to-charge (m/z) from MS. The ability to analyze a wide range of compounds makes IM-MS a valuable tool for an analytical research laboratory, which is often used to perform difficult qualitation that are not possible by other methods. Sucrose esters (SEs), as one of the major chemical compositions of tobacco leaves, are generated from one or more hydroxyl sucroses esterified with fatty acids. Research on SEs is paid more attention because of its responsibility for tobacco flavor. More than this, they are considered to be important in plant or insect interactions and possess both antibiotic and plant-growth regulating activities. Due to the complexity of esterification, the number and position of the acetyl groups in SE varies, there are a few of studies about the analysis of SEs that have been reported using GC/MS or LC/MS. But it is still difficult to characterize their structures in lack of the standard references. So it is valuable to improve the qualitative analysis of SEs in tobacco leaves. In this work, SEs in tobacco leaves were fast detected by liquid chromatography coupled with ion mobility-quadrupole/time of flight tandem mass spectrometry (LC-IM-Q TOF MS). The experiment was performed using an eluent of 0.1% formic acid in methanol-water (80∶20, V/V), and the electrospray ionization technique in positive ion mode was adopted. The sodium added quasi molecular ions of SEs from the extract of tobacco leaves were formed, separated in the ion mobility drift tube, and eventually detected by quadrupole/time-of-flight tandem mass spectrometry. As a result, six kinds of SEs were detected, with the difference of 0.2-0.8 min in LC retention time, the difference of 0.4-0.5 ms in IM drift time, and the difference of 14 u in MS ion mass. Furthermore, the SEs were identified using a multidimensional qualitative analysis approach consisting of MS/MS spectra, measurement of elemental composition for quasi molecular ion, and the calculation of CCS. In conclusion, LC-IM-Q TOF MS was proved to be one of the most efficient tools for the fast detection of SEs in complex matrices. It could improve the accuracy of qualitative analysis when coupled with the multidimensional qualitative approach.
Key words:liquid chromatography coupled with ion mobility-quadrupole/time of flight mass spectrometry (LC-IM-Q TOF MS); sucrose esters; qualitative analysis; tobacco leaf
網(wǎng)絡出版時間:2016-07-05;網(wǎng)絡出版地址:http:∥www.cnki.net/kcms/detail/11.2979.TH.20160705.1346.018.html