国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

添加DCD對(duì)雨養(yǎng)區(qū)春玉米產(chǎn)量、 氧化亞氮排放及硝態(tài)氮?dú)埩舻挠绊?/h1>
2016-08-24 09:05吳得峰姜繼韶王志齊黨廷輝郭勝利巨曉棠
關(guān)鍵詞:氧化亞氮施氮硝態(tài)

吳得峰, 姜繼韶, 高 兵, 劉 燕, 王 蕊, 王志齊,黨廷輝,,*, 郭勝利,,, 巨曉棠*

(1西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100; 2中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京100193;3中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100; 4西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100)

?

添加DCD對(duì)雨養(yǎng)區(qū)春玉米產(chǎn)量、 氧化亞氮排放及硝態(tài)氮?dú)埩舻挠绊?/p>

吳得峰1, 姜繼韶3, 高 兵2, 劉 燕2, 王 蕊1, 王志齊4,黨廷輝1,3,4*, 郭勝利1,3,4, 巨曉棠2*

(1西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100; 2中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京100193;3中國(guó)科學(xué)院水利部水土保持研究所,楊凌 712100; 4西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100)

1 材料與方法

1.1試驗(yàn)地概況

1.2試驗(yàn)設(shè)計(jì)與管理

1.3測(cè)定項(xiàng)目與方法

具體措施為:利用網(wǎng)絡(luò)技術(shù)進(jìn)行電力網(wǎng)格的程序設(shè)計(jì),構(gòu)建數(shù)據(jù)網(wǎng)格和信息網(wǎng)格,整合電力系統(tǒng)現(xiàn)有的數(shù)據(jù)和資源,實(shí)現(xiàn)數(shù)據(jù)在不同區(qū)域調(diào)度中心的交換和計(jì)算。電力網(wǎng)格的設(shè)置可以實(shí)現(xiàn)內(nèi)網(wǎng)和外網(wǎng)的采用同一操作系統(tǒng)的運(yùn)作模式,能在很大程度上提高電網(wǎng)運(yùn)行的效率。

1.3.2 產(chǎn)量測(cè)定玉米收獲時(shí)期,每個(gè)小區(qū)選取16 m2(共90株玉米),掰下玉米后稱重,然后從中選取15個(gè)(能代表本小區(qū)實(shí)際情況)帶回脫粒后自然風(fēng)干,稱重,計(jì)算籽實(shí)產(chǎn)量。

1.4計(jì)算方法與數(shù)據(jù)分析

氮肥農(nóng)學(xué)效率[N agronomic efficiency(AE),kg/kg]=(施氮區(qū)產(chǎn)量-不施氮區(qū)產(chǎn)量)/施氮量[27];

N2O排放通量[F,μg/(m2·h)]=(273×M×60/10×H)/[22.4×(273+T)]×dc/dt其中, 22.4為溫度為273K時(shí)的N2O摩爾體積(L/mol); T(℃)為蓋箱時(shí)間內(nèi)平均大氣溫度; M(28)代表每摩爾N2O中N2的分子量; H為采樣箱高度(cm),c為N2O氣體濃度(μL/L); t為關(guān)箱時(shí)間(min); dc/dt為采樣箱內(nèi)N2O氣體濃度的變化率[μL/(L·min)]; dc/dt(t=0)是指曲線在0時(shí)刻的初始斜率[28]。

2 結(jié)果與分析

2.1施氮模式對(duì)玉米產(chǎn)量和氮肥農(nóng)學(xué)效率的影響

表1 施肥模式對(duì)玉米籽粒產(chǎn)量和氮肥農(nóng)學(xué)效率的影響Table 1 Effects of fertilization modes on grain yields and several agronomic indexes of corn

注(Note): NEA—氮肥農(nóng)學(xué)效率 N agronomic efficiency; PEP—氮肥偏生產(chǎn)力Partial efficiency of N; 同列數(shù)據(jù)后不同字母表示差異達(dá)5%顯著水平Values followed by different letters in a column are significantly different among treatments at 5% level.

2.2施氮模式對(duì)土壤表層礦質(zhì)氮?jiǎng)討B(tài)變化的影響

圖1 施氮模式對(duì)土壤表層硝態(tài)氮?jiǎng)討B(tài)變化的影響Fig.

[注(Note): FS—休閑季Fallow season; MS—玉米生長(zhǎng)季Maize season; 箭頭代表施肥時(shí)間Arrows represent the time of fertilization.]

2.3施氮模式對(duì)土壤氧化亞氮排放的影響

施氮顯著增加了4種施氮模式的氧化亞氮的排放速率(P<0.05)(圖3),在施氮后的10天內(nèi)N2O排放速率維持在一個(gè)較高水平,10天以后顯著降低。

圖2 施氮模式對(duì)土壤表層銨態(tài)氮?jiǎng)討B(tài)變化的影響Fig.2 Dynamic in -N in topsoil (0—20 cm) under the N fertilization practices

[注(Note): FS—休閑季Fallow season; MS—玉米生長(zhǎng)季Maize season; 箭頭代表施肥時(shí)間Arrows represent the time of fertilization.]

圖3 不同施氮模式土壤氧化亞氮排放動(dòng)態(tài)變化Fig.3 Dynamic in N2O under different N fertilization modes

2.4施氮模式對(duì)土壤剖面硝態(tài)氮?dú)埩舻挠绊?/p>

表2 施氮模式對(duì)土壤氧化亞氮排放年累積量的影響(kg/hm2)Table 2 Cumulative N2O emission under the N fertilization practices

注(Note): 同列數(shù)據(jù)后不同字母表示差異達(dá)5%顯著水平 Values followed by different letters are significantly different among treatments at 5% level.

表3不同施氮模式土壤0—200 cm剖面硝態(tài)氮?dú)埩袅?kg/hm2)

profile under different N fertilization modes

注(Note): 同列數(shù)據(jù)后不同字母表示差異達(dá)5%顯著水平 Values followed by different letters are significantly different among treatments at 5% level.

3 討論

4 結(jié)論

1)減量施氮模式在施氮量減少20%的同時(shí),并沒(méi)有顯著降低玉米產(chǎn)量,反而提高了氮肥偏生產(chǎn)力(32%)和氮肥農(nóng)學(xué)效率(27%)。

因此,在黃土高原雨養(yǎng)農(nóng)業(yè)區(qū)使用DCD是一種保產(chǎn)、 減氮、 減排的有效措施,也是一種科學(xué)有效的施肥管理方式。

[1]Dawar K, Zaman M, Rowarth J S,etal. Urea hydrolysis and lateral and vertical movement in the soil: Effects of urease inhibitor and irrigation [J]. Biology and Fertility of Soils,2011, 47(2): 139-146.

[2]習(xí)金根, 周建斌. 不同灌溉施肥方式下尿素態(tài)氮在土壤中遷移轉(zhuǎn)化特性的研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2003, 9(3): 271-275.

Xi J G, Zhou J B. Leaching and transforming characteristics of urea-N added by different ways of fertigation[J]. Plant Nutrition and Fertilizer Science, 2003, 9(3): 271-275.

[3]戴宇, 賀紀(jì)正, 沈菊培. 雙氰胺在農(nóng)業(yè)生態(tài)系統(tǒng)中的應(yīng)用效果及其影響因素[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(1): 279-286.

Dai Y, He J Z, Shen J P. Effects and influence factors of dicyandiamide(DCD) application in agricultural ecosystem [J]. Chinese Journal of Applied Ecology, 2014, 25(1): 279-286.

[4]李偉, 李絮花, 唐慎欣, 等. 控釋摻混肥對(duì)夏玉米產(chǎn)量及土壤硝態(tài)氮和銨態(tài)氮分布的影響[J]. 水土保持學(xué)報(bào), 2011, 25(6): 68-91.

Li W, Li X H, Tang S X,etal. Effect of controlled-release urea combined with common urea on the grain yields of summer maize and distribution of soil ammonium and nitrate content[J]. Journal of Soil Water Conservation, 2011, 25(6): 68-91.

[5]劉瑜, 串麗敏, 安志裝, 等. 硝化抑制劑雙氰胺對(duì)褐土中尿素轉(zhuǎn)化的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(12): 2496-2502.

Liu Y, Chuan L M, An Z Z,etal. Effects of nitrification inhibitor dicyandiamide on ammonium and nitrate nitrogen transformations in cinnamon soil[J]. Journal of Agro-Environment Science, 2011, 30(12): 2496-2502.

[6]孫志梅, 武志杰, 陳利軍, 馬星竹. 硝化抑制劑的施用效果、 影響因素及其評(píng)價(jià)[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(7): 1611-1618.

Sun Z M, Wu Z J, Chen L J, Ma X Z. Application effect,affecting factors,and evaluation of nitrification inhibitor [J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1611-1618.

[7]曾后清, 朱毅勇, 王火焰, 沈其榮. 生物硝化抑制劑—一種控制農(nóng)田氮素流失的新策略[J]. 土壤學(xué)報(bào), 2012, 49(2): 382-388.

Zeng H Q, Zhu Y Y, Wang H Y, Shen Q R. Biological nitrification inhibitor-A new strategy for controlling nitrogen loss from farmland [J]. Acta Pedologica Sinica, 2012, 49(2): 382-388.

[8]劉倩, 褚貴新, 劉濤, 等. DCD在不同質(zhì)地土壤上的硝化抑制效果和劑量效應(yīng)研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2011, 19(4): 765-770.

Liu Q, Chu G X, Liu T,etal. Nitrification inhibition and dose-dependent effect of dicyandiamide on sandy,loamy and clayey soils [J]. Chinese Journal of Eco-Agriculture. 2011, 19(4): 765-770.

[9]俞巧鋼, 陳英旭. 尿素添加硝化抑制劑DMPP對(duì)稻田土壤不同形態(tài)礦質(zhì)態(tài)氮的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(7): 1357-1363.

Yu Q G, Chen Y X. Effect of the urea with nitrification inhibitor DMPP addition on different form nitrogen transformation in rice fields [J]. Journal of Agro-Environment Science, 2011, 30(7): 1357-1363.

[10]孫愛(ài)文, 石元亮, 朱志鋒, 尹宏斌. 硫脲及抑制劑組合對(duì)土壤尿素氮轉(zhuǎn)化和玉米產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005,11(4): 481-486.

Sun A W, Shi Y L, Zhu Z F, Yin H B. Effect of combination of thiourea and inhibitors on soil urea-N transformation and corn yield [J]. Plant Nutrition and Fertilizer Science, 2005, 11(4): 481-486.

[11]華建峰, 蔣倩, 施春健, 等. 脲酶/硝化抑制劑對(duì)土壤脲酶活性、 有效態(tài)氮及春小麥產(chǎn)量的影響[J]. 土壤通報(bào), 2008, 39(1): 94-99.

Hua J F, Jiang Q, Shi C J,etal. Effects of urease/nitrification inhibitors on soil urease activity,soil available N and the yield of spring wheat [J]. Chinese Journal of Soil Science, 2008,39(1): 94-99.

[12]張志明, 李繼云, 馮元琦, 等. 長(zhǎng)效碳酸氫銨理化特性及增產(chǎn)機(jī)理的研究[J]. 中國(guó)科學(xué)(B輯化學(xué)), 1996, 26(5): 452-459.

Zhang Z M, Li J Y, Feng Y Q,etal. Study of physical and chemical properties and yield mechanism on durably efficacious ammonium bicarbonate[J]. Science in China(Series B), 1996, 26(5): 452-459.

[13]趙倫學(xué), 肖厚軍. 硝化抑制劑對(duì)白菜產(chǎn)量和硝酸鹽含量的影響[J]. 農(nóng)技服務(wù), 2014, 31(6): 119-124.

Zhao L X, Xiao H J. Effects of nitrification inhibitors on the yield of cabbage and the content of nitrate [J]. Agricultural Machinery Service, 2014, 31(6): 119-124.

[14]Malla G, Bhatia A, Pathak H,etal. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the indo-gangetic plain with nitrification and urease inhibitors [J]. Chemosphere, 2005, 58(2): 141-147.

[15]李香蘭, 徐華, 蔡祖聰. 氫醌、 雙氰胺組合影響稻田甲烷和氧化亞氮排放研究進(jìn)展[J]. 土壤學(xué)報(bào), 2009, 46(5): 917-924.

Li X L, Xu H, Cai Z C. Effect of combined use of hydroquinone and dicyandiamide on CH4and N2O emissions from rice paddy field [J]. Acta Pedologica Sinica, 2009, 46(5): 917-924.

[16]石美, 梁東麗, 滿楠, 等. 不同濃度DMPP和DCD對(duì)石灰性土壤中氮素轉(zhuǎn)化的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(22): 4635-4642.

Shi M, Liang D L, Man N,etal. Effcts of different application rates of DMPP and DCD on nitrogen transformation in calcareous soil [J]. Scientia Agricultura Sinica, 2012, 45(22): 4635-4642.

[17]楊春霞, 李永梅. 雙氰胺對(duì)不同質(zhì)地紅壤中尿素的硝化抑制作用研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2006, 14(2): 111-113.

Yang C X, Li Y M. Nitrification inhibition of dicyandiamide on urea in the red soil of different textures[J]. Chinese Journal of Eco-Agriculture. 2006, 14(2): 111-113.

[18]Kawakami E M, Oosterhuis D M, Snider J L,etal. Physiologi-

cal and yield responses of field-grown cotton to application of urea with the urease inhibitor NBPT and the nitrification inhibitor DCD [J]. European Journal of Agronomy, 2012, 43: 147-154.

[19]李卓勇, 梁家作. 雙氰胺對(duì)赤紅壤中氯化銨硝化抑制效應(yīng)研究[J]. 南方農(nóng)業(yè)學(xué)報(bào), 2011, 42(10): 1238-1240.

Li Z Y, Liang J Z. The inhibitory effect of dicyandiamide on nitrification in latosolic red soil [J]. Journal of Southern Agriculture, 2011, 42(10): 1238-1240.

[20]何盈, 蔡順香, 何春梅, 羅濤. 施氮量和DCD對(duì)蕹菜生長(zhǎng)、 硝酸鹽累積及土壤氮素形態(tài)的影響[J]. 北方園藝, 2007(12): 10-13.

He Y, Cai S X, He C M, Luo T. Effects of nitrogen rate and DCD on growth,nitrate accumulation of the water spinach and soil nitrogen [J]. Northern Horticulture, 2007(12): 10-13.

[21]Guobin L. Soil conservation and sustainable agriculture on the loess plateau: Challenges and prospects [J]. Ambio, 1999, 28(8): 663-668.

[23]李軍, 王立祥, 邵明安, 樊延錄. 黃土高原地區(qū)玉米生產(chǎn)潛力模擬研究[J]. 作物學(xué)報(bào), 2002, 28(4): 555-560.

Li J, Wang L X, Shao M A, Fan Y L. Simulation of maize potential productivity in the Loess Plateau Region of China [J]. Acta Agronomica Sinica, 2002, 28(4): 555-560.

[24]黨廷輝, 郭勝利, 郝明德. 黃土旱塬長(zhǎng)期施肥下硝態(tài)氮深層累積的定量研究[J]. 水土保持研究, 2003, 10(1): 58-75.

[26]石德楊, 張海艷, 董樹(shù)亭. 土壤高殘留氮條件下施氮對(duì)夏玉米氮素平衡、 利用及產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(1): 37-44.

Shi D Y, Zhang H Y, Dong S T. Effects of nitrogen application on nitrogen balance and use efficiency and yield of summer maize in soil with high residual nitrogen[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 37-44.

[27]張福鎖, 王激清, 張衛(wèi)峰, 等. 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5): 915-924.

Zhang F S, Wang J Q, Zhang W F,etal. Nutrient use efficiencies of major cereal crops in China and measures for improvement [J]. Acta Pedologica Sinica, 2008, 45(5): 915-924.

[28]Kroon P S, Hensen A,van den Bulk W C M,etal. Theimportance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers [J]. Nutrient Cycling in Agroecosystems, 2008, 82(2): 175-186.

[29]Khalil M I, Gutser R, Schmidhalter U. Effects of urease and nitrification inhibitors added to urea on nitrous oxide emissions from a loess soil [J]. Journal of Plant Nutrition and Soil Science, 2009, 172(5): 651-660.

[30]蔡延江, 丁維新, 項(xiàng)劍. 土壤N2O和NO產(chǎn)生機(jī)制研究進(jìn)展[J]. 土壤, 2012, 44(5): 712-718.

Cai Y J, Ding W X, Xiang J. Mechanisms of nitrous oxide and nitric oxide production in soils: A review [J]. Soils, 2012, 44(5): 712-718.

[31]Ma B, Wu T, Tremblay N,etal. Nitrous oxide fluxes from corn fields: On-farm assessment of the amount and timing of nitrogen fertilizer [J]. Global Change Biology, 2010, 16(1): 156-170.

[32]Halverson L J, Jones T M, Firestone M K. Release of intracell-

ular solutes by four soil bacteria exposed to dilution stress [J]. Soil Science Society of America Journal, 2000, 64(5): 1630-1637.

[33]Beare M H, Gregorich E G, St-Georges P. Compaction effects on CO2and N2O production during drying and rewetting of soil [J]. Soil Biology & Biochemistry, 2009, 41(3): 611-621.

[34]Liu X J, Ju X T, Zhang F S,etal. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain [J]. Field Crops Research, 2003, 83(2): 111-124.

[35]高素玲, 劉松濤, 楊青華, 常介田. 氮肥減量后移對(duì)玉米冠層生理性狀和產(chǎn)量的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2013, 29(24): 114-118.

Gao S L, Liu S T, Yang Q H, Chang J T. Effect of reducing and postponing nitrogen fertilization on the yield and canopy physiological properties of corn [J]. Chinese Agricultural Science Bulletin, 2013, 29(24): 114-118.

[36]Liu J, Zhu L, Luo S,etal. Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland [J]. Agriculture, Ecosystems & Environment, 2014, 188: 20-28.

Effects of DCD addition on grain yield, N2O emission and residual nitrate-N of spring maize in rain-fed agriculture

WU De-feng1, JIANG Ji-shao3, GAO Bing2, LIU Yan2, WANG Rui1, WANG Zhi-qi4,DANG Ting-hui1,3,4*, GUO Sheng-li1,3,4, JU Xiao-tang2*

(1CollegeofResourcesandEnvironment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China; 2CollegeofResourcesandEnvironmentalSciences,ChinaAgriculturalUniversity,Beijing100193,China; 3InstituteofSoilandWaterConservation,ChineseAcademyofSciencesandMinistryofWaterResources,Yangling,Shaanxi712100,China; 4InstituteofSoilandWaterConservation,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)

【Objectives】The impacts of nitrate inhibitor (dicyandiamide, DCD)on crop yields and residuals of soil nitrate N in field have been less reported under field condition. It is of great importance to research its effects in different nitrogen (N) fertilization modes for high maize yield, low N2O emission and high fertilizer-nitrogen use efficiency.【Methods】A field experiment was conducted in the Changwu State Key Agro-Ecological Station from April 2013 to September 2014. Pioneer 335, a high-yield spring maize hybrid, was chosen and planted with half plastic film mulching. The experiment consisted of 4 N fertilization treatments with three replicates: conventional N fertilization rate (Con), optimal N fertilization (Opt), optimal N fertilization plus nitrification inhibitor (Opt+DCD) and control treatment (N0). Soil samples and N2O were gathered at regular intervals, soil mineral N and N2O were analyzed using continuous flow analyzer and gas chromatograph 【Results】The Opt and Opt+DCD treatments can maintained the maize yields, and simultaneously significantly influence the N2O emission and the residuals of nitrate nitrogen. The peak values of nitrate nitrogen are significantly decreased by 13.7% and 19.0% in the Opt and Opt+DCD treatments, respectively. The nitrogen application modes also affect the time of peak values. The peak values of nitrate nitrogen are appeared in the Con treatment (190.1 mg/kg) firstly, and then the Opt (164.0 mg/kg) and Opt+DCD (132.9 mg/kg). The N2O emission is significantly decreased in the Opt treatment (29.4%), whereas further decreased (28.1%) in the Opt+DCD treatment. The nitrate concentration is fluctuated with precipitation during rainy season. The peak value of ammonium nitrogen is increased in the Opt+DCD treatment, although it is decreased in the Opt treatment. The residuals of nitrate nitrogen at the depth of 0-100 cm and 100-200 cm of four nitrogen application modes are in the ranges of 33.5-148.9 kg/hm2and 24.8-92.8 kg/hm2, with mean values of 78.5 mg/kg and 56.4 kg/hm2, respectively. The highest accumulation of nitrate nitrogen in profile (0-200 cm) is in the Con treatment (225.9 kg/hm2), and about 48.0%-59.0% and 29.4%-57.5% of the accumulation are decreased in the Opt and Opt+DCD treatments compare to that in the Con treatment, respectively. The residuals of nitrate nitrogen between Opt and Opt+DCD have not significant difference. 【Conclusions】Different N fertilization modes have significant impact on maize yields, dynamics of soil mineral N and N2O emissions and agronomic efficiency of fertilizer-nitrogen. However, with the N application rate reduced by 20%, the treatments of Opt and Opt+DCD not only maintain the maize yields, but also further decrease the residuals of nitrate nitrogen in soil profile and emissions of greenhouse gas from agricultural sources. Therefore, DCD addition is a kind of scientific and effective fertilization management mode in rain-fed agricultural region of Loess Plateau.

2014-12-10接受日期: 2015-01-26網(wǎng)絡(luò)出版日期: 2015-08-19

公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201103039)資助。

吳得峰(1989—),男,甘肅張掖人,碩士研究生,主要從事土壤碳循環(huán)及生態(tài)環(huán)境研究。E-mail: dfwu315@163.com

E-mail: dangth@ms.iswc.ac.cn; juxt@cau.edu.cn

S511; S506.2

A

1008-505X(2016)01-0030-10

猜你喜歡
氧化亞氮施氮硝態(tài)
電化學(xué)法去除硝態(tài)氮的研究
生物炭對(duì)農(nóng)田氧化亞氮排放及其影響機(jī)制的研究進(jìn)展
施氮水平對(duì)油菜生育后期氮素吸收積累和分配的影響
XLNO型低溫脫除氧化亞氮催化劑性能研究
水氮用量組合對(duì)凍融期土壤相變區(qū)硝態(tài)氮遷移與累積的影響
不同施氮方法對(duì)兩種株型糯玉米穗部性狀及產(chǎn)量的影響
活性碳源顯著降低蔬菜地土壤硝態(tài)氮
均勻施氮利于玉米根系生長(zhǎng)及產(chǎn)量形成
施氮水平對(duì)超高產(chǎn)夏玉米籽粒及植株形態(tài)學(xué)特征的影響
NaCl對(duì)真鹽生植物囊果堿蓬硝態(tài)氮吸收親和力系統(tǒng)的影響