區(qū)惠平, 周柳強(qiáng), 黃美福, 黃金生, 韋運(yùn)蘭, 謝如林,曾 艷, 劉昔輝, 朱曉暉, 譚宏偉*
(1廣西農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南寧 530007; 2廣西農(nóng)業(yè)科學(xué)院甘蔗研究所,南寧 530007)
?
不同施磷量下稻田土壤磷素平衡及其潛在環(huán)境風(fēng)險(xiǎn)評估
區(qū)惠平1, 周柳強(qiáng)1, 黃美福1, 黃金生1, 韋運(yùn)蘭1, 謝如林1,曾 艷1, 劉昔輝2, 朱曉暉1, 譚宏偉2*
(1廣西農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,南寧 530007; 2廣西農(nóng)業(yè)科學(xué)院甘蔗研究所,南寧 530007)
水稻; 磷; 流失; 風(fēng)險(xiǎn)
施磷肥是水稻增產(chǎn)和穩(wěn)產(chǎn)的重要農(nóng)業(yè)措施之一。但由于磷肥的不合理施用,加上稻季降水頻繁,土壤磷隨地表徑流的損失成了水體中磷的重要污染源。曹寧等[1]指出,遼寧、 吉林和黑龍江省由農(nóng)田進(jìn)入水體環(huán)境的磷負(fù)荷2002年比上世紀(jì)80年代分別增加了3%、 229%和125%。農(nóng)田水對溝渠水總磷的增荷率高達(dá)82%[2]。因此,科學(xué)管理農(nóng)田磷素并防止其向水體的遷移對控制和減少磷的地表流失,減輕農(nóng)業(yè)面源污染具有重要意義。
降低水稻種植期田面水磷含量是控制稻田磷徑流流失的關(guān)鍵因子,利用田面水磷濃度與土壤Olsen-P含量間的關(guān)系,尋求引發(fā)田面水磷激增的土壤Olsen-P突變點(diǎn),是當(dāng)前評價(jià)磷素環(huán)境效應(yīng)的有效方法。但受土壤性質(zhì)、 氣候、 農(nóng)作管理等多種因素的影響,不同稻作區(qū)田面水中磷素的富集狀況、 流失量以及對水體污染的潛在風(fēng)險(xiǎn)不一。例如,周萍等[3]在江漢平原稻作區(qū)的研究表明,施磷后7 d內(nèi)田面水磷濃度較高,是磷素通過田面水流失的高危險(xiǎn)期,常規(guī)施肥下田面水的安全排放期為施肥后24 d; 而施澤升等[4]在洱海北部稻作區(qū)的研究指出,施肥后2周內(nèi)是控制磷損失的關(guān)鍵時(shí)期。因此,有必要針對具體稻作區(qū)進(jìn)行土壤磷環(huán)境風(fēng)險(xiǎn)研究。目前的研究多側(cè)重于太湖地區(qū)[5-6]、 紫色土稻作區(qū)[7]和北方稻作區(qū)[8],但關(guān)于南方赤紅壤稻作區(qū)土壤磷素的徑流風(fēng)險(xiǎn)鮮有報(bào)道。磷是作物必需的3大營養(yǎng)物質(zhì)之一,前人關(guān)于結(jié)合作物產(chǎn)量效應(yīng)、 磷素平衡及環(huán)境效應(yīng)提出一個(gè)既能滿足作物高產(chǎn)又不污染環(huán)境的施磷量閾值的試驗(yàn)較少,且國內(nèi)的研究多為一年監(jiān)測試驗(yàn),多年連續(xù)監(jiān)測試驗(yàn)較少。本研究以南方赤紅壤稻作區(qū)為研究對象,通過定位試驗(yàn),連續(xù)3年監(jiān)測不同施磷水平下水稻產(chǎn)量、 土壤磷素平衡與田面水磷素濃度變化特征,從農(nóng)學(xué)和環(huán)境方面揭示磷肥施用與稻田磷素流失風(fēng)險(xiǎn)之間的關(guān)系,為科學(xué)評估赤紅壤區(qū)稻田施磷的環(huán)境效應(yīng)及合理施磷、 減輕農(nóng)業(yè)面源污染提供參考。
1.1試驗(yàn)區(qū)概況
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)設(shè)置4個(gè)磷水平: 對照(不施磷肥,P0); 當(dāng)?shù)亓追适┯昧?P1); 2倍當(dāng)?shù)亓追适┯昧?P2); 4倍當(dāng)?shù)亓追适┯昧?P3),每處理3次重復(fù)。不同年份早、 晚稻具體施肥量見表1。小區(qū)面積19.52 m2[4 m(寬)× 4.88 m(長)],共12個(gè)小區(qū),隨機(jī)區(qū)組排列。各小區(qū)間用33 cm高的鋁塑板隔開,并設(shè)獨(dú)立的排灌口。鋁塑板高出田面13 cm,以防小區(qū)間跑水、 躥水、 串肥,鋁塑板交接口用塑料薄膜密封。
表1 不同年份雙季稻施肥量(kg/hm2)Table 1 Fertilizer application rates in double rice field in different years
1.3樣品采集與測定方法
田面水總磷采用過硫酸鉀氧化—鉬藍(lán)比色法[9]測定; 植株全磷采用H2SO4-H2O2消煮,釩鉬黃比色法[10]測定; 土壤Olsen-P測定采用0.5 mol/L NaHCO3浸提—鉬藍(lán)比色法[10]測定。
水稻地上部磷素養(yǎng)分累積量和土壤磷素表觀盈余量根據(jù)下式計(jì)算:
地上部磷素養(yǎng)分累積量=秸稈產(chǎn)量×秸稈含磷量+稻谷產(chǎn)量×稻谷含磷量;
土壤磷素表觀盈余量=施磷量-地上部磷素養(yǎng)分累積量。
1.4數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用Excel 2007與DPS 7.5進(jìn)行處理, Origin 6.0和Excel 2007軟件作圖,LSD法進(jìn)行多重比較,用split-line模型預(yù)測在該供試土壤上發(fā)生徑流時(shí)的土壤Olsen-P臨界值。
2.1不同施磷量對水稻的產(chǎn)量效應(yīng)
表2 不同施磷水平下的水稻產(chǎn)量(kg/hm2)Table 2 Rice yields under different phosphate application rates
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
2.2不同施磷量對土壤磷素累積平衡的影響
土壤Olsen-P含量也表現(xiàn)出隨施磷量的增加而提高的趨勢(表5),兩者呈顯著線性關(guān)系(圖1)。P0和P1處理的土壤Olsen-P含量差異不顯著,P2處理在2012年晚稻顯著高于P0和P1處理,P3處理在每造水稻收獲后,土壤Olsen-P含量均顯著高于其它處理。隨著植稻次數(shù)的增加,P0和P1處理,土壤Olsen-P含量有波動下降的趨勢,2年平均分別較試驗(yàn)前下降了13.9%和6.7%,而P2和P3處理均呈波動上升趨勢,2年平均分別較試驗(yàn)前增加6.4%和43.1%。
表3 不同施磷量下的土壤磷素平衡(kg/hm2)Table 3 Soil P balance under different phosphate application rates
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
表4 土壤表觀磷盈余量與施磷量的關(guān)系Table 4 Relationship between P surplus and phosphate application rate
表5 不同施磷量下稻田土壤Olsen-P含量 (mg/kg)Table 5 Soil Olsen-P concentrations under different phosphate application rates
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平Valuesfollowedbydifferentlettersinacolumnaresignificantamongtreatmentsatthe5%level.
圖1 施磷量與土壤Olsen-P含量的關(guān)系Fig.1 Relationship between phosphate application rate and soil Olsen-P concentration
2.3不同施磷量對稻田田面水總磷的影響
圖2 稻田田面水總磷含量的動態(tài)變化Fig.2 Dynamic change of total P concentration in surface water of paddy fields
2.4土壤Olsen-P與田面水總磷濃度的關(guān)系
CTP=-0.2643+0.0318COlsen-P
(n=15, r=0.4345, P=0.1056);
CTP= -1.2638+0.0843COlsen-P
(n=32, r=0.8217, P<0.0001)。
此分段模型的拐點(diǎn)處Olsen-P含量為19.0mg/kg,即當(dāng)耕層土壤Olsen-P低于該含量范圍值時(shí),田面水總磷濃度隨土壤Olsen-P含量的增加而增大不明顯; 而當(dāng)土壤Olsen-P濃度大于該范圍值時(shí),田面水總磷濃度會在短期內(nèi)迅速升高。根據(jù)圖1,由施磷量與土壤Olsen-P的關(guān)系計(jì)算出該拐點(diǎn)處Olsen-P含量對應(yīng)的施磷量為P2O562.9kg/hm2。
圖3 耕層土壤Olsen-P含量與田面水總磷濃度的關(guān)系Fig.3 Relationship between Olsen-P concentration in surface soil of paddy fields and total P in surface water
Wang等[17]和謝學(xué)儉等[18]指出,稻田磷流失主要是田面水中磷隨降雨溢出水田或人工排水而損失。在本試驗(yàn)條件下,人工排水僅發(fā)生在分蘗末期和拔節(jié)期,因而施肥后由排水而引起的稻田磷流失風(fēng)險(xiǎn)較小。相反,廣西雨季集中于夏季,且近45a年,廣西春播期降水全區(qū)性增加,其中南部沿海降水明顯增加[19],因此,在不施磷肥的情況下,擾動施肥后稻田磷素主要存在隨降雨溢出而流失的風(fēng)險(xiǎn),尤其在施肥后第1d,田面水總磷濃度在國家環(huán)境保護(hù)總局規(guī)定的農(nóng)業(yè)用水區(qū)允許直接進(jìn)入湖、 庫的地表水總磷濃度臨界值(0.2mg/L)之上。因此,應(yīng)避免雨天施肥以防止田面水中的磷以農(nóng)田徑流方式進(jìn)入水體。
綜上所述,考慮到磷素在土壤中過量累積而引發(fā)的環(huán)境風(fēng)險(xiǎn)、 水稻產(chǎn)量效應(yīng)以及土壤磷素表觀收支平衡,在赤紅壤地區(qū)雙季稻體系下,以施磷量P2O563kg/hm2為宜。
[1]曹寧, 曲東, 陳新平, 等. 東北地區(qū)農(nóng)田土壤氮、 磷平衡及其對面源污染的貢獻(xiàn)分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 34(7): 127-133.
CaoN,QuD,ChenXP, et al.Analysisofthecontributiontonon-pointpollutionmadebybalancedfertilizerinNortheastChina[J].JournalofNorthwestA&FUniversity(NaturalScienceEdition), 2006, 34(7): 127-133.
[2]湯秋香, 任天志, 雷寶坤, 等. 洱海北部地區(qū)不同輪作農(nóng)田氮、 磷流失特征研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(3): 608-615.
TangQX,RenTZ,LeiBK, et al.CharacteristicsofnitrogenandphosphoruslossinvariouscroprotationsystemsinnorthernwatershedofErhaiLake[J].PlantNutritionandFertilizerScience, 2011, 17(3): 608-615.
[3]周萍, 范先鵬, 何丙輝, 等. 江漢平原地區(qū)潮土水稻田面水磷素流失風(fēng)險(xiǎn)研究[J]. 水土保持學(xué)報(bào), 2007, 21(4): 47-50, 116.
ZhouP,FanXP,HeBH, et al.ResearchonlossriskofphosphorusinsurfacewaterofpaddysoilinJianghanPlainregion[J].JournalofSoilandWaterConservation, 2007, 21(4): 47-50, 116.
[4]施澤升, 續(xù)勇波, 雷寶坤, 等. 洱海北部地區(qū)不同氮、 磷處理對稻田田面水氮磷動態(tài)變化的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(4): 838-846.
ShiZS,XuYB,LeiBK, et al.DynamicchangesofnitrogenandphosphorusconcentrationsinsurfacewatersofpaddysoilsinthenorthernareaofErhaiLake[J].JournalofAgro-EnvironmentScience, 2013, 32(4): 838-846.
[5]趙建寧, 沈其榮, 冉煒. 太湖地區(qū)側(cè)滲水稻土連續(xù)施磷處理下稻田磷的徑流損失[J]. 農(nóng)村生態(tài)環(huán)境, 2005, 21(3): 29-33.
ZhaoJN,ShenQR,RanW.PhosphoruslosswithrunofffromasidebleachingpaddysoilundercontinualPapplicationinTaihuLakeregion[J].RuralEco-Environment, 2005, 21(3): 29-33.
[6]顏曉, 王德建, 張剛, 等. 長期施磷稻田土壤磷素累積及其潛在環(huán)境風(fēng)險(xiǎn)[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21(4): 393-400.
YanX,WangDJ,ZhangG, et al.Soilphosphorousaccumulationinlong-termPfertilizationpaddyfieldanditsenvironmentaleffects[J].ChineseJournalofEco-Agriculture, 2013, 21(4): 393-400.
[7]李學(xué)平, 石孝均. 紫色水稻土磷素動態(tài)特征及其環(huán)境影響研究[J]. 環(huán)境科學(xué), 2008, 29(2): 434-439.
LiXP,ShiXJ.Dynamiccharacteristicsofphosphorusinpurplepaddysoilanditsenvironmentalimpact[J].EnvironmentalScience, 2008, 29(2): 434-439.
[8]周全來, 趙牧秋, 魯彩艷, 等. 施磷對稻田土壤及田面水磷濃度影響的模擬[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(10): 1845-1848.
ZhouQL,ZhaoMQ,LuCY, et al.EffectsofPapplicationonPconcentrationsinpaddysoilanditssurfacewater:Asimulationtest[J].ChineseJournalofAppliedEcology, 2006, 17(10): 1845-1848.
[9]國家環(huán)保局. 中華人民共和國國家標(biāo)準(zhǔn)GB11893-89 水質(zhì)總磷的測定-鉬酸銨分光光度法[M]. 北京: 中國環(huán)境科學(xué)出版社, 1989.
SEPA.NationalstandardsofPeoplesRepublicofChinaGB11893-89waterqualitydeterminationoftotalphosphorous-Ammoniummolybdatespectrophotometricmethod[S].Beijing:ChinaEnvironmentalSciencePress, 1989.
[10]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國農(nóng)業(yè)科技出版社, 2000.
LuRK.Theanalysismethodsofsoilsandtheiragrochemistries[M].Beijing:ChinaAgriculturalScienceandTechnologyPress, 2000.
[11]國家環(huán)境保護(hù)總局, 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局.GB3838-2002 地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)[M]. 北京: 中國環(huán)境科學(xué)出版社, 2002.
SEPA,AQSIQ.GB3838-2002environmentalqualitystandardsforsurfacewater[S].Beijing:ChinaEnvironmentalSciencePress, 2002.
[12]魯如坤. 土壤磷素水平和水體環(huán)境保護(hù) [J]. 磷肥與復(fù)肥, 2003, 18(1): 4-8.
LuRK.Thephosphoruslevelofsoilandenvironmentalprotectionofwaterbody[J].Phosphate&CompoundFertilizer, 2003, 18(1): 4-8.
[13]廖宗文, 林東教, 王建林. 紅壤的磷肥有效性差異及其土壤化學(xué)特點(diǎn)的初步研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 1996, 17(l): 67-71.
LiaoZW,LinDJ,WangJL.ApreliminarystudyonthedifferenceofPfertilizeravailabilityinredearthsandrelativecharacteristicsofsoilchemistry[J].JournalofSouthChinaAgriculturalUniversity, 1996, 17(l): 67-71.
[14]張志劍, 王珂, 朱蔭湄, 等. 水稻田表水磷素的動態(tài)特征及其潛在環(huán)境效應(yīng)的研究[J]. 中國水稻科學(xué), 2000, 14(1): 55-57.
ZhangZJ,WangK,ZhuYM, et al.Dynamiccharacteristicsofphosphorusinsurfacewaterofpaddyfieldanditspotentialenvironmentalimpact[J].ChineseJournalofRiceScience, 2000, 14(1): 55-57.
[15]HeZL,WilsonMJ,CampbellCO, et al.Distributionofphos-
phorusinsoilaggregatefractionsanditssignificancewithregardtophosphorustransportinagriculturalrunoff[J].WaterAirandSoilPollution, 1995, 83(1-2): 69-84.
[16]夏小江, 胡清宇, 朱利群, 等. 太湖地區(qū)稻田田面水氮磷動態(tài)特征及徑流流失研究[J]. 水土保持學(xué)報(bào), 2011, 25(4): 21-25.
XiaXJ,HuQY,ZhuLQ, et al.StudyondynamicchangesofnitrogenandphosphorusinsurfacewaterofpaddyfieldandrunofflossinTaihuregion[J].JournalofSoilandWaterConservation, 2011, 25(4): 21-25.
[17]WangK,ZhangZJ,ZhuYM, et al.Surfacewaterphosphorusdynamicsinricefieldsreceivingfertilizerandmanurephosphorus[J].Chemosphere, 2001, 42: 209-214.
[18]謝學(xué)儉, 冉煒, 沈其榮. 淹水條件下水稻田中磷的淋溶研究[J]. 土壤, 2003, 35(6): 506-509.
XieXJ,RanW,ShenQR.Plossthroughverticalleachingfrompaddyfieldundersubmergedconditions[J].Soils, 2003, 35(6): 506-509.
[19]黃嘉宏, 李江南, 李自安, 等. 近45a廣西降水和氣溫的氣候特征[J]. 熱帶地理, 2006, 26(1): 23-28.
HuangJH,LiJN,LiZA, et al.Climaticcharacteristicsofprecipitationandtemperatureinthepast45yearsinGuangxi[J].TropicalGeography, 2006, 26(1): 23-28.
Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates
OU Hui-ping1, ZHOU Liu-qiang1, HUANG Mei-fu1, HUANG Jin-sheng1, WEI Yun-lan1, XIE Ru-lin1,ZENG Yan1, LIU Xi-hui2, ZHU Xiao-hui1, TAN Hong-wei2*
(1AgriculturalResourceandEnvironmentResearchInstitute,GuangxiAcademyofAgriculturalSciences,Nanning530007,China;2SugarcaneResearchInstitue,GuangxiAcademyofAgriculturalSciences,Nanning530007,China)
【Objectives】 The objective is to provide the basis for reducing agricultural non-poimt source pollution by evaluating phosphorus (P) balance in paddy soils in red soil zone of south China and its environmental effect under different P application rates. 【Methods】 A continuous 3-year (2011-2013) field experiment design was used, and 4 different P application rates were selected, P2O50, 63-81, 126-162 and 252-324 kg/hm2. In this study, yields and P concentrations of grain and straw of both early cropping rice and late cropping rice were detected, and P surplus was calculated by the difference of P levels and aboveground P accumulation. Moreover, total P in field water above soil surface at 1, 2, 3, 5,7 and 9 days after the basal and earing fertilizing was also detected, then the relation between total P in field water above soil surface and soil Olsen-P concentration from 2011 to 2012 year was analyzed by the split-line model. 【Results】The P2O563-81 kg/hm2phosphorus treatment significantly improves the rice yield as compared with the non P fertilization control, and not significant as compared with the treatment of double and 4 times P rates of the fertilizer. The fertilizer-P application increases the aboveground P accumulation, soil P surplus and soil Olsen-P concentration which are increased with the increment of the P fertilizer amounts. The total phosphorus (TP) in the field water is high during the first 1-3 days in the control, which is the dangerous duration for P running off. Compared with the control, the TP content in the surface water of the P2O563-81 kg/hm2treatment is significantly higher within 2 days after the fertilization, and always high during the monitoring period in the P2O5252-324 kg/hm2treatment. The simulation with the split line model on the relationship between soil Olsen-P and field water TP above soil surface shows that the change point of soil Olsen-P which relates to the field water TP concentration above soil surface is 19.0 mg/kg, corresponding to a P application rate of about P2O563 kg/hm2, and equals to the recommended fertilizer rate based on the line relationship model between fertilizer-P application rate and P surplus. 【Conclusions】 As far as the rice yield, soil P surplus and its environmental effect are considered, P2O563 kg/hm2is suitable for the double rice cropping system in red soils of South China.
rice; phosphorus; loss; risk
2014-06-17接受日期: 2014-09-17網(wǎng)絡(luò)出版日期: 2015-06-01
農(nóng)業(yè)部科技專項(xiàng)(201003014,WX-2-07-13,201203030,201203021); 廣西農(nóng)科院基金項(xiàng)目(2014JZ18,2013YQ01,2012YZ20,2015YT30,2012YZ20); 廣西自然科學(xué)基金項(xiàng)目(2012GXNSFBA053062,桂科合14125008-2-15); 國家自然科學(xué)基金項(xiàng)目(21467004,U1033004); IPNI項(xiàng)目資助。
區(qū)惠平(1983—),女,廣東江門人,副研究員,主要從事作物營養(yǎng)與生態(tài)環(huán)境方面的研究。E-mail: ouhuiping2006@163.com
E-mail: hwtan@gxaas.net
S511.062; X53
A
1008-505(2016)01-0040-08