鄭劍超, 閆曼曼, 張巨松*, 高麗麗, 石洪亮, 鄭 慧, 張玉玲
(1新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,教育部棉花工程研究中心,新疆烏魯木齊 830052;2新疆喀什岳普湖縣農(nóng)技推廣中心,新疆喀什 844000)
?
遮蔭條件下氮肥運(yùn)籌對(duì)棉花生長(zhǎng)和氮素積累的影響
鄭劍超1, 閆曼曼1, 張巨松1*, 高麗麗1, 石洪亮1, 鄭 慧1, 張玉玲2
(1新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,教育部棉花工程研究中心,新疆烏魯木齊 830052;2新疆喀什岳普湖縣農(nóng)技推廣中心,新疆喀什 844000)
表1 各處理氮肥施用時(shí)期和用量Table 1 Nitrogen application periods and rates of different treatments
棉花; 遮蔭; 氮肥運(yùn)籌; 生物量; 氮素積累
作物的高產(chǎn)、 優(yōu)質(zhì)是以較高的生物量為前提的[3-5],而生物量的累積是以養(yǎng)分吸收為基礎(chǔ)[6],且養(yǎng)分吸收與生物量的積累關(guān)系密切[7]。氮素營(yíng)養(yǎng)是調(diào)控作物生長(zhǎng)發(fā)育的重要手段,氮肥前移比例增加使棉花現(xiàn)蕾晚,初花和吐絮早,進(jìn)而縮短生育期[8]。大量研究表明,環(huán)境條件如光照、 氮肥等對(duì)生長(zhǎng)模型(Logistic模型)的影響較小,但對(duì)其生長(zhǎng)特征值的影響較大[9-10],因此合理的氮肥運(yùn)籌可以改變作物生物量和氮素的積累過程,優(yōu)化各器官氮素的積累和分配[2,11],同時(shí)增加作物產(chǎn)量和氮肥利用率[12-13]。棉花生長(zhǎng)前期氮肥比例的增加使其生物量和氮素積累快速生長(zhǎng)期啟動(dòng)的時(shí)間提前[14],因此可以通過氮肥運(yùn)籌來(lái)改善果棉間作下棉花快速生長(zhǎng)期的生長(zhǎng)特征值,以縮短生育期,增加霜前花率,從而達(dá)到增產(chǎn)的目的。關(guān)于棉花氮肥運(yùn)籌方面,前人已從不同角度進(jìn)行了大量研究[15-17],但在遮蔭下不同氮肥運(yùn)籌對(duì)棉花養(yǎng)分運(yùn)移特征的研究鮮見報(bào)道。為此,本試驗(yàn)在南疆地區(qū)普遍采用的果棉間作模式下,研究氮肥運(yùn)籌對(duì)弱光脅迫下棉花生物量、 氮素累積的影響,以期為果棉間作下棉花合理施用氮肥提供理論依據(jù)。
1.1試驗(yàn)設(shè)計(jì)
以中棉所49為試材,采用裂區(qū)設(shè)計(jì),主區(qū)為遮蔭50%(S50)和不遮蔭(CK)兩個(gè)處理; 副區(qū)為不同氮肥運(yùn)籌,分別為N1(氮肥前移)、N2(正常追肥)、N3(氮肥前移比例大于N1),總施氮量為N320kg/hm2[18],其中,160kg/hm2基施,160kg/hm2按表1隨機(jī)追施。每個(gè)處理重復(fù)3次,小區(qū)面積為36m2(4.5m×8m),4月8日播種,4月18日出苗,5月20日(出苗后33d)開始遮蔭(白色遮陽(yáng)網(wǎng),高2m),至吐絮結(jié)束。2次DPC(縮節(jié)安)化控,7月1日(出苗后73d)打頂。每個(gè)小區(qū)三播幅。行株距配置: [(20+50+20)+60]cm×10cm,理論密度為26.67×104plant/hm2。全生育期灌溉定額4500m3/hm2,共滴水7次?;适㎞160kg/hm2、 三料磷肥(含P2O546%)347kg/hm2和硫酸鉀(含K2O51%)75kg/hm2,追肥全部為尿素(含N46%),隨水滴施。其他田間管理同大田。
表1 各處理氮肥施用時(shí)期和用量Table 1 Nitrogen application periods and rates of different treatments
為驗(yàn)證遮蔭處理的效果,從5月20日遮蔭后用EL-USB-1溫濕度記錄儀(Lascarelectronics,US)在遮蔭與不遮蔭處理中各選具有代表性的3個(gè)點(diǎn),距地面高0.5m,進(jìn)行監(jiān)測(cè),每小時(shí)記錄一次,重復(fù)3次(圖1)。并用CIRAS-2型便攜式光合儀(PPSystems,US)在出苗后64、 69、 76、 98、 109、 128d的每天中午13: 00測(cè)遮蔭與不遮蔭處理的光合有效輻射(PAR),重復(fù)15次。從圖2可以看出,試驗(yàn)處理的光照達(dá)到設(shè)計(jì)要求。
圖1 遮蔭與對(duì)照處理的溫、 濕度變化Fig.1 Temperature and humidity changes under the shading and CK
圖2 遮蔭與對(duì)照處理的光合有效輻射變化Fig.2 PAR changes under the shading and CK
1.2測(cè)定項(xiàng)目與方法
1.2.1 生物量積累及全氮含量的測(cè)定每次追施氮肥后的第5d,在各處理選代表性棉株4株,按葉、 莖、 蕾、 鈴殼和棉纖維等不同器官分開,于105℃殺青30min,80℃烘至恒重,測(cè)定其干物質(zhì)重。烘干的棉株樣品經(jīng)粉碎,過0.5mm篩,備用。同時(shí)用奈氏比色法測(cè)定棉株不同部位的全氮含量。
1.2.2 棉花產(chǎn)量的測(cè)定收獲時(shí)調(diào)查每小區(qū)中間10行的株數(shù)及總成鈴數(shù),每小區(qū)分上、 中、 下果枝分別取吐絮棉桃各30朵,依次測(cè)定其單鈴重和衣分,以各小區(qū)收獲實(shí)際株數(shù)(各處理間無(wú)顯著性差異)和單鈴重及衣分計(jì)算皮棉產(chǎn)量。
1.3數(shù)據(jù)處理
營(yíng)養(yǎng)器官氮素轉(zhuǎn)移量=盛鈴期營(yíng)養(yǎng)器官氮素積累量-吐絮期營(yíng)養(yǎng)器官氮素積累量。
營(yíng)養(yǎng)器官氮素轉(zhuǎn)移率(%)=營(yíng)養(yǎng)器官氮素轉(zhuǎn)移量/營(yíng)養(yǎng)器官氮素總積累量×100。
營(yíng)養(yǎng)器官氮素貢獻(xiàn)率(%)=營(yíng)養(yǎng)器官氮素轉(zhuǎn)移量/吐絮期纖維氮素積累量×100。
采用Microsoft2010和DPS7.05進(jìn)行數(shù)據(jù)的整理和分析,用Duncan新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn)。
2.1氮肥運(yùn)籌對(duì)遮蔭條件下棉花產(chǎn)量的影響
從表2可以看出,遮蔭50%(S50)與不遮蔭(CK)相比,棉花單株鈴數(shù)、 單鈴重和衣分顯著降低(P<0.05),皮棉產(chǎn)量平均減少35.61%。遮蔭50%時(shí),N1處理的單株鈴數(shù)比N2、N3分別增加13.64%和18.83%,單鈴重分別增加7.02%和13.12%,皮棉產(chǎn)量分別提高18.90%和29.07%,均達(dá)顯著水平。而在不遮蔭條件下,N2處理的單鈴重、 單株鈴數(shù)最大; 皮棉產(chǎn)量比N1、N3處理分別提高13.03%和23.67%,差異顯著。
2.2氮肥運(yùn)籌對(duì)遮蔭條件下棉株地上部生物量積累與分配的影響
表2 遮蔭條件下不同氮肥運(yùn)籌棉花產(chǎn)量及產(chǎn)量構(gòu)成因素Table 2 Yield and yield components of cotton under the shading with different topdressing operations
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平Valuesfollowedbydifferentlettersinacolumnaresignificantamongtreatmentsatthe5%level.
圖3 不同處理棉花地上部生物量積累動(dòng)態(tài)Fig.3 Dynamic of aboveground biomass of cotton under different treatments
2.2.2 棉株地上部營(yíng)養(yǎng)器官生物量的積累由表3可以看出,用Logistic模型對(duì)棉花地上部營(yíng)養(yǎng)器官生物量的動(dòng)態(tài)分析表明,遮蔭50%與不遮蔭相比,營(yíng)養(yǎng)器官生物量理論最大值和最大生長(zhǎng)速率較大。遮蔭50%時(shí),N1處理的地上部營(yíng)養(yǎng)器官生物量進(jìn)入快速增長(zhǎng)期起始日和結(jié)束日、 最大生長(zhǎng)速率出現(xiàn)日早,生長(zhǎng)特征值較大,說(shuō)明弱光脅迫下N1處理可增加棉花營(yíng)養(yǎng)體生物量的積累,快速增長(zhǎng)期結(jié)束日提前,可使棉花加快向生殖生長(zhǎng)轉(zhuǎn)變,提前吐絮。而不遮蔭條件下,以N2處理的棉株地上部營(yíng)養(yǎng)器官的最大生長(zhǎng)速率和生長(zhǎng)特征值較大。表明弱光脅迫下棉花的營(yíng)養(yǎng)器官生長(zhǎng)前期需較多的氮肥來(lái)適應(yīng)弱光
環(huán)境,從而保證地上部營(yíng)養(yǎng)器官生物量積累。
2.3氮肥運(yùn)籌對(duì)遮蔭條件下棉株地上部氮素積累與分配的影響
表3 地上部營(yíng)養(yǎng)器官生物量動(dòng)態(tài)累積模型參數(shù)特征值Table 3 Eigenvalues of the dynamic models of aboveground biomass accumulation of vegetative organs
注(Note):t—棉花出苗后的天數(shù)Thedaysaftertheemergenceofcotton(d);y—棉花生物量積累量Thecottondrymatteraccumulation(g/plant).Vm—最大生長(zhǎng)速率Themaximumgrowthrate;t0—最大生長(zhǎng)速率出現(xiàn)時(shí)間Thetimeofthemaximumaccumulationrateoccurred;t1—進(jìn)入快速增長(zhǎng)期時(shí)間拐點(diǎn)Thebeginningtimeofinflectionpointofrapidaccumulation;t2—結(jié)束快速增長(zhǎng)期時(shí)間拐點(diǎn)Theendtimeofinflectionpointofrapidaccumulation;Δt—快速增長(zhǎng)持續(xù)時(shí)間Thelastingtimeofrapidgrowth;GT—快速增長(zhǎng)期生長(zhǎng)特征值Theeigenvalueofrapidgrowth.**—P<0.01.
表4 生殖器官生物量動(dòng)態(tài)累積模型參數(shù)特征值Table 4 Eigenvalues of the dynamic models of reproductive organ biomass accumulation
注(Note):t—棉花出苗后的天數(shù)Thedaysaftertheemergenceofcotton(d);y—棉花生物量積累量Thecottondrymatteraccumulation(g/plant).Vm—最大生長(zhǎng)速率Themaximumgrowthrate;t0—最大生長(zhǎng)速率出現(xiàn)時(shí)間Thetimeofthemaximumaccumulationrateoccurred;t1—進(jìn)入快速增長(zhǎng)期時(shí)間拐點(diǎn)Thebeginningtimeofinflectionpointofrapidgrowth;t2—結(jié)束快速增長(zhǎng)期時(shí)間拐點(diǎn)Theendtimeofinflectionpointofrapidgrowth;Δt—快速增長(zhǎng)持續(xù)時(shí)間Thelastingtimeofrapidgrowth;GT—快速增長(zhǎng)期生長(zhǎng)特征值Theeigenvalueofrapidgrowth.**—P<0.01.
表5 地上部氮素動(dòng)態(tài)累積模型參數(shù)特征值Table 5 Eigenvalues of the dynamic models of aboveground nitrogen accumulation
注(Note):t—棉花出苗后的天數(shù)Thedaysaftertheemergenceofcotton(d);y—棉花氮積累量Thecottonnitrogenaccumulation(g/plant).Vm—氮最大積累速率Themaximumaccumulationrateofnitrogen;t0—氮最大積累速率出現(xiàn)時(shí)間Thetimeofthemaximumnitrogenaccumulationrateoccurred;t1—進(jìn)入快速積累期時(shí)間拐點(diǎn)Thebeginningtimeofinflectionpointofrapidgrowth;t2—結(jié)束快速積累期時(shí)間拐點(diǎn)Theendtimeofinflectionpointofrapidgrowth;Δt—氮快速積累持續(xù)天數(shù)Thelastingdaysofrapidnitrogenaccumulation;GT—快速增長(zhǎng)期生長(zhǎng)特征值Therapidgrowtheigenvalue.*—P<0.05;**—P<0.01.
2.4氮肥運(yùn)籌對(duì)遮蔭條件下棉株不同生育階段氮凈吸收量和凈轉(zhuǎn)移量的影響
圖4 氮肥運(yùn)籌對(duì)遮蔭條件下不同器官中氮素分配的影響Fig.4 Effects of the nitrogen application on distribution of nitrogen in each organ under the shading
器官Organ處理組合Treatment出苗期現(xiàn)蕾期Sd-Bd(kg/hm2)現(xiàn)蕾期初花期Bd-Fl(kg/hm2)初花期盛鈴期Fl-Fb(kg/hm2)盛鈴期吐絮期Fb-Bo(kg/hm2)總凈吸收量Totalnetabsorption(kg/hm2)總凈轉(zhuǎn)移量Totalnettransfer(kg/hm2)轉(zhuǎn)移率Transferrate(%)貢獻(xiàn)率Contr.rate(%)葉CKN162.59b23.12d54.54b-83.93b140.25b-83.93b59.85c54.75cLeafCKN266.32a9.03e70.36a-101.35a145.71a-101.35a69.55a60.57abCKN365.53ab12.05e46.29c-82.64bc123.87c-82.64bc66.72b46.79dS50N132.11c100.52a15.14d-88.02b147.77a-88.02b59.57c64.03aS50N232.16c73.26c11.76d-59.73c117.17d-59.73c50.97d57.28bcS50N330.62c89.60b3.79e-46.69d124.01c-46.69d37.65e54.93c莖CKN115.90ab23.04c12.78b-17.91b51.72b-17.91b34.63b11.68abStemCKN213.45bc24.93c16.43a-23.92a54.81b-23.92a43.65a14.30aCKN316.57a8.03d10.85b-10.64c35.45d-10.64c30.02c6.02cdS50N111.36cd57.14a5.45c-10.04c73.95a-10.04c13.58d7.30cdS50N29.71de33.34b11.94b-8.23c54.99b-8.23c14.97d7.89bcS50N37.84e30.46b2.02d-3.02d40.32c-3.02d7.50e3.56d鈴殼CKN184.95b-17.64a84.95b-17.64a20.77b11.51aShellCKN256.05c-15.98ab56.05c-15.98ab28.51a9.55abCKN393.49a-13.01b93.49a-13.01b13.92d7.37bS50N124.70de-4.20c24.70de-4.20c17.00c3.06cS50N227.57d-2.70cd27.57d-2.70cd9.79e2.59cS50N321.63e-0.89d21.63e-0.89d4.11f1.05c棉纖維CKN171.20b153.30c71.20bFiberCKN288.02a167.33b88.02aCKN350.33c176.64a50.33cS50N119.73d137.46d19.73dS50N215.77de104.27e15.77deS50N313.49e85.01f13.49e
注(Note):Sd—出苗期Seeding;Bd—現(xiàn)蕾期Budding;Fl—初花期Flowering;Fb—盛鈴期Fullboll;Bo—吐絮期Bollopening. 正值表示積累量Positivevaluesmeannetabsorption; 負(fù)值表示轉(zhuǎn)移量Negativevaluesmeannettransfer. 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平Valuesfollowedbydifferentlettersinacolumnaresignificantamongtreatmentsatthe5%level.
產(chǎn)量與棉株?duì)I養(yǎng)體從快速增長(zhǎng)起始日到最大生長(zhǎng)速率出現(xiàn)日期間的生物量呈正相關(guān),即提高此期間的營(yíng)養(yǎng)體生物量是獲得高產(chǎn)的關(guān)鍵。將棉花最終產(chǎn)量與前期營(yíng)養(yǎng)體生物量進(jìn)行相關(guān)分析發(fā)現(xiàn),遮蔭50%條件下,以7月3日相關(guān)性較好(R2=0.95); 正常光照下(不遮蔭),以7月19日相關(guān)性較好(R2=0.85),比遮蔭晚16d。從圖1也可以看出,由于遮蔭下通風(fēng)透氣較差,使總體濕度和溫度增加,因而有利于營(yíng)養(yǎng)器官的快速生長(zhǎng)。產(chǎn)量表現(xiàn)為遮蔭50%下適度氮肥前移和正常光照下大田正常追施肥最高。所以根據(jù)本研究,在生產(chǎn)上針對(duì)新疆南疆地區(qū)的杏棉、 棗棉間作,棉花氮肥的追施應(yīng)適度前移(N1),以滿足棉株前期快速生長(zhǎng)對(duì)養(yǎng)分的需求,后期提前結(jié)束,可避免棉花貪青晚熟。Logistic生長(zhǎng)模型畢竟是一種經(jīng)驗(yàn)?zāi)P?,它預(yù)測(cè)效果的準(zhǔn)確性及生物學(xué)意義主要取決于參數(shù)擬合的精確度及數(shù)據(jù)的真實(shí)性。由于遮蔭模式不同和環(huán)境復(fù)雜多樣,所以不同的研究預(yù)測(cè)結(jié)果也存在一定的差異。因此,有關(guān)弱光下氮肥運(yùn)籌對(duì)棉花生物量、 氮素積累與分配的影響還需進(jìn)一步的研究。
棉株生物量和氮素積累對(duì)光照和氮肥反應(yīng)敏感,葉的氮凈吸收量、 凈轉(zhuǎn)移量和對(duì)棉纖維的貢獻(xiàn)最大。遮蔭50%條件下,氮肥追施適度前移(N1),即提前至盛蕾期(6月中下旬)開始追肥,在盛鈴期(8月上旬)前結(jié)束,可有效地增加棉株單株鈴數(shù)、 單鈴重; 遮蔭50%時(shí)營(yíng)養(yǎng)器官和生殖器官生物量進(jìn)入快速增長(zhǎng)期起始日和結(jié)束日、 最大生長(zhǎng)速率出現(xiàn)日均提前,總氮積累量理論最大值、 生長(zhǎng)特征值較大,氮快速積累持續(xù)天數(shù)較長(zhǎng),確保了營(yíng)養(yǎng)器官中氮的凈吸收和凈轉(zhuǎn)移量,保證了棉花生長(zhǎng)較高的代謝水平,營(yíng)養(yǎng)器官對(duì)棉纖維的貢獻(xiàn)最大,為棉花在弱光脅迫下獲得高產(chǎn)奠定了基礎(chǔ)。
[1]PettigrewWT.Environmentaleffectsoncottonfibercarbohydrateconcentrationandquality[J].CropScience,2001,41: 1108-1113.
[2]段云佳, 譚玲, 張巨松, 等. 施氮量對(duì)棗棉間作系統(tǒng)棉花干物質(zhì)和氮素積累的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012,18(6): 1441-1448.
DuanYJ,TanL,ZhangJS, et al.EffectsofdifferentnitrogenfertilizerlevelsondrymatterandNaccumulationofcottonunderjujubeandcottonintercropping[J].PlantNutritionandFertilizerScience, 2012,18(6): 1441-1448.
[3]MichaelSW,PeterWC,DavidW, et al.Above-groundbiomassaccumulationandnitrogenfixationofbroom(Cytisus scoparius L.)growingwithjuvenilePinus radiateonadrylandsite[J].ForestEcologyandManagement, 2003,184: 93-104.
[4]ShibuJ,SaraM,CraigIR.Growth,nutrition,photosynthesisandtranspirationresponsesoflongleafpineseedlingstolight,waterandnitrogen[J].ForestEcologyandManagement, 2003, 180: 335-344.
[5]GaylerS,WangE,PriesackE, et al.Modelingbiomassgrowth,N-uptakeandphonologicaldevelopmentofpotatocrop[J].Geoderma,2002,105: 367-383.
[6]ManderscheidR,PacholskiA,FrühaufC, et al.Effectsoffreeaircarbondioxideenrichmentandnitrogensupplyongrowthandyieldofwinterbarleycultivatedinacroprotation[J].FieldCropsResearch, 2009, 110: 185-196.
[7]孟亞利, 曹衛(wèi)星, 柳新偉, 等. 水稻地上部干物質(zhì)分配動(dòng)態(tài)模擬的初步研究[J]. 作物學(xué)報(bào), 2004,30(4): 376-381.
MengYL,CaoWX,LiuXW, et al.Apreliminarystudyofsimulationonshootdrymatterpartitioninginrice[J].ActaAgronomicaSinica, 2004, 30(4): 376-381.
[8]祝珍珍. 棉花氮肥分次施用比例效應(yīng)研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2012.
ZhuZZ.Effectsofdifferentnitrogenratiooncotton[D].Wuhan:MsthesisofHuazhongAgriculturalUniversity, 2012.
[9]RochhesterIJ,PeoplesMB,ConstableGA.EstimationoftheNfertilizerrequirementofcottongrownafterlegumecrops[J].FieldCropsResearch,2001,70: 43-54.
[10]薛曉萍, 王建國(guó), 郭文琦, 等. 氮素水平對(duì)初花后棉株生物量、 氮素積累特征及氮素利用動(dòng)態(tài)變化的影響[J]. 生態(tài)學(xué)報(bào), 2006, 26(11): 3631-3640.
XueXP,WangJG,GuoWQ, et al.Effectofnitrogenappliedlevelsonthedynamicsofbiomass,nitrogenaccumulationandnitrogenfertilizationrecoveryrateofcottonafterinitialflowering[J].ActaEcologicaSinica, 2006, 26(11): 3631-3640.
[11]薛曉萍, 郭文琦, 王以琳, 等.不同施氮水平下棉花生物量動(dòng)態(tài)增長(zhǎng)特征研究[J]. 棉花學(xué)報(bào), 2006,18(6): 323-326.
XueXP,GuoWQ,WangYL, et al.Researchondynamicincreasecharacteristicsofdrymatterofcottonatdifferentnitrogenleaves[J].CottonScience, 2006, 18(6): 323-326.
[12]姜濤. 氮肥運(yùn)籌對(duì)夏玉米產(chǎn)量、 品質(zhì)及植株養(yǎng)分含量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013,19(3): 559 -565.
JiangT.Effectsofnitrogenapplicationregimeonyield,qualityandplantnutrientcontentsofsummermaize[J].PlantNutritionandFertilizerScience, 2013,19(3): 559-565.
[13]王小春, 楊文鈺, 鄧小燕, 等. 玉/豆和玉/薯模式下氮肥運(yùn)籌對(duì)玉米氮素利用和土壤硝態(tài)氮?dú)埩舻挠绊慬J]. 應(yīng)用生態(tài)學(xué)報(bào),2014, 25(10): 2868-2878.
WangXC,YangWY,DengXY, et al.Effectsofnitrogenmanagementonmaizenitrogenutilizationandresidualnitrogeninsoilundermaize/soybeanandmaize/sweetpotatorelaystripintercroppingsystems[J].ChineseJournalofAppliedEcology, 2014, 25(10): 2868-2878.
[14]陳亮. 氮肥分次施用比例對(duì)棉花生長(zhǎng)發(fā)育、 干物質(zhì)和氮素累積的影響[D]. 武漢: 華中農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2012.
ChenL.EffectofNsplitratiooncottongrowth,drymatterandnitrogenaccumulation[D].Hubei:Wuhan:MSThesisofHuazhongAgriculturalUniversity, 2012.
[15]魏紅國(guó), 張巨松, 王飛, 等. 杏棉間作棉花干物質(zhì)積累分配與養(yǎng)分吸收的分析模擬[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011,17(5): 1220-1226.
WeiHG,ZhangJS,WangF, et al.Simulationofcottondrymatteraccumulationanddistributionandnutrientabsorptioninapricot-cottonintercroppingsystem[J].PlantNutritionandFertilizerScience, 2011, 17(5): 1220-1226.
[16]馬宗斌,嚴(yán)根土,劉桂珍,等. 氮肥分施比例對(duì)黃河灘地棉花葉片生理特性、 干物質(zhì)積累及產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013,19(5): 1059-1069.
MaZB,YanGT,LiuGZ, et al.Effectsofnitrogensplitapplicationratioonmainphysiologicalcharacteristicsofleaves,drymatteraccumulationandyieldofcottoncultivatedintheYellowRiverbottomland[J].JournalofPlantNutritionandFertilizer, 2013,19(5): 1059-1069.
[17]胡國(guó)智, 張炎, 李青軍, 等. 氮肥運(yùn)籌對(duì)棉花干物質(zhì)積累、 氮素吸收利用和產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011,17(2): 397-403.
HuGZ,ZhangY,LiQJ, et al.Effectofnitrogenfertilizermanagementonthedrymatteraccumulation,Nuptakeandutilizationandyieldincotton[J].PlantNutritionandFertilizerScience, 2011,17(2): 397-403.
[18]石俊毅. 遮蔭條件下氮素水平對(duì)棉花光合物質(zhì)生產(chǎn)及棉鈴發(fā)育的影響[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2013.
ShiJY.Effectofnitrogenlevelsonphotosyntheticproductionandbolldevelopmentofcottonundershadingconditions[D].Urumqi:MSThesisofXinjiangAgriculturalUniversity, 2013.
[19]張順, 陳剛, 房衛(wèi)平, 等. 施氮量對(duì)抗蟲棉Bt蛋白表達(dá)和降解的影響[J]. 華北農(nóng)學(xué)報(bào), 2011, 26(6): 148- 153.
ZhangS,ChenG,FangWP, et al.EffectsofnitrogenfertilizerratesonexpressionanddegradationofBt-proteinintransgeniccotton[J].ActaAgriculturaeBoreali-Sinica, 2011, 26(6): 148-153.
[20]李培嶺, 張富倉(cāng). 膜下分區(qū)交替滴灌和施氮對(duì)棉花干物質(zhì)累積與氮肥利用的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(2): 416-422.
LiPL,ZhangFC.Couplingeffectsofpartitioningalternativedripirrigationwithplasticmulchandnitrogenfertilizationoncottondrymatteraccumulationandnitrogenuse[J].ChineseJournalofAppliedEcology, 2013, 24(2): 416-422.
[21]孫永健, 孫園園, 劉樹金, 等. 水分管理和氮肥運(yùn)籌對(duì)水稻養(yǎng)分吸收、 轉(zhuǎn)運(yùn)及分配的影響[J].作物學(xué)報(bào), 2011,37(12): 2221-2232.
SunYJ,SunYY,LiuSJet al.Effectsofwatermanagementandnitrogenapplicationstrategiesonnutrientabsorption,transfer,anddistributioninrice[J].ActaAgronomicaSinica, 2011,37(12): 2221-2232.
[22]王子勝, 徐敏, 劉瑞顯, 等. 施氮量對(duì)不同熟期棉花品種的生物量和氮素累積的影響[J]. 棉花學(xué)報(bào), 2011, 23(6): 537-544.
WangZS,XuM,LiuRX, et al.Effectsofnitrogenratesonbiomassandnitrogenaccumulationofcottonwithdifferentvarietiesingrowthduration[J].CottonScience, 2011, 23(6): 537-544.
[23]CockshullKE,GravesCJ,CaveCRJ.Theinfluenceofshad-
ingonyieldofglasshousetomatoes[J].JournalofHorticulturalScience,1992,67: 11-24.
[24]武文明, 陳洪儉, 李金才, 等. 氮肥運(yùn)籌對(duì)孕穗期受漬冬小麥旗葉葉綠素?zé)晒馀c籽粒灌漿特性的影響[J].作物學(xué)報(bào), 2012, 38(6): 1088-1096.
WuWM,ChenHJ,LiJC, et al.Effectsofnitrogenfertilizationonchlorophyllfluorescenceparametersofflagleafandgrainfillinginwinterwheatsufferedwaterloggingatbootingstage[J].ActaAgronomicaSinica,2012,38(6): 1088-1096.
[25]馬宗斌, 房衛(wèi)平, 謝德意, 等. 氮肥和DPC用量對(duì)棉花葉片葉綠素含量和SPAD值的影響[J]. 棉花學(xué)報(bào), 2009,21(3): 224-229.
MaZB,FangWP,XieDY, et al.EffectsofnitrogenapplicationratesandDPCsparingdosesoncontentofchlorophyllandSPADvalueinleafofcotton( Gossypium hirsutum L.)[J].CottonScience, 2009, 21(3): 224-229.
[26]鞠正春,于振文. 追施氮肥時(shí)期對(duì)冬小麥旗葉葉綠素?zé)晒馓匦缘挠绊慬J]. 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(3): 395-398.
JuZC,YuZW.Effectsofnitrogentopdressingatdifferentgrowthstagesonchlorophyllfluorescenceofwinterwheatflagleaves[J].ChineseJournalofAppliedEcology, 2006,17(3): 395-398.
Effectsofnitrogenapplicationongrowthandnitrogenaccumulationofcottonundershadingcondition
ZHENGJian-chao1,YANMan-man1,ZHANGJu-song1*,GAOLi-li1,SHIHong-liang1,ZHENGHui1,ZHANGYu-ling2
(1 College of Agronomy of Xinjiang Agricultural University/Research Center of Cotton Engineering, Urumqi, Xinjiang 830052,China;2 Extension Center of Agricultural Techniques of Yuepuhu County, Kashi, Xinjiang 84400,China)
【Objectives】Latematurationisoftenhappenedincottonintercroppedwithfruit,whichcauseslowerpre-frostlintpercentage,theyieldisdeclinedseriously.Reasonablenitrogenfertilizertopdressingcouldregulateandcontrolthegrowingprocessofcotton,optimizeaccumulationanddistributionofbiomassandnitrogeninorgans.Thestudywillprovidetheorybasisforreasonablenitrogenapplicationfortheintercroppingcotton. 【Methods】ThecottoncultivarwasZhangmain49,thefeildexperimentwasperformedwithsplitplotdesign.Themainareaswere50%shading(S50)andnotshading(CK).ThesplitareaswereN1 (earliertopdressing),N2 (normaltopdressing)andN3 (moreproportionofearliertopdressednitrogenthanN1).Totalnitrogenwas320kg/hm2,halfofthemwastopdressedwithirrigation.ThedetailsoftopdrossingdateandamontwaslistedinTable1.Effectsofthenitrogenapplicationondynamicaccumulationcharacteristicsofbiomassandnitrogenundertheshadingwerestudied.【Results】ComparedwithCK,thetheoreticalmaximumbiomassandgrowthratesofthevegetativeorganswerehigher,whilethetheoreticalmaximumbiomass,growthratesandgrowtheigenvaluesofreproductiveorgansbiomassweresmallerunderhalfshadding.Therapidaccumulationoftotalnitrogenarose5-8dinadvance,bollnumber,bollweightandlintpercentagewerereducedsignificantly,lintyieldwasreducedby35.61%inaverageundertheshadingof50%.Underthe50%shading,thestartandfinishoftherapidgrowthratesofthevegetativeandreproductiveorgansunderN1wereahead,andthetheoreticalmaximumbiomassofthereproductiveorganswereinorderofN1>N2>N3.Thetheoreticalmaximumnitrogenaccumulation,thelastingdaysofrapidnitrogenaccumulationandgrowtheigenvaluesarethelargestinN1,whichwasbonefitedtothenetabsorption,thenettransferofnitrogenandcontributiontothefibernitrogenforvegetativeorgans,andthelintyieldishigherthanthoseofN2andN3by18.90%and29.07%.UnderCK,themaximumgrowthratesandgrowtheigenvaluesofabovegroundvegetativeorgansbiomassofN2arethelargest,andthetheoreticalmaximumofnitrogenaccumulation,thelastingdaysoftherapidnitrogenaccumulationandgrowtheigenvalueswerethelargest,too.Bollnumberandbollweightwerethehighest,andthelintyieldis13.03%and23.67%higherthanthoseofN1andN3. 【Conclusions】Inconditionof50%shading,theealiernitrogentopdressing(N1),namely,beginningatthefullbuddingstage(inthemiddleandlasttendaysofJune),endingbeforethefullbollstage(inthefirsttendaysofAugust),couldimprovetheeigenvaluesoftherapidgrowthperiodundertheshading,increasecottonbiomassandnitrogenaccumulationsignificantly,behelpfultonetnitrogenabsorption,nettransferandcontributiontothecottonfiberinvegetativeorgans,andincreasebollnumberperplant,bollweightandyieldfinally.
cotton;shading;nitrogenapplication;biomass;nitrogenaccumulation
2014-10-14接受日期: 2014-11-26網(wǎng)絡(luò)出版日期: 2015-07-17
國(guó)家“十一五”科技支撐計(jì)劃—果棉立體高效種植模式與關(guān)鍵技術(shù)研究(2009BADA4B01-3); 新疆維吾爾自治區(qū)“十二五”科技支撐項(xiàng)目(201231102)資助。
鄭劍超(1989—),男,四川成都人,碩士研究生,主要從事棉花高產(chǎn)栽培生理方面的研究。E-mail:zgxjzjc@126.com
E-mail:xjndzjs@163.com
S562
A
1008-505X(2016)01-0094-10