單軍奇 張玉林 陳德喜 郭洪亮
[摘要] HIV蛋白酶抑制劑(PIs)是一類抗HIV藥物,其廣泛應(yīng)用大大提高了HIV感染者的生存率并延長了其生存期。近來,人們發(fā)現(xiàn)PIs具有抗腫瘤活性,這引發(fā)了將PIs重新定位為有效腫瘤化療藥物的想法。本文回顧綜述了PIs近年來的研究進展以及其在腫瘤治療中所起的作用,包括已確定的抗腫瘤機制,完成和正在進行的臨床試驗,為PIs在今后抗腫瘤方向奠定了基礎(chǔ)。
[關(guān)鍵詞] HIV蛋白酶抑制劑;腫瘤;內(nèi)質(zhì)網(wǎng)應(yīng)激;細胞自噬
[中圖分類號] R273 [文獻標(biāo)識碼] A [文章編號] 1673-7210(2016)03(c)-0051-05
[Abstract] HIV protease inhibitors (PIs) are widely used to anti-human immunodeficiency virus, which effectively improves the survival of HIV infected people. Recently, PIs were found to have an activity of anti-neoplasm. So PIs are now being considered as an agent to be used for anti-neoplasm chemotherapy. This artical will review and discuss the current research progress about the mechanism of PIs anti-neoplasm that has been identified, completed and ongoing clinical trials, which will lay the foundation for the future reaserch on PIs anti-neoplasm therapy.
[Key words] HIV protease inhibitor; Neoplasm; Endoplasmic reticulum stress; Autophagy
HIV蛋白酶抑制劑(PIs)的研發(fā)是通過抑制病毒的天冬氨酰蛋白前體裂解成其功能形式來阻止HIV病毒顆粒的成熟。自1995年第1種HIV PIs沙奎那韋被FDA批準(zhǔn)后,相繼有9種其他的HIV PIs被批準(zhǔn),分別為茚地那韋、奈非那韋、利托那韋、洛匹那韋、阿扎那韋、福沙那韋、替拉那韋、安普那韋和地瑞那韋。HIV PIs與現(xiàn)有的逆轉(zhuǎn)錄酶抑制劑聯(lián)合作用,迅速成為HIV的標(biāo)準(zhǔn)治療方案,并成為引領(lǐng)時代的“高效抗逆轉(zhuǎn)錄病毒治療”方法。其廣泛應(yīng)用大大提高了HIV感染者的生存率并延長了其生存期,機會性感染的發(fā)病率也隨之下降,與艾滋病相關(guān)的腫瘤特別是卡波西肉瘤(Kaposi's sarcoma,KS)的新發(fā)病例數(shù)也明顯降低。近來,人們發(fā)現(xiàn)PIs具有抗腫瘤的活性,這引發(fā)了人們將PIs可以重新定位為有效腫瘤化療藥物的想法[1-2]。
1 PIs在體外和臨床前期相關(guān)的腫瘤活體研究
PIs對人類細胞有著廣泛的毒性作用,但也被賦予有效的抗癌特性[3]。盡管它們與HIV蛋白酶有一定的同源性,但考慮其抗腫瘤活性,細胞蛋白酶似乎是蛋白酶抑制劑的主要靶點,尤其是蛋白酶體和基質(zhì)金屬蛋白酶(MMPs)。從Gills等[4]的一項研究中獲悉,PIs對美國國家癌癥研究所平臺的所有60個細胞系(NCI60 cell-lines)均有抗癌活性,同時描述了多個潛在的抗腫瘤作用機制,包括內(nèi)質(zhì)網(wǎng)應(yīng)激、自噬、凋亡以及抑制Akt通路。多種腫瘤發(fā)生的重要共同點是PI3K/Akt/mTOR信號通路的激活,因此這一途徑的抑制劑已被作為抗癌藥物而開發(fā)。Gills等[5]對結(jié)構(gòu)蛋白相互作用的綜合分析發(fā)現(xiàn),在被預(yù)測的92種奈非那韋作用的細胞靶點中,7種最強親和力的靶點是依賴天冬酰胺蛋白酶的,其余的靶點主要是依賴蛋白激酶的,如Akt、NFαB的上游調(diào)控因子——生長因子受體,以及那些已知的被奈非那韋下調(diào)的其他信號分子。PIs也有可能不利于腫瘤治療,如KS細胞多藥轉(zhuǎn)運體ABCB1(P-糖蛋白)表達的增強,使得KS細胞具有抗多柔比星和紫杉醇化療的特性[6]。
2 PIs的抗腫瘤機制
2.1 PIs抑制血管生成和細胞侵襲
在對PIs抗腫瘤活性的研究中發(fā)現(xiàn),茚地那韋和沙奎那韋是強效的血管生成抑制劑,在小鼠KS模型中它們通過阻斷MMP2活化來阻止腫瘤細胞侵襲[7],隨后的研究發(fā)現(xiàn),利托那韋和沙奎那韋可阻斷MMP2和MMP9的活化來阻止宮頸上皮內(nèi)瘤樣病變細胞的侵襲[8]。在裸鼠實驗中,安普那韋也表現(xiàn)出通過阻斷MMP2活化來阻止肝細胞癌的侵襲和腫瘤生長[8]。此外,PIs可以通過下調(diào)一些信號通路來阻止血管生成,如下調(diào)PI3K/Akt通路來調(diào)節(jié)參與新生血管形成的血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)和許多其他因子的調(diào)節(jié)[9-10]。
2.2 蛋白酶抑制劑抑制Akt
PI3K/Akt信號通路及其下游調(diào)控因子——如哺乳動物的雷帕霉素靶子(mammalian target of rapamycin,mTOR)和VEGF具有參與細胞增殖、運動、血管新生、細胞變形、凋亡/生存以及 DNA 損傷修復(fù)等多種功能[11]。上調(diào)PI3K/Akt信號通路可以防止細胞凋亡,從而使多種腫瘤對放療和化療不敏感。在多種腫瘤細胞系中,PIs可以抑制Akt磷酸化[4,12]。盡管PIs在不同腫瘤細胞類型中表現(xiàn)不一,但奈非那韋似乎是眾多PIs中最強效的Akt抑制劑[4]。在抗雷帕霉素的彌漫大B細胞淋巴瘤細胞系中,Akt的活化上調(diào),與雷帕霉素聯(lián)合應(yīng)用的奈非那韋或Akt抑制劑MK-2206導(dǎo)致細胞毒作用[13]。一份有關(guān)HIV感染患者的觀察性研究表明[14],不服用PIs的抗逆轉(zhuǎn)錄病毒治療組或不接受抗病毒藥物組與服用以奈非那韋為基礎(chǔ)的抗逆轉(zhuǎn)錄病毒治療組相比,后者白細胞中Akt磷酸化水平較低。此外,奈非那韋與輻射毒性的增加不相關(guān)[14]。然而,Akt被抑制的水平并不總是與抗腫瘤活性相關(guān),在一些模型系統(tǒng)中奈非那韋未能激活A(yù)kt通路[15-16]。PIs通過PI3K阻止Akt磷酸化的確切機制仍未知,可能通過抑制上游生長因子,誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激或產(chǎn)生其他影響[15]。
2.3 PIs誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激
當(dāng)積累的錯誤折疊的蛋白質(zhì)或其他應(yīng)力破壞了內(nèi)質(zhì)網(wǎng)平衡,未折疊蛋白反應(yīng)(unfolded protein response,UPR)被觸發(fā),從而導(dǎo)致蛋白翻譯受阻和細胞周期阻滯[17-18]。奈非那韋和其他PIs可以引起ER應(yīng)激[19]。在脂肪肉瘤和去勢抵抗前列腺癌細胞株(具有脂肪性表型)中,奈非那韋通過抑制位點2蛋白酶誘導(dǎo)ER應(yīng)激,導(dǎo)致與固醇調(diào)節(jié)元件相結(jié)合的蛋白-1(SREBP-1)受損,以及激活轉(zhuǎn)錄因子6[20]。這正好驗證了所知PIs的毒性——脂肪代謝不良,可能是由SREBP-1水平的增加引起的[1]。正確的蛋白質(zhì)折疊是由分子伴侶協(xié)助完成的,錯誤折疊的蛋白質(zhì)的降解主要在蛋白酶體進行。因此,通過PIs干擾上述功能會導(dǎo)致ER應(yīng)激[21]。Liu等[22]研究指出洛匹那韋和利托那韋通過激活ER應(yīng)激來增加頭頸部鱗癌細胞對放療的敏感性。奈非那韋還具有抗蛋白酶體的細胞類型依賴性[16,23]。然而在一項研究中,奈非那韋抑制乳腺癌細胞裂解物從而部分抑制蛋白酶體活性,但引起ER應(yīng)激機制不同于蛋白酶體抑制劑[15]。相反,有其他研究證據(jù)表明,奈非那韋的主要目標(biāo)似乎是分子伴侶——熱休克蛋白90,引起內(nèi)質(zhì)網(wǎng)應(yīng)激并破壞Her2和Akt信號通路[24]?;隗w外和小鼠模型,在多種類型的腫瘤(包括單獨耐硼替佐米的腫瘤)中,一種PIs(奈非那韋或利托那韋)與蛋白酶體抑制劑硼替佐米的聯(lián)合應(yīng)用可以增強內(nèi)質(zhì)網(wǎng)應(yīng)激和細胞殺傷[14,25]。ER應(yīng)激和UPR可導(dǎo)致自噬,如果內(nèi)質(zhì)網(wǎng)平衡可以再建立則細胞可存活,否則會導(dǎo)致細胞凋亡和細胞死亡。
2.4 PIs誘導(dǎo)細胞自噬
自噬是一種普遍存在且進化高度保守的細胞內(nèi)蛋白降解程序,其通過膜運動將非折疊及錯疊蛋白、大分子以及損傷或衰老的細胞器送入溶酶體進行降解。其中蛋白質(zhì)和細胞器被降解并再循環(huán)或作為細胞穩(wěn)態(tài)的正常部分,或為了生存讓細胞度過一段營養(yǎng)饑餓期[26]。除了養(yǎng)分饑餓,自噬可由PIs引起的PI3K/Akt通路的抑制而被觸發(fā)[27]。自噬可以通過降解非折疊及錯疊蛋白減少ER應(yīng)激,相反地,抑制自噬可引起ER應(yīng)激而導(dǎo)致細胞死亡。因此,自噬可以保護癌細胞免于死亡,拮抗細胞自噬可以通過誘導(dǎo)ER應(yīng)激/UPR的方法達到治療效果。例如,3-甲基腺嘌呤是一種自噬抑制劑,在多種腫瘤細胞系中,它可以增加奈非那韋誘導(dǎo)的細胞死亡量[4]。氯喹也是一種自噬抑制劑,在三陰性乳腺癌(即雌激素、孕激素及Her2均為陰性的乳腺癌)細胞中,它可以協(xié)同增強由奈非那韋或塞來昔布誘導(dǎo)的ER應(yīng)激引起的細胞毒作用[28]。在14例原發(fā)性慢性淋巴細胞白血病細胞中,奈非那韋可觸發(fā)ER應(yīng)激和自噬[29]。
2.5 PIs誘導(dǎo)細胞凋亡
細胞凋亡指為了維持內(nèi)環(huán)境穩(wěn)定,由基因控制的細胞自主有序的死亡。與細胞壞死不同,凋亡不是一件被動的過程,而是主動過程,它涉及一系列基因的激活、表達以及調(diào)控等作用。研究發(fā)現(xiàn)在多種不同的細胞系中,PIs可通過誘導(dǎo)ER應(yīng)激和UPR途徑抑制PI3K/Akt活性及其他信號通路如STAT3、c-Src和NFαB等從而誘導(dǎo)細胞凋亡[10,12,28,30-31]。PIs可能會通過抑制IαB蛋白酶體降解來抑制NFαB激活,誘導(dǎo)細胞凋亡[10,32]。
3 臨床腫瘤試驗
三項有關(guān)奈非那韋聯(lián)合放化療的I期研究已完成。在胰腺癌患者中,奈非那韋聯(lián)合吉西他濱、順鉑進行放化療,可以增強Akt抑制水平和增加放療敏感性,而且并沒有發(fā)現(xiàn)奈非那韋引起的毒性反應(yīng)[33]。Rengan等[34]指出在無法手術(shù)切除的非小細胞肺癌患者中,奈非那韋聯(lián)合依托泊苷、順鉑放化療,也未發(fā)現(xiàn)奈非那韋劑量依賴的毒性反應(yīng)。在Alonso-Basanta等[35]進行的I期臨床試驗中,口服最大耐受劑量(MTD)的奈非那韋和替莫唑胺聯(lián)合放療,大多數(shù)膠質(zhì)母細胞瘤患者對此是耐受的,這些人將進行Ⅱ期臨床試驗,僅有少數(shù)出現(xiàn)肝毒性和腹瀉。此外,還有數(shù)項臨床腫瘤實驗已完成或正在進行,在Gideon等[36]進行的I期臨床試驗中,找出了奈非那韋在晚期實體腫瘤應(yīng)用中的MTD和劑量限制性毒性(DLT),而且奈非那韋用量在超過FDA規(guī)定標(biāo)準(zhǔn)劑量的2.5倍下腫瘤患者也是可耐受的,顯示出奈非那韋具有良好的可耐受性。
4 結(jié)論
在對HIV相關(guān)惡性腫瘤的臨床研究中發(fā)現(xiàn),PIs對多種腫瘤具有潛在的治療作用。PIs能夠通過多種途徑阻止腫瘤的生長和侵襲。在PIs中,奈非那韋似乎最有希望用于腫瘤的治療,并且一些臨床試驗已經(jīng)開始進行,并顯示其具有良好的耐受性和有效性。現(xiàn)在正進行有關(guān)利托那韋、洛匹那韋和地瑞那韋三種PIs對結(jié)直腸癌細胞HCT116細胞系(有P53基因正常和P53基因缺失兩種)的相關(guān)研究,探討這三種藥物誘導(dǎo)HCT116細胞系凋亡與P53基因是否相關(guān)以及其作用機制。或許通過繼續(xù)對奈非那韋以及其他PIs抗腫瘤機制的深入研究,以及通過將其與現(xiàn)有的抗腫瘤藥物和或放療聯(lián)合應(yīng)用,可能會針對某些腫瘤起到意想不到的治療和預(yù)防效果[37-41]。此外,對蛋白酶抑制劑的深入研究,可能會利于PIs類似物或衍生物制劑的開發(fā),使其得到更充分的發(fā)展,從而尋求更多癌癥的有效治療方法。
[參考文獻]
[1] Bernstein WB,Dennis PA. Repositioning HIV protease inhibitors as cancer therapeutics [J]. Current Opinion HIV & AIDS,2008,3(6):666–675.
[2] Chow WA,Jiang C,Guan M. Anti-HIV drugs for cancer therapeutics:back to the future? [J]. Lancet Oncology,2009, 10(1):61-71.
[3] AK Gupta,Cerniglia GJ,Rosemarie GJ,et al. HIV protease inhibitors block Akt signaling and radiosensitize tumor cells both in vitro and in vivo [J]. Cancer Research,2005, 65(18):8256-8265.
[4] Gills JJ,Lopiccolo J,Tsurutani J,et al. Nelfinavir,A lead HIV protease inhibitor, is a broad-spectrum,anticancer agent that induces endoplasmic reticulum stress,autophagy,and apoptosis in vitro and in vivo [J]. Clinical Cancer Research,2007,13(17):5183-5194.
[5] Gills JJ,Lopiccolo J,Dennis PA. Nelfinavir,a new anti-cancer drug with pleiotropic effects and many paths to autophagy [J]. Autophagy,2008,4(1):107-109.
[6] Lucia MB,Anu R,Handley M,et al. Exposure to HIV-protease inhibitors selects for increased expression of P-glycoprotein (ABCB1) in Kaposi's sarcoma cells [J]. British Journal of Cancer,2011,105(4):513-522.
[7] Sgadari C,Barillari G,Toschi E,et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma [J]. Nature Medicine,2002,8(3):225-232.
[8] Esposito V,Verdina A,Manente L,et al. Amprenavir inhibits the migration in human hepatocarcinoma cell and the growth of xenografts [J]. Journal of Cellular Physiology,2013,228(3):640-645.
[9] Pore N,Gupta AK,Cerniglia GJ,et al. Nelfinavir down-regulates hypoxia-inducible factor 1alpha and VEGF expression and increases tumor oxygenation:implications for radiotherapy [J]. Cancer Research,2006,66(18):9252-9259.
[10] Barillari G,Iovane A,Bacigalupo I,et al. Ritonavir or saquinavir impairs the invasion of cervical intraepithelial neoplasia cells via a reduction of MMP expression and activity [J]. AIDS,2012,26(8):909-919.
[11] Burris HA. Overcoming acquired resistance to anticancer therapy:focus on the PI3K/AKT/mTOR pathway [J]. Cancer Chemotherapy and Pharmacology,2013,71(4):829-842.
[12] Yang Y,Ikezoe T,Takeuchi T,et al. HIV-1protease inhibitor induces growth arrest and apoptosis of human prostate cancer LNCaP cells in vitro and in vivo in conjunction with blockade of androgen receptor STAT3 and AKT signaling [J]. Cancer Science,2005, 96(7):425-433.
[13] Petrich AM,Leshchenko V,Kuo PY,et al. Akt inhibitors MK-2206 and nelfinavir overcome mTOR inhibitor resistance in diffuse large B-cell lymphoma [J]. Clinical Cancer Research,2012,18(9):2534-2544.
[14] Plastaras JP,Vapiwala N,Ahmed MS,et al. Validation and toxicity of PI3K/Akt pathway inhibition by HIV protease inhibitors in humans [J]. Cancer Biology & Therapy,2008, 7(5):628-635.
[15] Shim JS,Rao R,Beebe K,et al. Selective inhibition of HER2- positive breast cancer cells by the HIV protease inhibitor nelfinavir [J]. Journal of the National Cancer Institute,2012,104(20):1576-1590.
[16] Jiang W,Mikochik PJ,Ra JH,et al. HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest [J]. Cancer Research,2007,67(3):1221-1227.
[17] Schonthal AH. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer [J]. Biochemical Pharmacology,2013,85(5):653-666.
[18] Martinon F. Targeting endoplasmic reticulum signaling pathways in cancer [J]. Acta Oncologica,2012,51(7):822-830.
[19] Pyrko P,Kardosh A,Wang W,et al. HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by triggering endoplasmic reticulum stress [J]. Cancer Research,2007,67(22):10920-10928.
[20] Guan M,F(xiàn)ousek K, Jiang C,et al. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6 [J]. Clinical Cancer Research an Official Journal of the American Association for Cancer Research,2011,17(7):1796-1806.
[21] Bono C,Karlin L,Harel S,et al. The human immunodeficiency virus-1 protease inhibitor nelfinavir impairs proteasome activity and inhibits the proliferation of multiple myeloma cells in vitro and in vivo [J]. Haematologica,2012,97(7):1101-1109.
[22] Runping L,Luyong Z,Jing Y,et al. HIV Protease inhibitors sensitize human head and neck squamous carcinoma cells to radiation by activating endoplasmic reticulum stress [J]. Plos One,2015,10(5):e0125928.
[23] Sato A,Asano T,Ito T,et al. Ritonavir interacts with bortezomib to enchance protein ubiquitination and histone acetylation synergistically in renal cancer cells [J]. Urology,2012,97(4):2665-2671.
[24] Shirley C,Kalu N,Shamay M,et al. Epstein-Barr virus lytic gene expression is tightly linked to ER stress but not cytotoxicity with Bortezomib or Nelfinavir [J]. Infectious Agents and Cancer,2012,7:32.
[25] Choi AM,Ryter SW,Levine B. Autophagy in human health and disease [J]. New England Journal of Medicine,2013,368(7):651-662.
[26] Burdick AE,Carmichael C,Rady PL,et al. Resolution of Kaposi's sarcoma associated with undetectable level of human herpesvirus 8 DNA in a patient with AIDS after protease inhibitor therapy [J]. Journal of American Academy of Dermatology,1997,37(4):648-649.
[27] Thomas S,Sharma N,Golden EB,et al. Preferential killing of triple-negative breast cancer cells in vitro and in vivo when pharmacological aggravators of endoplasmic reticulum stress are combined with autophagy inhibitors [J]. Cancer Letters,2012,325(1):63-71.
[28] Mahoney E,Maddocks K,F(xiàn)lynn J,et al. Identification Of Endoplasmic Reticulum Stress Inducing Agents By Antagonizing Autophagy:A New Potential Strategy For Identification Of Anti-Cancer Therapeutics In B-Cell Malignancies [J]. Leukemia&Lymphoma,2013,54(12):2685-2692.
[29] Kariya R,Taura M,Suzu S,et al. HIV protease inhibitor Lopinavir induces apoptosis of primary effusion lymphoma cells via suppression of NF-κB pathway [J]. Cancer Letters,2014,342(1):52-59.
[30] Tong X,Lanying D,Petra P,et al. Nelfinavir,an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway [J]. Cancer Letters,2015,364(1):79-88.
[31] Yevgeniya K,Kirk J,Antony R,et al. The HIV Protease Inhibitor Nelfinavir Down-Regulates RET Signaling and Induces Apoptosis in Medullary Thyroid Cancer Cells [J]. Journal of Clinical Endocrinology & Metabolism,2014,99(5):jc20133369.
[32] Srirangam A,Milani M,Mitra R,et al. The human immunodeficiency virus protease inhibitor ritonavir inhibits lung cancer cells,in part,by inhibition of surviving [J]. Journal of Thoracic Oncology,2011,6(4):661-670.
[33] Brunner TB,Geiger M,Grabenbauer GG,et al. Phase I trial of the human immunodeficiency virus protease inhibitor nelfinavir and chemoradiation for locally advanced pancreatic cancer [J]. Journal of Clinical Oncology,2008,26(16):2699-2706.
[34] Rengan R,Mick R,Pryma D,et al. A phase I trial of the HIV protease inhibitor Nelfinavir with concurrent chem-oradiotherapy (CT-RT) for unresectable stage IIIA/IIIB NSCLC:a report of toxicities and clinical response [J]. Journal of Thoracic Oncology,2012,7(4):709-715.
[35] Alonso-Basanta M,F(xiàn)ang P,Maity A,et al. A phase I study of nelfinavir concurrent with temozolomide and radiotherapy in patients with glioblastoma multiforme [J]. Journal of Neuro-Oncology,2014,116(2):365-372.
[36] Gideon M,Blumenthal,Joell J,et al. A phase I trial of the HIV protease inhibitor nelfinavir in adults with solid tumors [J]. Oncotarget,2014,5(18):8161-8172.
[37] 王陽,王翔,趙平.基質(zhì)金屬蛋白酶-11在乳腺癌中表達的研究進展[J].癌癥進展,2014,12(5):438-422.
[38] 尹文琤,馬力文.靶向藥物在進展期胰腺癌中的研究進展[J].癌癥進展,2015,13(6):604-608.
[39] 尹竺晟,戈偉.胃癌的免疫治療[J].中國醫(yī)藥導(dǎo)報,2015, 12(29):35-38.
[40] 殷卓敏,吳紅娟,方靜,等.血清腫瘤標(biāo)志物對Ⅰ~Ⅱ期宮頸小細胞癌預(yù)后的預(yù)測價值[J].中國醫(yī)藥導(dǎo)報,2015,12(5):22-27.
[41] 吳松,虞桂平,薛濤.PI3K-mTOR信號通路抑制劑抗腫瘤研究新進展[J].中國醫(yī)藥導(dǎo)報,2015,12(1):161-164.
(收稿日期:2015-12-10 本文編輯:趙魯楓)