国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同播栽方式下雜交秈稻莖稈生長(zhǎng)和穗粒形成特點(diǎn)及與氣象因子的關(guān)系

2016-10-25 02:47:42田青蘭劉波孫紅何莎鐘曉媛趙敏任萬(wàn)軍
中國(guó)水稻科學(xué) 2016年5期
關(guān)鍵詞:穎花枝梗秈稻

田青蘭 劉波 孫紅 何莎 鐘曉媛 趙敏 任萬(wàn)軍,*

(1四川農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院 / 農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室 / 四川農(nóng)業(yè)大學(xué) 生態(tài)農(nóng)業(yè)研究所, 四川 溫江611130; 2成都市郫縣氣象局,四川 郫縣 611730; * 通訊聯(lián)系人, E-mail: rwjun@126.com)

?

不同播栽方式下雜交秈稻莖稈生長(zhǎng)和穗粒形成特點(diǎn)及與氣象因子的關(guān)系

田青蘭1劉波1孫紅1何莎2鐘曉媛1趙敏1任萬(wàn)軍1,*

(1四川農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院 / 農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室 / 四川農(nóng)業(yè)大學(xué) 生態(tài)農(nóng)業(yè)研究所, 四川 溫江611130;2成都市郫縣氣象局,四川 郫縣 611730;*通訊聯(lián)系人, E-mail: rwjun@126.com)

TIAN Qinglan, LIU Bo, SUN Hong, et al. Characteristics of stem growth and formation of grain ofindicahybrid rice in different planting methods and their correlation with meteorological factors . Chin J Rice Sci, 2016, 30(5): 507-524.

為探明不同播栽方式下雜交秈稻幼穗分化期莖稈和幼穗生長(zhǎng)的規(guī)律及差異以進(jìn)一步明確不同播栽方式穗粒形成特點(diǎn),于2014年采用兩因素裂區(qū)試驗(yàn)設(shè)計(jì),研究了機(jī)直播、機(jī)插和手插3種播栽方式下2個(gè)不同穗粒型雜交秈稻組合[宜香優(yōu)2115(中穗型)和F優(yōu)498(大穗型)]的穗分化期莖稈和幼穗生長(zhǎng)規(guī)律和穗粒形成特點(diǎn),并分析了幼穗分化期氣象因素與幼穗和莖稈生長(zhǎng)的關(guān)系。結(jié)果表明:1)基部向上第1至第3伸長(zhǎng)節(jié)間長(zhǎng)度分別在抽穗前20 d、16 d、12 d后趨于穩(wěn)定,故基部第1、2節(jié)間的降長(zhǎng)增粗應(yīng)在抽穗前16 d之前;穗干質(zhì)量和穗莖比在抽穗前12 d后迅速增加。2)從抽穗前16 d開(kāi)始至抽穗期,穗莖干重比與多數(shù)枝梗和穎花性狀呈顯著或極顯著正相關(guān),穗與莖稈競(jìng)爭(zhēng)同化物的能力直接影響到穗粒形成。3)機(jī)插穗分化中后期穗莖干質(zhì)量比較高,且抽穗期穗干質(zhì)量顯著高于手插和機(jī)直播,有利于提高其每穗粒數(shù),且機(jī)插拔節(jié)后群體生長(zhǎng)率及單莖和群體干物質(zhì)積累量較高,抽穗期葉面積指數(shù)較高,粒葉比高于機(jī)直播,較機(jī)直播更利于粒重的提高和穗長(zhǎng)及著粒數(shù)的增加;大穗型品種F優(yōu)498抽穗期穗干質(zhì)量顯著高于中穗型品種宜香優(yōu)2115,且穗分化后期穗莖干質(zhì)量比高于宜香優(yōu)2115,是其每穗粒數(shù)高的重要原因;F優(yōu)498穗部著粒較密,較大的葉面積指數(shù)及粒葉比利于大穗的形成。4)機(jī)插全生育期最長(zhǎng),機(jī)直播最短,且機(jī)插穗分化期歷時(shí)較長(zhǎng),穗分化期積溫和日照時(shí)數(shù)較高,為穗粒形成提供了較好的溫光條件;莖稈長(zhǎng)度和干質(zhì)量及穗長(zhǎng)受氣象因子影響較大,孕穗前適宜的溫度和一定的積溫有利于莖稈和幼穗伸長(zhǎng)及莖稈的物質(zhì)充實(shí)。生產(chǎn)上應(yīng)針對(duì)不同播栽方式及品種的生育進(jìn)程差異,適時(shí)采取措施調(diào)節(jié)莖稈和幼穗生長(zhǎng)及物質(zhì)分配,在培育壯稈的基礎(chǔ)上提高穗分化期穗莖比以達(dá)到增粒增產(chǎn)的目的。

水稻; 穗; 莖稈; 穗粒形成; 機(jī)插; 機(jī)直播; 氣象因子

幼穗分化期是產(chǎn)量構(gòu)成因子的穗粒數(shù)形成的關(guān)鍵時(shí)期,水稻幼穗經(jīng)歷第一苞分化期、一次枝梗原基分化期、二次枝梗原基及穎花原基分化期、雌雄蕊形成期、花粉 母細(xì)胞形成期、花粉母細(xì)胞減數(shù)分裂期、花粉內(nèi)容充實(shí)期和花粉完成期[1],部分已分化的枝梗和穎花會(huì)在此過(guò)程中發(fā)生退化,現(xiàn)存的穎花則構(gòu)成最終的每穗穎花數(shù)。不同播栽方式下雜交秈稻的穎花分化及退化存在顯著差異[2],而穗分化期幼穗和莖稈生長(zhǎng)直接影響到穎花的分化及退化,因此,探明不同播栽方式間水稻幼穗分化期幼穗及莖稈生長(zhǎng)進(jìn)程、變化規(guī)律及差異,對(duì)進(jìn)一步明確機(jī)械化播栽及手插的穗粒數(shù)形成規(guī)律有重要意義。已有研究表明,穗分化期溫度條件[3,4]、氮肥施用量及時(shí)期[5-8]、播期[9,10]等均會(huì)影響水稻的穗莖生長(zhǎng)。壯稈是大穗的組織結(jié)構(gòu)和物質(zhì)基礎(chǔ)[11]。單莖莖鞘質(zhì)量高的植株,莖鞘內(nèi)貯藏性物質(zhì)多,對(duì)提高結(jié)實(shí)率和粒重能起穩(wěn)定性作用,是提高抗倒能力的物質(zhì)基礎(chǔ)[12]。穗分化期幼穗鮮質(zhì)量大致呈“S”型曲線增長(zhǎng)[6],而穗相對(duì)于莖稈來(lái)說(shuō)是一個(gè)較弱的庫(kù)[13],穗分化期穗與莖稈存在對(duì)同化物的競(jìng)爭(zhēng),水稻進(jìn)入花粉母細(xì)胞形成期后,穗對(duì)于營(yíng)養(yǎng)物質(zhì)的競(jìng)爭(zhēng)能力大于莖稈[6]。前期試驗(yàn)結(jié)果表明,不同播栽方式的分蘗特性[14]、氮素積累分配特性[15]、抗倒伏性[16]等均存在差異,機(jī)插較機(jī)直播和手插有大穗優(yōu)勢(shì)[17],但對(duì)于不同播栽方式間水稻穗莖生長(zhǎng)規(guī)律及差異還不明確。本研究以四川近年推廣面積較大的2個(gè)不同穗粒型雜交中秈組合宜香優(yōu)2115(中穗型)和F優(yōu)498(大穗型)為材料,研究機(jī)直播、機(jī)插和手插3種播栽方式下水稻穗分化期的幼穗和莖稈生長(zhǎng)規(guī)律及穗粒形成特點(diǎn)、物質(zhì)積累與群體生長(zhǎng)差異,并探究幼穗和莖稈生長(zhǎng)與枝梗和穎花形成的關(guān)系以及穗分化期氣象條件對(duì)幼穗和莖稈生長(zhǎng)的影響,以期明確不同播栽方式穗粒數(shù)形成的規(guī)律,對(duì)優(yōu)化機(jī)械化播栽的增產(chǎn)途徑提供理論參考。

1 材料與方法

1.1試驗(yàn)地點(diǎn)及供試品種

試驗(yàn)于2014年在四川省成都市郫縣三道堰鎮(zhèn)程家船村(30°52′N(xiāo),103°55′E)進(jìn)行,試驗(yàn)點(diǎn)地處成都平原區(qū),水稻季降水量為1067 mm,平均溫度23.2 ℃,試驗(yàn)田前作為甘藍(lán),土壤類(lèi)型為中壤土,pH值為6.71,0-20 cm土層有機(jī)質(zhì)含量為28.14 g/kg,全氮含量為1.66 g/kg,全磷含量為0.77 g/kg,全鉀含量為19.34 g/kg,堿解氮含量75.51 mg/kg,速效磷含量為183.66 mg/kg,速效鉀含量為134.82 mg/kg。供試品種為雜交中秈遲熟組合宜香優(yōu)2115(宜香1A×雅恢2115)和F優(yōu)498(FS3A×蜀恢498)。宜香優(yōu)2115為中穗型品種,每穗著粒數(shù)141,主莖伸長(zhǎng)節(jié)間數(shù)為6個(gè),主莖總?cè)~數(shù)16片;F優(yōu)498為大穗型品種,每穗著粒數(shù)為212,主莖伸長(zhǎng)節(jié)間數(shù)為6個(gè),主莖總?cè)~數(shù)16~17片。

1.2試驗(yàn)設(shè)計(jì)與田間管理

于2014年采用兩因素裂區(qū)試驗(yàn)設(shè)計(jì)。播栽方式(A)為主區(qū)(A1, 機(jī)直播,MD;A2,機(jī)插,MT;A3, 手插,HT)。不同穗粒型品種(B)為副區(qū)(B1,中穗型品種宜香優(yōu)2115;B2,大穗型品種F優(yōu)498)。主區(qū)及副區(qū)均隨機(jī)排列,重復(fù)3次。機(jī)直播于2014年4月10日應(yīng)用華南農(nóng)業(yè)大學(xué)工學(xué)院研制的2BD-10精量穴直播機(jī)進(jìn)行水直播,行穴距設(shè)為25 cm×19 cm,播量為5~6粒/穴;機(jī)插于4月10日采用缽形塑料軟盤(pán)旱育秧,于5月10日選用洋馬六行插秧機(jī)移栽,設(shè)定行穴距為30 cm×16 cm,2苗/穴;手插于4月10日播種,采用大田普通旱育,5月10日移栽,栽插行穴距為30 cm×16 cm,拉繩定點(diǎn)栽插,2苗/穴。機(jī)直播于播后30 d定苗至2苗/穴;機(jī)插和手插于栽后1 d定苗至2苗/穴。小區(qū)面積 36 m2(3 m×12 m)。施純氮180 kg/hm2,按m基蘗肥∶m穗肥=6∶4施入,其中m基肥∶m分蘗肥=2∶1;m促花肥∶m保花肥=5∶5。按mN∶mP2O5∶mK2O=2∶1∶2確定磷、鉀肥用量,磷肥作基肥一次性施用,鉀肥按m基肥∶m穗肥(促花肥)=5∶5的比例施用。3種播栽方式的總施肥量一致,機(jī)直播的基肥在播種前2 d施用,機(jī)插和手插的基肥在移栽前2 d施用;機(jī)直播的分蘗肥于4~5葉期施用,機(jī)插和手插的分蘗肥于栽后10 d施用,促花肥和?;ǚ拾雌涓髯缘纳M(jìn)程在倒4葉和倒2葉抽出時(shí)施用。小區(qū)間用塑料薄膜包埂隔離,保證可以進(jìn)行單獨(dú)肥水管理。水分管理為夠苗控水曬田,拔節(jié)期施肥時(shí)復(fù)淺水,然后再次落干,后以淺水層和干濕交替為主,抽穗后25~30 d,以濕潤(rùn)為主。收獲前7~10 d,排水以保證田間硬實(shí),以便收割。病蟲(chóng)草害防治等相關(guān)栽培措施均按照各自高產(chǎn)栽培要求實(shí)施。

1.3測(cè)定項(xiàng)目與方法

1.3.1穗莖生長(zhǎng)動(dòng)態(tài)測(cè)定

分蘗期每小區(qū)選取長(zhǎng)勢(shì)一致的200株植株將主莖掛牌,從穗分化開(kāi)始至抽穗期,每4 d取樣1次,每次取掛牌主莖15根,將葉片摘下,莖鞘則剝離為莖稈和葉鞘,穗分化前期將幼穗在體視顯微鏡下剝離,拍照并用配套軟件測(cè)量穗長(zhǎng),穗分化后期直接用直尺測(cè)量穗長(zhǎng),并用直尺測(cè)量每根莖稈各伸長(zhǎng)節(jié)間的長(zhǎng)度,用數(shù)顯游標(biāo)卡尺測(cè)量各伸長(zhǎng)節(jié)間的長(zhǎng)軸直徑和短軸直徑,將測(cè)量后的莖稈按伸長(zhǎng)節(jié)間的節(jié)位進(jìn)行切分,相同節(jié)位的伸長(zhǎng)節(jié)間放在一起,將葉片、葉鞘、穗及不同節(jié)位伸長(zhǎng)節(jié)間分別裝于牛皮紙袋中,置于80℃恒溫烘箱中烘干至恒重并稱(chēng)重。莖稈基部向上的伸長(zhǎng)節(jié)間依次記為N1~N6,單個(gè)莖稈的質(zhì)量為各節(jié)間質(zhì)量之和,單個(gè)莖稈的長(zhǎng)度為各節(jié)間長(zhǎng)度總和;外徑為長(zhǎng)軸直徑(mm)與短軸直徑(mm)的平均值;節(jié)間扁平率(%)=(1-短軸直徑/長(zhǎng)軸直徑)×100;稈型指數(shù)=外徑(cm)/節(jié)間長(zhǎng)度(cm),穗(莖稈)干質(zhì)量增長(zhǎng)速率(%)=[抽穗前nd穗(莖稈)干質(zhì)量-抽穗前n+4 d穗(莖稈)干質(zhì)量]/4×100。文中數(shù)據(jù)均為樣本的平均值即單個(gè)主莖的指標(biāo)。

1.3.2枝梗和穎花性狀測(cè)定

齊穗期每小區(qū)選取長(zhǎng)勢(shì)一致的掛牌主莖10根,用于枝梗及穎花分化、退化的測(cè)定,觀察并記錄每穗一次枝梗及著生其上的一次穎花、二次枝梗及著生其上的二次穎花、三次枝梗(著生在二次枝梗上的枝梗)及著生其上的三次穎花的退化數(shù)及現(xiàn)存數(shù),每穗枝梗及穎花的分化數(shù)為退化數(shù)與現(xiàn)存數(shù)的總和。此部分相關(guān)數(shù)據(jù)已發(fā)表[17],在本文中僅用于相關(guān)分析。

1.3.3主要生育時(shí)期干物質(zhì)量的測(cè)定

于拔節(jié)期、抽穗期、成熟期每小區(qū)調(diào)查20穴莖蘗數(shù),按平均莖蘗數(shù)取樣2穴,剪除根部后洗凈并裝于牛皮紙袋中,150℃下殺青1 h后于80℃恒溫烘箱中烘干至恒重并稱(chēng)重。各生育時(shí)期群體生長(zhǎng)率(g/m2·d)=(W2-W1)/(t2-t1)。式中,W1和W2分別指前后兩次測(cè)定的干物質(zhì)量,t2-t1指前后兩次測(cè)定相隔的天數(shù)。

1.3.4葉面積及收獲的穗部性狀測(cè)定

抽穗期將用于測(cè)定干物質(zhì)的植株樣用長(zhǎng)寬系數(shù)法(校正系數(shù)取0.75)測(cè)定倒3葉及其余葉的葉面積并計(jì)算高效葉面積率及葉面積指數(shù)。成熟期每小區(qū)調(diào)查60穴的有效穗數(shù),按平均穗數(shù)取樣5穴,考查穗長(zhǎng)、單穗實(shí)粒質(zhì)量、每穗著粒數(shù)及實(shí)粒數(shù),計(jì)算著粒密度及粒葉比。穎花葉面積比(粒/cm2)=每穗著粒數(shù)×單位面積有效穗/抽穗期單位面積葉面積;實(shí)粒葉面積比(粒/cm2)=每穗實(shí)粒數(shù)×單位面積有效穗/抽穗期單位面積葉面積;粒重葉面積比(mg/cm2)=單穗實(shí)粒質(zhì)量×單位面積有效穗/抽穗期單位面積葉面積。

1.3.5氣象數(shù)據(jù)的收集

相關(guān)氣象數(shù)據(jù)資料來(lái)源于四川成都郫縣氣象局,包括2014年四川郫縣三道堰鎮(zhèn)4月初至9月中旬的氣象數(shù)據(jù)。

1.4數(shù)據(jù)處理

用Microsoft Excel 進(jìn)行數(shù)據(jù)的輸入、整理及作圖;用DPS 7.05系統(tǒng)進(jìn)行數(shù)據(jù)的方差分析,并采用LSD法進(jìn)行樣本平均數(shù)的多重比較;用SPSS 18 軟件進(jìn)行數(shù)據(jù)的相關(guān)分析。

2 結(jié)果與分析

2.1不同播栽方式下雜交秈稻莖稈和穗的生長(zhǎng)規(guī)律及差異

2.1.1莖稈生長(zhǎng)特點(diǎn)

中秈遲熟雜交稻的穗分化期開(kāi)始于拔節(jié)期,結(jié)束于抽穗期。由圖1可以看出,莖稈長(zhǎng)度從穗分化始期至抽穗前8 d大致呈線性緩慢增長(zhǎng),之后增長(zhǎng)迅速,這主要是由于穗頸節(jié)間在抽穗前8 d開(kāi)始迅速伸長(zhǎng)。不同播栽方式間,莖稈長(zhǎng)度機(jī)插和手插高于機(jī)直播,兩品種一致。而F優(yōu)498抽穗期莖稈略長(zhǎng)于宜香優(yōu)2115。

穗分化期莖稈基部節(jié)間陸續(xù)長(zhǎng)出并伸長(zhǎng),各伸長(zhǎng)節(jié)間的長(zhǎng)度變化有一定規(guī)律。由圖2可以看出,N1長(zhǎng)度在抽穗前20 d后趨于穩(wěn)定,N2長(zhǎng)度在抽穗前20 d之前增長(zhǎng)較快,在抽穗前16 d之后趨于穩(wěn)定;N3長(zhǎng)度在抽穗前12 d之前增長(zhǎng)迅速,之后趨于穩(wěn)定。N4、N5和N6抽穗期時(shí)仍在伸長(zhǎng),尚未達(dá)到最終長(zhǎng)度。其中,宜香優(yōu)2115的N4在抽穗前20 d之后一直穩(wěn)定持續(xù)快速伸長(zhǎng),而F優(yōu)498的N4在抽穗期伸長(zhǎng)放緩;N5在抽穗前12 d開(kāi)始迅速伸長(zhǎng),N6在抽穗前8 d開(kāi)始迅速伸長(zhǎng),且N1~N4的最終長(zhǎng)度隨節(jié)位上升而增加。比較不同播栽方式的差異可知,除N3及F優(yōu)498的N4外,幼穗分化期的N1~N5長(zhǎng)度均為機(jī)插大于手插和機(jī)直播,抽穗期N6長(zhǎng)度為機(jī)插和手插大于機(jī)直播,兩品種一致;品種間比較可知,抽穗期N1~N4長(zhǎng)度宜香優(yōu)2115長(zhǎng)于F優(yōu)498,N5、N6長(zhǎng)度則為F優(yōu)498長(zhǎng)于宜香優(yōu)2115。

由于N1~N3的節(jié)間形態(tài)在抽穗前12 d后均趨于穩(wěn)定,故將N1、N2、N3在抽穗前12 d至抽穗期的節(jié)間性狀取平均值進(jìn)行方差分析。由表1可知,各播栽方式間和品種間的基部伸長(zhǎng)節(jié)間性狀存在較大差異。N1和N2的長(zhǎng)度均表現(xiàn)為機(jī)插>手插>機(jī)直播,其中,機(jī)插N1和N2長(zhǎng)度較機(jī)直播分別長(zhǎng)24.3%和12.1%,差異達(dá)極顯著,各播栽方式N3長(zhǎng)度差異不大;品種間為宜香優(yōu)2115的N1和N2長(zhǎng)度顯著或極顯著大于F優(yōu)498。N1、N2、N3長(zhǎng)軸直徑和短軸直徑均為手插>機(jī)插>機(jī)直播,且手插和機(jī)插顯著大于機(jī)直播,品種間差異不大。N1、N2扁平率為手插和機(jī)插大于機(jī)直播,N3的扁平率為宜香優(yōu)2115顯著高于F優(yōu)498。N1、N2、N3的外徑均為手插和機(jī)插顯著或極顯著大于機(jī)直播,且機(jī)直播中為宜香優(yōu)2115大于F優(yōu)498,在手插中則相反。此外,機(jī)插的N1和N2的稈型指數(shù)最小,各播栽方式N1和N2的稈型指數(shù)均為F優(yōu)498大于宜香優(yōu)2115。由以上分析可以看出,手插基部伸長(zhǎng)節(jié)間短而粗,而機(jī)直播基部節(jié)間較細(xì),機(jī)插基部伸長(zhǎng)節(jié)間則較長(zhǎng)。

2.1.2幼穗生長(zhǎng)特點(diǎn)

穗分化期穗與莖稈同步伸長(zhǎng),由圖3可以看出,穗長(zhǎng)大致呈“S”型曲線增長(zhǎng),在抽穗前16d到抽穗前8 d這一階段增長(zhǎng)最快,隨后緩慢增長(zhǎng)并趨于穩(wěn)定。不同播栽方式間,機(jī)插穗長(zhǎng)高于機(jī)直播和手插,兩品種一致。由圖4和圖5可以看出,不同播栽方式下雜交秈稻穗分化期的穗干質(zhì)量增加趨勢(shì)為穗分化始期至抽穗前16 d增長(zhǎng)緩慢,抽穗前12 d至抽穗期持續(xù)快速增長(zhǎng),穗莖干質(zhì)量比與穗干質(zhì)量變化趨勢(shì)一致。抽穗前24 d至抽穗前4 d宜香優(yōu)2115的機(jī)插處理的穗干質(zhì)量增長(zhǎng)速率均明顯快于手插和機(jī)直播。抽穗前4 d和抽穗期穗干質(zhì)量表現(xiàn)為機(jī)插(分別為0.71 g和1.04 g)顯著或極顯著高于手插(分別為0.52 g和0.90 g)和機(jī)直播(分別為0.56 g和0.84 g),而F優(yōu)498穗干質(zhì)量顯著高于宜香優(yōu)2115;抽穗前12 d至抽穗期,宜香優(yōu)2115的穗莖干質(zhì)量比表現(xiàn)為機(jī)插>機(jī)直播>手插,F(xiàn)優(yōu)498各播栽方式間差異不大但以機(jī)插較高,且F優(yōu)498穗分化后期穗莖干質(zhì)量比均高于宜香優(yōu)2115。

MD-機(jī)直播; MT-機(jī)插; HT-手插。下同。

MD, Mechanized direct-seeding; MT, Mechanized transplanting; HT, Hand transplanting. The same as below.

圖1不同栽插方式下秈稻穗分化期莖稈長(zhǎng)度變化

Fig.1. Changes in the length of stem of indica hybrid rice at the panicle differentiation stage in various planting methods.

圖2不同栽插方式下秈稻穗分化期各伸長(zhǎng)節(jié)間(N1~N6)的長(zhǎng)度變化

Fig. 2. Change in the length of N1-N6 elongated internodes ofindicahybrid rice at the panicle differentiation stage in various planting methods.

表1不同栽插方式下雜交秈稻基部伸長(zhǎng)節(jié)間性狀比較

Table 1. Comparison of the characters of basal elongated internodes of indica hybrid rice in various planting methods.

播栽方式Plantingmethod長(zhǎng)度Length/cmN1N2N3長(zhǎng)軸直徑Longaxisdiameter/mmN1N2N3機(jī)直播MD 宜香優(yōu)2115YXY21152.54±0.44a7.58±0.79Aa10.47±0.42a7.02±0.197.07±0.12 6.55±0.10 F優(yōu)498FY4982.03±0.16b6.02±0.4Bb9.43±0.55b6.73±0.016.95±0.076.47±0.01機(jī)插MT 宜香優(yōu)2115YXY21153.18±0.31a8.48±0.14Aa9.89±0.657.34±0.207.36±0.116.78±0.08 F優(yōu)498FY4982.50±0.33b6.75±0.41Bb10.15±0.357.35±0.227.36±0.296.75±0.22手插HT 宜香優(yōu)2115YXY21152.96±0.47a7.65±0.78a10.74±0.247.39±0.34b7.48±0.176.74±0.06 F優(yōu)498FY4982.45±0.11a6.35±0.37b10.01±0.717.92±0.23a7.47±0.146.86±0.10平均值Mean 機(jī)直播MD2.29±0.36Bb6.80±1.1Bb9.95±0.736.87±0.2Bc7.01±0.09Bb6.51±0.06Bb 機(jī)插MT2.84±0.48Aa7.62±1.22Aa10.02±0.197.34±0.004Ab7.36±0.002ABa6.76±0.02Aa 手插HT2.71±0.36Aa7.00±0.91Bb10.38±0.517.65±0.37Aa7.47±0.004Aa6.80±0.08Aa 宜香優(yōu)2115YXY21152.90±0.32Aa7.90±0.50Aa10.37±0.43a7.25±0.207.30±0.216.69±0.12 F優(yōu)498FY4982.54±0.44a7.58±0.79Aa10.47±0.42a7.33±0.597.26±0.286.69±0.20F值Fvalue 播栽方式PM21.05**20.41**1.5435.24**16.93*31.90** 品種V15.87**38.48**6.32*0.860.430.00 播栽方式×品種PM×V0.150.263.89(*)7.33*0.351.06播栽方式Plantingmethod短軸直徑Shortaxisdiameter/mmN1N2N3扁平率Oblaterate/%N1N2N3機(jī)直播MD 宜香優(yōu)2115YXY21156.42±0.12a6.29±0.045.74±0.048.53±1.0511.03±0.9312.32±0.84a F優(yōu)498FY4986.19±0.06b6.24±0.115.78±0.108.06±0.8810.10±1.8710.61±1.35b機(jī)插MT 宜香優(yōu)2115YXY21156.61±0.196.67±0.075.98±0.089.91±0.959.38±1.7811.69±0.26a F優(yōu)498FY4986.45±0.166.63±0.256.11±0.2512.16±0.879.88±0.629.53±0.69b手插HT 宜香優(yōu)2115YXY21156.68±0.196.49±0.105.89±0.03b9.47±1.85b13.20±1.34a12.54±0.75Aa F優(yōu)498FY4986.75±0.306.81±0.266.21±0.15a14.64±2.76a8.72±2.60b9.36±0.92Bb平均值Mean 機(jī)直播MD6.30±0.16Bb6.27±0.04b5.76±0.03Bb8.29±0.34b10.56±0.6611.45±1.21 機(jī)插MT6.53±0.11ABa6.65±0.03a6.05±0.09Aa11.01±1.59a9.63±0.3610.58±1.53 手插HT6.72±0.05Aa6.65±0.23a6.05±0.23Aa11.94±3.65a10.86±3.1710.90±2.25 宜香優(yōu)2115YXY21156.57±0.146.48±0.195.87±0.129.30±0.70b11.16±1.9212.18±0.44Aa F優(yōu)498FY4986.46±0.286.56±0.296.03±0.2311.47±3.32a9.56±0.749.83±0.68BbF值Fvalue 播栽方式PM15.85*13.74*16.78*10.04*0.631.52 品種V3.060.945.25(*)7.60*3.88(*)27.86** 播栽方式×品種PM×V2.222.271.393.88(*)3.231.00

同列同一項(xiàng)中標(biāo)以不同大小寫(xiě)字母分別表示其值差異達(dá)0.01和0.05顯著水平,未標(biāo)注字母的均未達(dá)顯著性差異;(*),*和**分別表示差異達(dá)到0.1、0.05和0.01顯著水平。下表同。

Values within a column and item followed by different uppercase and lowercase letters are significantly different atP<0.01 andP<0.05, respectively. Values which have no markers are not significantly different. (*),*,**Denote significant difference at the 0.1, 0.05 and 0.01 probability levels, respectively. MD-Mechanized direct-seeding; MT-Mechanized transplanting; HT-Hand transplanting; PM-Planting method; V-Varieties; YXY2115-Yixiangyou 2115; FY498-F you 498; The same as below.

續(xù)表1:

播栽方式Plantingmethod外徑Stemdiameter/mmN1N2N3稈型指數(shù)StemtypeindexN1N2N3機(jī)直播MD 宜香優(yōu)2115YXY21156.72±0.15a6.68±0.086.15±0.070.270±0.045b0.089±0.009Bb0.059±0.002b F優(yōu)498FY4986.46±0.03b6.59±0.076.13±0.050.320±0.026a0.110±0.006Aa0.065±0.004a機(jī)插MT 宜香優(yōu)2115YXY21156.98±0.197.01±0.066.38±0.080.220±0.015b0.083±0.002Bb0.065±0.004 F優(yōu)498FY4986.90±0.186.99±0.276.43±0.240.278±0.032a0.104±0.003Aa0.063±0.001手插HT 宜香優(yōu)2115YXY21156.68±0.197.04±0.26b6.98±0.136.32±0.040.240±0.027b0.092±0.007Bb0.059±0.001b F優(yōu)498FY4987.34±0.24a7.14±0.196.53±0.120.300±0.024a0.113±0.009Aa0.066±0.006a平均值Mean 機(jī)直播MD6.59±0.18Bc6.64±0.06Bb6.14±0.01Bb0.295±0.035a0.099±0.015ab0.062±0.004 機(jī)插MT6.94±0.06ABb7.00±0.01Aa6.40±0.04Aa0.249±0.041b0.093±0.015b0.064±0.001 手插HT7.19±0.21Aa7.06±0.11Aa6.43±0.15Aa0.270±0.042ab0.102±0.015a0.062±0.005 宜香優(yōu)2115YXY21156.91±0.176.89±0.186.28±0.120.243±0.025Bb0.088±0.005Bb0.061±0.003b F優(yōu)498FY4986.90±0.446.91±0.286.36±0.210.299±0.021Aa0.109±0.005Aa0.065±0.001aF值Fvalue 播栽方式PM30.94**19.59**24.14**5.31(*)8.80*0.74 品種V0.030.061.7521.98**47.37**6.32* 播栽方式×品種PM×V6.04*1.131.270.060.002.84

2.1.3粒葉比及收獲后穗部性狀

粒葉比是衡量植株源庫(kù)是否協(xié)調(diào)的重要指標(biāo)。由表2可知,雖不同播栽方式抽穗期高效葉面積率無(wú)差異,但機(jī)插和機(jī)直播的葉面積指數(shù)高于手插。而粒葉比手插和機(jī)插高于機(jī)直播,其中,穎花葉面積比手插和機(jī)插分別較機(jī)直播高19.30%和10.97%,實(shí)粒葉面積比手插和機(jī)插較機(jī)直播分別高17.47%和7.34%,粒重葉面積比手插和機(jī)插分別較機(jī)直播高17.85%和7.00%。品種間,宜香優(yōu)2115的葉面積指數(shù)高于F優(yōu)498,但F優(yōu)498的穎花葉面積比、實(shí)粒葉面積比和粒重葉面積比均極顯著高于宜香優(yōu)2115,3種播栽方式一致。收獲的單穗實(shí)粒重和著粒密度為手插和機(jī)插大于機(jī)直播,F(xiàn)優(yōu)498極顯著大于宜香優(yōu)2115。此外,播栽方式對(duì)穗長(zhǎng)有顯著影響,機(jī)插的穗長(zhǎng)顯著長(zhǎng)于手插,極顯著高于機(jī)直播,而宜香優(yōu)2115的穗長(zhǎng)顯著長(zhǎng)于F優(yōu)498。由以上結(jié)果可以看出,機(jī)插葉面積指數(shù)較高,且粒葉比高于機(jī)直播,較機(jī)直播更利于粒重的提高和穗長(zhǎng)及著粒數(shù)的增加;F優(yōu)498著粒較密,較大的葉面積指數(shù)及粒葉比利于其大穗的形成。

圖3不同栽插方式下秈型雜交稻穗分化期穗長(zhǎng)變化

Fig. 3. Change of the length of panicle of indica hybrid rice at the panicle differentiation stage in various planting methods.

圖4不同栽插方式下秈型雜交稻穗分化期每穗干質(zhì)量變化

Fig. 4. Change of panicle dry weight of indica hybrid rice at the panicle differentiation stage in various planting methods.

圖5不同栽插方式下秈型雜交稻穗分化期穗莖干質(zhì)量比變化

Fig. 5. Change of the dry weight ratio of panicle to stem of indica hybrid rice at the panicle differentiation stage in various planting methods.

2.2不同播栽方式下雜交秈稻物質(zhì)積累與群體生長(zhǎng)

2.2.1穗分化期各器官物質(zhì)積累與分配變化

穗分化期不僅穗干質(zhì)量在持續(xù)增長(zhǎng),葉片、葉鞘、莖稈干質(zhì)量整體也呈上升趨勢(shì)(表3)。由表3可知,葉片干質(zhì)量在抽穗前24 d和抽穗前20 d為手插>機(jī)直播>機(jī)插,抽穗前12 d至抽穗期則為機(jī)插>手插>機(jī)直播。葉鞘干質(zhì)量在抽穗前12 d至抽穗期均為機(jī)插>手插>機(jī)直播,且抽穗前12 d和抽穗前8 d達(dá)顯著差異;抽穗前12 d F優(yōu)498的葉鞘干質(zhì)量高于宜香優(yōu)2115,而抽穗期則為宜香優(yōu)2115高于F優(yōu)498。抽穗前24 d至抽穗期莖稈干質(zhì)量均為機(jī)插高于手插和機(jī)直播,且除抽穗前20 d外,均達(dá)顯著或極顯著差異;抽穗前12 d至抽穗期宜香優(yōu)2115莖稈干質(zhì)量均高于F優(yōu)498,各播栽方式一致。

表2不同播栽方式下雜交秈稻粒葉比及收獲后穗部性狀

Table 2. Grain leaf ratio and character of harvested panicle of indica hybrid rice in different planting methods.

播栽方式與品種PMandV高效葉面積率HELR/%葉面積指數(shù)LAA穎花葉面積比RSLA/(粒·cm-2)實(shí)粒葉面積比RFSLA/(?!m-2)機(jī)直播MD 宜香優(yōu)2115YXY211568.85±1.349.92±0.19a0.34±0.03Bb0.31±0.01Bb F優(yōu)498FY49868.99±1.718.58±1.63b0.55±0.06Aa0.51±0.06Aa機(jī)插MT 宜香優(yōu)2115YXY211564.36±0.949.43±0.620.41±0.04Bb0.35±0.05Bb F優(yōu)498FY49862.37±6.119.10±0.410.58±0.03Aa0.53±0.03Aa手插HT 宜香優(yōu)2115YXY211566.80±1.939.70±0.24Aa0.38±0.04Bb0.33±0.04Bb F優(yōu)498FY49867.53±5.776.93±0.21Bb0.68±0.05Aa0.63±0.04Aa平均值Mean 機(jī)直播MD68.92±0.109.25±0.940.44±0.15b0.41±0.15 機(jī)插MT63.37±1.419.26±0.230.49±0.12ab0.44±0.13 手插HT67.17±0.528.32±1.960.53±0.22a0.48±0.21 宜香優(yōu)2115YXY211566.68±2.259.68±0.25Aa0.37±0.03Bb0.33±0.02Bb F優(yōu)498FY49866.33±3.488.21±1.13Bb0.6±0.07Aa0.56±0.06AaF值Fvalue 播栽方式PM3.792.755.39(*)3.42 品種V0.0619.36**150.05**209.07** 播栽方式×品種PM×V0.294.47(*)4.31(*)5.62*播栽方式與品種PMandV粒重葉面積比RGWLA/(mg·cm-2)單穗實(shí)粒重GWPP/g穗長(zhǎng)LP/cm著粒密度GD/(粒·cm-1)機(jī)直播MD 宜香優(yōu)2115YXY211510.28±0.33Bb3.89±0.14Bb25.47±0.48a5.03±0.28Bb F優(yōu)498FY49814.96±1.76Aa5.26±0.54Aa25.11±0.71a7.71±0.94Aa機(jī)插MT 宜香優(yōu)2115YXY211511.95±1.44b4.51±0.44Bb28.74±0.14Aa5.33±0.32Bb F優(yōu)498FY49815.06±1.13a5.78±0.72Aa26.84±0.37Bb8.26±0.47Aa手插HT 宜香優(yōu)2115YXY211511.15±1.31Bb4.27±0.27Bb27.48±0.32a5.26±0.18Bb F優(yōu)498FY49818.6±1.41Aa6.03±0.11Aa26.29±0.61b8.41±0.16Aa平均值Mean 機(jī)直播MD12.62±3.31b4.58±0.9725.29±0.25Bc6.37±1.89 機(jī)插MT13.51±2.2ab5.15±0.9027.79±1.35Aa6.79±2.08 手插HT14.87±5.27a5.15±1.2526.88±0.84Ab6.84±2.23 宜香優(yōu)2115YXY211511.13±0.83Bb4.23±0.31Bb27.23±1.65Aa5.21±0.16Bb F優(yōu)498FY49816.21±2.07Aa5.69±0.39Aa26.08±0.88Bb8.13±0.37AaF值Fvalue 播栽方式PM4.135.39(*)47.19**2.09 品種V86.39**150.05**22.17**171.41** 播栽方式×品種PM×V5.38*4.31(*)3.360.38

HELR, High effective leaf area ratio; LAA, Leaf area index; RSLA, Ratio of spikelets to leaf area; RFSLA, Ratio of filled spikelets to leaf area; RGWLA, Ratio of grain weight to leaf area; GWPP, Grain weight per panicle; LP, Length of panicle; GD, Grain density.

比較穗分化期各播栽方式下的雜交秈稻各器官干物質(zhì)分配比例變化(圖6),發(fā)現(xiàn)穗分化中后期葉片和葉鞘的干物質(zhì)分配比例整體呈階梯下降的趨勢(shì),而莖稈和穗的干物質(zhì)分配比例整體呈上升趨勢(shì),兩品種一致。穗分化期葉片和葉鞘所占的干物質(zhì)比例最大且為主要部分,穗占比最小。其中,抽穗前24 d葉片、葉鞘、莖稈和穗所占的干物質(zhì)比例分別為40%~51%、34%~42%、13%~17%、0.03%~0.06%;抽穗前12 d葉片、葉鞘、莖稈和穗所占的干物質(zhì)比例分別為33%~38%、34%~38%、21%~29%、1%~4.6%。隨著穗分化進(jìn)程,穗和莖稈不斷生長(zhǎng),抽穗期葉片、葉鞘所占的干物質(zhì)比例分別下降為25%~28%、29%~31%,而莖稈和穗的占比分別增加至24%~29%、12%~19%。說(shuō)明穗分化中后期莖稈和穗較葉和葉鞘對(duì)同化物的需求更大。

不同播栽方式間,抽穗前24 d至抽穗期,葉片干質(zhì)量占比均為手插高于機(jī)直播和機(jī)插。各播栽方式間葉鞘干質(zhì)量占比差異不大,品種間差異主要在抽穗前16 d和抽穗前12 d,為F優(yōu)498高于宜香優(yōu)2115。除抽穗前8 d外,莖稈干質(zhì)量占比均為機(jī)插高于機(jī)直播和手插,抽穗前12 d至抽穗期各播栽方式的莖稈干質(zhì)量占比均為F優(yōu)498高于宜香優(yōu)2115。抽穗前24 d至抽穗期穗干質(zhì)量占比為機(jī)插和機(jī)直播高于手插,F(xiàn)優(yōu)498高于宜香優(yōu)2115。

2.2.2各生育時(shí)期物質(zhì)積累與群體生長(zhǎng)率

由表4可以看出,不同播栽方式抽穗期及成熟期單莖干物質(zhì)量差異較大,均為機(jī)插>手插>機(jī)直播,而群體干物質(zhì)量在拔節(jié)期以機(jī)直播最高,抽穗期和成熟期則為機(jī)插最高。群體生長(zhǎng)率播種至拔節(jié)期以機(jī)直播最高,而拔節(jié)至抽穗期和抽穗至成熟期則以機(jī)插最高,兩品種差異不大。故機(jī)直播生長(zhǎng)優(yōu)勢(shì)在拔節(jié)前,但后勁不足;機(jī)插的生長(zhǎng)優(yōu)勢(shì)則在拔節(jié)后,其群體生長(zhǎng)率增加,物質(zhì)積累也隨之增加。

2.3穗莖生長(zhǎng)與枝梗和穎花分化及退化的關(guān)系

不同播栽方式間,機(jī)插有較高的總枝梗數(shù)和總穎花數(shù)[17]。穗粒形成于穗分化期,其主要構(gòu)成因子包括一次、二次枝梗數(shù)和一次、二次穎花數(shù),相關(guān)分析表明,總枝梗數(shù)和總穎花性狀與穗干質(zhì)量普遍正相關(guān),而與莖稈干質(zhì)量普遍呈負(fù)相關(guān),但后者大多未達(dá)顯著相關(guān)(表5)。進(jìn)一步分析穗莖物質(zhì)競(jìng)爭(zhēng)與協(xié)調(diào)和枝梗與穎花分化及退化的關(guān)系(表6),從抽穗前16 d開(kāi)始直至抽穗期,穗莖干質(zhì)量比對(duì)枝梗和穎花性狀產(chǎn)生較大影響,與多數(shù)枝梗和穎花性狀呈顯著或極顯著正相關(guān);抽穗前20 d至抽穗前12 d的穗干質(zhì)量增長(zhǎng)速率及抽穗前8~4 d的穗莖干質(zhì)量增長(zhǎng)速率之比也與多數(shù)枝梗和穎花性狀呈顯著或極顯著正相關(guān),而抽穗前8~4 d莖稈干質(zhì)量增長(zhǎng)速率與總枝梗和總穎花現(xiàn)存數(shù)、分化數(shù)等性狀呈顯著負(fù)相關(guān)。由此可知,穗分化期穗與莖稈競(jìng)爭(zhēng)同化物的能力直接影響到枝梗和穎花形成。

表3不同栽插方式下雜交秈稻穗分化期各器官的干質(zhì)量變化

Table 3. Change of the dry matter of different organs of indica hybrid rice in panicle differentiation stage in various planting methods.g

同一行同一項(xiàng)中標(biāo)以不同大小寫(xiě)字母分別表示其值差異達(dá)0.01和0.05顯著水平。DBH,抽穗前天數(shù)。

Values within a line and item flanked by different capital and small letter are significantly different atP<0.01 andP<0.05,respectively. DBH,Days before heading.

表4不同栽插方式下雜交秈稻各生育時(shí)期物質(zhì)積累與群體生長(zhǎng)率

Table 4. Dry matter weight during various growth stage and crop growth rate of indica hybrid rice in different planting methods.

DMWS, Dry matter weight per stem; DMWP, Dry matter weight of population; CGR, Crop growth rate; S-J, Seeding-Jointing; J-H, Jointing-Heading; H-M, Heading-Maturity.

圖6不同栽插方式下雜交秈稻穗分化期各器官干物質(zhì)分配比例變化

Fig.6. Change of the ratio of dry matter in different organs at the panicle differentiation stage of indica hybrid rice in different planting methods.

表5不同栽插方式下秈型雜交稻穗分化期莖稈和穗生長(zhǎng)與總枝梗和總穎花性狀的相關(guān)分析1)

Table 5. Correlation analysis of the growth of stem and panicle with rachis branches and spikelets characters of indica hybrid rice at the panicle differentiation stage in various planting methods(n=18).1)

抽穗前天數(shù)與性狀Daysbeforeheadingandcharacter總穎花現(xiàn)存數(shù)SS總穎花退化數(shù)RS總穎花分化數(shù)DS總穎花退化率RPS總枝梗退化數(shù)RB總枝?,F(xiàn)存數(shù)SB總枝梗分化數(shù)DB總枝梗退化率RPB24DBH 莖稈長(zhǎng)LS-0.088-0.195-0.14-0.254-0.539*-0.077-0.298-0.734** 莖稈干質(zhì)量DWS0.168-0.1480.048-0.329-0.2930.146-0.048-0.538* 穗長(zhǎng)LP-0.139-0.236-0.191-0.218-0.509*-0.130-0.316-0.607** 穗干質(zhì)量DWP0.4530.1510.362-0.0630.0460.4680.306-0.30020DBH 莖稈長(zhǎng)LS-0.162-0.333-0.248-0.383-0.598**-0.161-0.376-0.748** 莖稈干質(zhì)量DWS0.161-0.080.072-0.188-0.0390.1560.077-0.205 穗長(zhǎng)LP0.1570.2710.2190.3490.4090.1780.2990.456 穗干質(zhì)量DWP0.0900.0570.0830.0780.3230.0760.1960.41216DBH 莖稈長(zhǎng)LS-0.061-0.224-0.135-0.254-0.447-0.059-0.244-0.577* 莖稈干質(zhì)量DWS-0.111-0.196-0.156-0.147-0.394-0.093-0.239-0.480* 穗長(zhǎng)LP0.4100.3320.4110.2370.497*0.4200.486*0.366 穗干質(zhì)量DWP0.556*0.486*0.572*0.3350.680**0.560*0.656**0.525*12DBH 莖稈長(zhǎng)LS-0.050-0.157-0.100-0.186-0.369-0.063-0.210-0.445 莖稈干質(zhì)量DWS-0.109-0.155-0.138-0.150-0.509*-0.097-0.296-0.629** 穗長(zhǎng)LP0.475*0.3080.4430.0310.3500.485*0.4570.076 穗干質(zhì)量DWP0.601**0.507*0.610**0.2650.543*0.625**0.632**0.2588DBH 莖稈長(zhǎng)LS0.172-0.0100.109-0.135-0.2120.139-0.014-0.423 莖稈干質(zhì)量DWS-0.119-0.098-0.120-0.064-0.393-0.110-0.25-0.498* 穗長(zhǎng)LP0.3140.0520.229-0.1420.0310.3150.206-0.259 穗干質(zhì)量DWP0.673**0.3290.582*0.0170.4210.674**0.605**0.0394DBH 莖稈長(zhǎng)LS0.2310.1820.2290.1340.0410.2200.152-0.126 莖稈干質(zhì)量DWS-0.403-0.452-0.457-0.322-0.674**-0.41-0.563*-0.623** 穗長(zhǎng)LP-0.221-0.312-0.278-0.240-0.567*-0.215-0.394-0.620** 穗干質(zhì)量DWP0.689**0.469*0.652**0.2300.496*0.677**0.642**0.1710DBH 莖稈長(zhǎng)LS0.542*0.2310.455-0.109-0.0080.533*0.320-0.468 莖稈干質(zhì)量DWS-0.230-0.438-0.337-0.446-0.654**-0.249-0.456-0.729** 穗長(zhǎng)LP-0.378-0.489*-0.456-0.397-0.783**-0.375-0.592**-0.783** 穗干質(zhì)量DWP0.878**0.677**0.865**0.3100.653**0.871**0.832**0.209

1)枝梗和穎花性狀相關(guān)內(nèi)容已發(fā)表,詳見(jiàn)參考文獻(xiàn)[17]。*和**分別表示達(dá)到0.05和0.01顯著水平,下同。

1)denote the contents of branches and spiklets was published, please see reference [17].*,**Significance at the 0.05 and 0.01 probability levels, respectively. LS, Length of stem; DWS, Dry weight of stem; LP, Length of panicle; DWP, Dry weight of panicle; SS, Survived spikelets; RS, Retrograded spikelets; DS, Differentiated spikelets; RPS, Retrograded percentage of spikelets; RB, Retrograded branches; SB, Survived branches; DB, Differentiated branches; RPB, Retrograded percentage of branches. The same as below.

2.4各生育時(shí)期氣象條件差異及與穗莖生長(zhǎng)的關(guān)系

不同播栽方式的生育進(jìn)程不同,必然會(huì)對(duì)穗莖生長(zhǎng)產(chǎn)生影響。比較不同播栽方式間生育進(jìn)程,由圖7可知,機(jī)直播全生育期較機(jī)插和手插分別縮短了5 d和3 d(宜香優(yōu)2115)、7 d和4 d(F優(yōu)498),主要是因?yàn)闄C(jī)直播沒(méi)有移栽和返青環(huán)節(jié),生育進(jìn)程加快,而宜香優(yōu)2115全生育期較F優(yōu)498長(zhǎng)8~10 d。機(jī)插孕穗前生育進(jìn)程較慢而孕穗后生育進(jìn)程加快,其穗分化期歷時(shí)較長(zhǎng),而F優(yōu)498穗分化期較宜香優(yōu)2115短。比較各生育時(shí)期氣象條件(表7)可知,機(jī)插在孕穗前積溫高于機(jī)直播和手插,而孕穗后的積溫低于機(jī)直播和手插,但機(jī)插全生育期積溫最高;此外,機(jī)插拔節(jié)至抽穗期日照時(shí)數(shù)高于機(jī)直播和手插,為穗粒形成提供了較好的條件。

表6不同栽插方式下秈型雜交稻莖稈和穗物質(zhì)競(jìng)爭(zhēng)與枝梗和穎花性狀的關(guān)系1)

Table 6. Relationship of competing in assimilate between stem and panicle of indica hybrid rice which with branches and spikelets characters in various planting methods1)(n=18).

枝梗和穎花參數(shù)Parametersofrachisbranchesandspikelets穗莖干質(zhì)量比Dryweightratioofpanicletostem16DBH12DBH8DBH4DBH0DBH穗干質(zhì)量增長(zhǎng)速率WIP20DBH~16DBH16DBH~12DBH莖稈干質(zhì)量增長(zhǎng)速率WIS8DBH~4DBH穗與莖稈干質(zhì)量增長(zhǎng)速率之比RWIPS8DBH~4DBH一次枝梗退化數(shù)RPB0.3500.3450.2820.3380.3880.2260.1520.193-0.098一次枝梗現(xiàn)存數(shù)SPB0.737**0.681**0.567*0.716**0.901**0.699**0.621**-0.2970.540*一次枝梗分化數(shù)DPB0.747**0.690**0.574*0.726**0.908**0.698**0.613**-0.2710.517*一次枝梗退化率RPPB0.3280.3220.2610.3150.3700.2110.1330.186-0.104一次穎花退化數(shù)RPS0.770**0.608**0.602**0.755**0.887**0.783**0.416-0.3490.506*一次穎花分化數(shù)DPS0.2770.3600.2100.2140.3320.1330.4330.0970.080一次穎花退化率RPPS0.790**0.698**0.613**0.746**0.917**0.727**0.575*-0.2440.471*二次枝梗退化數(shù)RSB0.765**0.597**0.599**0.748**0.877**0.784**0.398-0.3530.505*二次枝?,F(xiàn)存數(shù)SSB0.856**0.661**0.604**0.722**0.875**0.773**0.420-0.3410.498*二次枝梗分化數(shù)DSB0.609**0.513*0.686**0.795**0.860**0.693**0.529*-0.553*0.739**二次枝梗退化率RPSB0.783**0.633**0.708**0.828**0.944**0.792**0.525*-0.493*0.679**一次枝梗退化數(shù)RPB0.627**0.4350.2100.3060.4450.4530.1050.0080.063二次穎花現(xiàn)存數(shù)SSS0.609**0.511*0.688**0.793**0.850**0.699**0.525*-0.550*0.727**二次穎花分化數(shù)DSS0.610**0.502*0.589*0.765**0.888**0.693**0.511*-0.602**0.779**二次穎花退化率RPSS0.3810.3210.0560.3560.529*0.4170.276-0.2930.516*二次穎花退化數(shù)RSS0.4590.3650.2050.490*0.669**0.507*0.341-0.475*0.675**三次枝梗退化數(shù)RTB0.1860.1770.1600.3930.574*0.2640.335-0.4640.672**三次枝?,F(xiàn)存數(shù)STB0.3000.4420.511*0.4620.523*0.4570.636**-0.549*0.568*三次枝梗分化數(shù)DTB0.2870.3560.3780.499*0.665**0.4120.557*-0.571*0.715**三次枝梗退化率RPTB-0.227-0.351-0.434-0.164-0.157-0.297-0.3700.2180.006三次穎花現(xiàn)存數(shù)STS0.2150.3390.555*0.513*0.4480.3650.562*-0.556*0.621**三次穎花分化數(shù)DTS0.1950.2870.2550.390.574*0.3290.522*-0.550*0.665**三次穎花退化率RPTS0.1960.1340.0850.2070.2390.1840.0670.0150.178三次穎花退化數(shù)RTS0.2630.3260.2730.4510.646**0.3850.523*-0.538*0.711**總穎花現(xiàn)存數(shù)SS0.605**0.526*0.686**0.783**0.845**0.681**0.555*-0.528*0.713**總穎花退化數(shù)RS0.536*0.4610.3490.609**0.807**0.605**0.463-0.531*0.740**總穎花分化數(shù)DS0.625**0.542*0.599**0.773**0.898**0.704**0.562*-0.572*0.783**總穎花退化率RPS0.3580.2730.0400.3400.512*0.3980.220-0.3270.505*總枝梗退化數(shù)RB0.777**0.611**0.557*0.724**0.906**0.729**0.451-0.4180.611**總枝?,F(xiàn)存數(shù)SB0.604**0.544*0.682**0.776**0.854**0.692**0.582*-0.558*0.732**總枝梗分化數(shù)DB0.728**0.614**0.673**0.808**0.940**0.759**0.563*-0.533*0.729**總枝梗退化率RPB0.622**0.4210.2360.4080.581*0.483*0.158-0.1100.256

RPB, Retrograded primary rachis branches; SPB, Survived primary rachis branches; DPB, Differentiated primary rachis branches; RPPB, Retrograded percentage of primary rachis branches; RPS, Retrograded primary spikelets; DPS, Differentiated primary spikelets; RPPS, Retrograded percentage of primary spikelets; RSB, Retrograded secondary rachis branches; SSB, Survived secondary rachis branches; DSB, Differentiated secondary rachis branches; RPSB, Retrograded percentage of secondary rachis branches; RSS, Retrograded secondary spikelets; SSS, Survived secondary spikelets; DSS, Differentiated secondary spikelets; RPSS, Retrograded percentage of secondary spikelets; STB, Survived third branches; DTB, Differentiated third branches; RTS, Retrograded third spikelets; STS, Survived third spikelets; DTS, Differentiated third spikelets; RPTS, Retrograded percentage of third branches.

參照穗分化期的日均溫度和降雨量(圖8)可知,穗分化期日均溫度在20℃至29℃間波動(dòng),日最高氣溫在22℃~36℃間變化,但降雨量變幅較大。進(jìn)一步分析穗分化期氣象因子與穗莖生長(zhǎng)的關(guān)系,發(fā)現(xiàn)抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d是氣象因子對(duì)穗莖生長(zhǎng)影響較大的時(shí)段。表8中列出了抽穗前12 d(接近孕穗期)及抽穗期的穗莖性狀與氣象因子的相關(guān)系數(shù)。從表中可以看出,抽穗前12 d莖稈長(zhǎng)度和干質(zhì)量與抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d的多數(shù)氣溫因素呈顯著或極顯著正相關(guān);抽穗前12 d穗長(zhǎng)和穗干質(zhì)量與氣象因子呈負(fù)相關(guān),且與抽穗前23~20 d平均氣溫及積溫相關(guān)性達(dá)到極顯著。抽穗期莖稈長(zhǎng)度和穗干質(zhì)量受氣象因子影響不大;抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d的積溫(≥10℃)、最高氣溫及平均氣溫與抽穗期莖稈干質(zhì)量和穗長(zhǎng)呈顯著或極顯著正相關(guān)。

柱形圖中的數(shù)值表示該時(shí)段經(jīng)歷的天數(shù)(d)

Values in the column chart donate the number of days in that period.

圖7不同播栽方式下雜交秈稻的生育進(jìn)程

Fig. 7. Growing process of indica hybrid rice under different planting methods.

圖8不同栽插方式下秈型雜交稻穗分化期溫度和降雨量

Fig. 8. Temperature and rainfall at the panicle differentiation stage in various planting of indica hybrid rice methods.

3 討論

3.1不同播栽方式下雜交秈稻莖稈生長(zhǎng)和穗粒形成特點(diǎn)

莖稈是水稻植株的重要器官,除具有支撐、聯(lián)絡(luò)、輸導(dǎo)、光合和貯藏功能外,還有合理配置葉系,改善受光姿態(tài),提高光合效能的作用[18],與植株抗倒伏及產(chǎn)量有密切關(guān)系[19-21]。水稻生長(zhǎng)過(guò)程中,葉鞘、葉和節(jié)間相繼伸長(zhǎng)。拔節(jié)后的節(jié)間長(zhǎng)度一般隨節(jié)間序數(shù)的增加而增加,且栽培措施對(duì)稈長(zhǎng)有顯著影響[22]。莖稈節(jié)間發(fā)育經(jīng)歷組織分化、伸長(zhǎng)增粗和物質(zhì)充實(shí)三個(gè)時(shí)期,而伸長(zhǎng)增粗是同一時(shí)期完成[23]。本研究發(fā)現(xiàn),莖稈的伸長(zhǎng)存在一定規(guī)律,基部向上第1至第3伸長(zhǎng)節(jié)間長(zhǎng)度分別在抽穗前20 d、16 d、12 d后趨于穩(wěn)定,N5和N6則分別在抽穗前12 d和8 d開(kāi)始迅速伸長(zhǎng),以助力抽穗?;康?和第2伸長(zhǎng)節(jié)間形態(tài)與植株抗倒伏性密切相關(guān)[24],因此,生產(chǎn)上可根據(jù)不同播栽方式及品種的生育進(jìn)程,在抽穗前16 d前采取措施使基部第1、2節(jié)間降長(zhǎng)增粗以達(dá)到提高抗倒能力的目的。水稻基部伸長(zhǎng)節(jié)間過(guò)長(zhǎng)不利于抗倒伏[24],手插基部伸長(zhǎng)節(jié)間短而粗,而機(jī)直播基部節(jié)間較細(xì),機(jī)插基部節(jié)間較長(zhǎng),因而手插基部節(jié)間形態(tài)更利于抗倒伏。機(jī)插和機(jī)直播可通過(guò)適宜穴苗數(shù)栽插[16]、化控[25]及優(yōu)化養(yǎng)分管理等構(gòu)建合理的群體結(jié)構(gòu)實(shí)現(xiàn)高產(chǎn)與抗倒的協(xié)調(diào)。

表7不同播栽方式下雜交秈稻各生育時(shí)期氣象條件比較

Table 7. Comparison of the meteorologic conditions in growth stages of indica hybrid rice in different planting methods.

指標(biāo)Index播栽方式PM宜香優(yōu)2115Yixiangyou2115機(jī)直播MD機(jī)插MT手插HTF優(yōu)498Fyou498機(jī)直播MD機(jī)插MT手插HT≥10℃積溫播種-拔節(jié)期Seeding-jointing1518.71626.31603.11468.51583.21562.5Accumulated拔節(jié)-孕穗期Jointing-booting560.9732.8625.3508.4594.7483.4temperature孕穗-抽穗期Booting-heading372.1299.1270.4309.7320.9313.2above10℃抽穗-成熟期Heading-maturity1154.21050.61170.21077.41023.81091.0全生育期Wholegrowthduration3605.93708.83669.03364.03522.63450.1日照時(shí)數(shù)/h播種-拔節(jié)期Seeding-jointing223.5229.9226.4215.4226.4226.4Illumination拔節(jié)-孕穗期Jointing-booting71.1116.085.652.478.843.0hours孕穗-抽穗期Booting-heading76.644.763.463.070.269.6抽穗-成熟期Heading-maturity107.988.5103.7124.194.6117.6全生育期Wholegrowthduration479.1479.1479.1454.9470456.6

表8穗分化期氣象因子與穗莖生長(zhǎng)的關(guān)系(n=18)

Table 8. Relationship of meteorological factors with the growth traits of panicle and stem in panicle differentiation stage(n=18).

時(shí)段與氣象因子Periodandmeteorologicalfactors12DBH莖稈Culm長(zhǎng)Length干質(zhì)量DW穗Panicle長(zhǎng)Length干質(zhì)量DW抽穗期Maturity莖稈Culm長(zhǎng)Length干質(zhì)量DW穗Panicle長(zhǎng)Length干質(zhì)量DW抽穗前31-28d 最高氣溫AHT0.4480.768**-0.289-0.1020.2840.671**0.768**-0.089 最低氣溫ALT0.530*0.807**-0.347-0.1930.1090.653**0.892**-0.332 平均氣溫AT0.532*0.823**-0.265-0.1140.1880.653**0.863**-0.249 ≥10℃積溫ATA0.532*0.823**-0.265-0.1140.1880.653**0.863**-0.249 日照時(shí)數(shù)IH0.0640.0970.476*0.4240.310-0.051-0.1110.299抽穗前23-20d 最高氣溫AHT0.0750.378-0.713**-0.4110.1730.615**0.4600.067 最低氣溫ALT0.505*0.515*-0.029-0.2950.3370.3800.585*-0.270 平均氣溫AT0.492*0.752**-0.562*-0.529*0.4130.806**0.864**-0.170 ≥10℃積溫ATA0.492*0.752**-0.562*-0.529*0.4130.806**0.864**-0.170 日照時(shí)數(shù)IH-0.284-0.105-0.373-0.009-0.1250.106-0.1130.223抽穗前15-12d 最高氣溫AHT0.656**0.913**-0.235-0.2470.4200.750**0.953**-0.235 最低氣溫ALT0.1410.2630.1700.370-0.2110.0240.210-0.134平均氣溫AT0.668**0.816**-0.046-0.1920.3830.585*0.854**-0.300 ≥10℃積溫ATA0.668**0.816**-0.046-0.1920.3830.585*0.854**-0.300 日照時(shí)數(shù)IH0.600**0.867**-0.415-0.3850.3610.787**0.959**-0.263

AHT, Average highest temperature; ALT, Average lowest temperature; AT, Average temperature; ATA, Accumulated temperature above 10℃; IH, Illumination hours.

穗分化期穗與莖稈同步伸長(zhǎng),在生長(zhǎng)的同時(shí)競(jìng)爭(zhēng)著同化物。不同播栽方式穗分化期穗干質(zhì)量和穗莖干質(zhì)量比增長(zhǎng)趨勢(shì)一致,在穗分化始期至抽穗前16 d增長(zhǎng)緩慢,抽穗前12 d至抽穗期持續(xù)快速增長(zhǎng)。穗分化期穗、莖稈、葉片及葉鞘干質(zhì)量整體均呈上升趨勢(shì),但穗分化中后期莖稈和穗較葉片和葉鞘對(duì)同化物的需求更大,體現(xiàn)在前兩者干質(zhì)量占比增加而后兩者占比下降。孕穗后穗和莖稈生長(zhǎng)加速,二者物質(zhì)競(jìng)爭(zhēng)增大。王惠芝等[6]認(rèn)為,水稻進(jìn)入花粉母細(xì)胞形成期后,穗對(duì)于營(yíng)養(yǎng)物質(zhì)的競(jìng)爭(zhēng)能力大于莖稈,但也有研究認(rèn)為,穗分化期非結(jié)構(gòu)性碳水化合物的分配沒(méi)有向著利于幼穗生長(zhǎng)的方向進(jìn)行,但抽穗至成熟期莖鞘將絕大部分貯藏的同化物轉(zhuǎn)運(yùn)至穗部[17]。

穗與莖稈競(jìng)爭(zhēng)同化物的能力直接影響到穗粒形成,體現(xiàn)在穗莖干質(zhì)量比與多數(shù)枝梗和穎花性狀呈顯著或極顯著正相關(guān)。已有研究表明,抽穗前16 d至抽穗前8 d較高的幼穗非結(jié)構(gòu)性碳水化合物積累量是大穗形成的基礎(chǔ)[17]。Horie等[26]也認(rèn)為,抽穗前14 d到抽穗時(shí)的干物質(zhì)積累速率對(duì)產(chǎn)量影響較大,這一時(shí)期作物生長(zhǎng)速率更快則能積累更多的非結(jié)構(gòu)性碳水化合物,對(duì)于成穗率、千粒重都有關(guān)鍵的作用。在3種播栽方式均為雙本栽插的基礎(chǔ)上,機(jī)插穗分化中后期有較高的葉、葉鞘及莖稈干物質(zhì)積累量,穗莖干質(zhì)量比較高,且抽穗期穗干質(zhì)量顯著高于手插和機(jī)直播,因而有利于提高其枝梗和穎花分化數(shù),從而增加穗粒數(shù)。此外,機(jī)插拔節(jié)后群體生長(zhǎng)率及單莖和群體干物質(zhì)積累量較高,抽穗期葉面積指數(shù)較高,粒葉比高于機(jī)直播,較機(jī)直播更利于粒重的提高和穗長(zhǎng)及著粒數(shù)的增加。因而,從機(jī)械化播栽的角度考慮,機(jī)插的群體建成和產(chǎn)量潛力均優(yōu)于機(jī)直播。大穗型品種F優(yōu)498抽穗期穗干質(zhì)量顯著高于中穗型品種宜香優(yōu)2115,且穗分化后期穗莖干質(zhì)量比高于宜香優(yōu)2115,是其穗粒數(shù)較高[17]的重要原因,且F優(yōu)498穗部著粒較密,較大的葉面積指數(shù)及粒葉比利于其大穗的形成。而莖稈干物質(zhì)量對(duì)提高每穗穎花現(xiàn)存數(shù)有重要作用[11, 28],故在培育壯稈的基礎(chǔ)上提高穗分化期穗莖比是保證穗粒數(shù)及抽穗后物質(zhì)向穗部轉(zhuǎn)運(yùn)的基礎(chǔ),而F優(yōu)498較宜香優(yōu)2115更易獲得高產(chǎn)。

3.2不同播栽方式下雜交秈稻穗莖生長(zhǎng)與氣象因子的關(guān)系

不同播栽方式生育進(jìn)程不同,機(jī)插因栽插秧苗低位分蘗缺失[14]且機(jī)械植傷大、返青期較長(zhǎng)致其孕穗前生育進(jìn)程緩慢,機(jī)直播則無(wú)移栽和返青期,較早適應(yīng)大田環(huán)境而生育進(jìn)程較快,全生育期縮短;而機(jī)插生育期相對(duì)延長(zhǎng),在選擇前后茬時(shí)應(yīng)作考慮。生育進(jìn)程的不同使不同播栽方式穗分化經(jīng)歷的溫光條件有差異。而每完成一個(gè)幼穗分化階段,都需要一定的積溫[27],且機(jī)插穗分化期歷時(shí)較長(zhǎng),穗分化期積溫和日照時(shí)數(shù)較高,為穗粒形成提供了較好的溫光條件。本研究發(fā)現(xiàn),抽穗前31~28 d、抽穗前23~20 d以及抽穗前15~12 d是氣象因子對(duì)穗莖生長(zhǎng)影響較大的時(shí)段,莖稈長(zhǎng)度和干質(zhì)量及穗長(zhǎng)受影響較大,但穗干質(zhì)量與氣象因子相關(guān)不大。而孕穗前適宜的溫度和一定的積溫有利于莖稈和幼穗伸長(zhǎng)及莖稈的物質(zhì)充實(shí)。前人研究認(rèn)為穗分化期溫度與穗粒形成有密切關(guān)系[29-32]。穗分化期高溫會(huì)使穗部物質(zhì)代謝紊亂從而不利于穎花分化[29-31]。夜間高溫則會(huì)縮短早稻的始穗期,減少穎花分化[32]。婁偉平[3]等認(rèn)為適宜形成大穗的最高溫度為30.1℃。穗分化期低溫也會(huì)降低每穗枝梗和穎花的分化數(shù)[4,33]。而穗分化期光照虧缺會(huì)抑制花前物質(zhì)的積累、運(yùn)轉(zhuǎn)率及對(duì)籽粒貢獻(xiàn)率,也會(huì)使穗粒數(shù)降低[34]。但遺傳因素還是控制穗粒形成數(shù)的主要因素,栽培上可通過(guò)適時(shí)曬田、合理的栽植密度等培育壯稈,整合并參考地方多年氣象資料,調(diào)節(jié)播期以使穗分化期避開(kāi)高溫和降雨較大時(shí)段,或在孕穗前遇高溫可采取干濕交替灌溉等降溫措施,而遇低溫則可保持一定水層以保持葉溫[35];此外,還要注重穗肥施用以增強(qiáng)穗部物質(zhì)積累,提高穗分化期穗莖比,從而實(shí)現(xiàn)增粒增產(chǎn)。

莖稈的伸長(zhǎng)存在一定規(guī)律,基部向上第1至第3伸長(zhǎng)節(jié)間長(zhǎng)度分別在抽穗前20 d、16 d、12 d后趨于穩(wěn)定,基部第1、2節(jié)間的降長(zhǎng)增粗應(yīng)在抽穗前16 d之前;手插基部伸長(zhǎng)節(jié)間相對(duì)短而粗更利于抗倒伏。穗分化中后期莖稈和穗較葉和葉鞘對(duì)同化物的需求更大,孕穗后穗和莖稈生長(zhǎng)加速,物質(zhì)競(jìng)爭(zhēng)加大。穗與莖稈競(jìng)爭(zhēng)同化物的能力直接影響到穗粒形成,機(jī)插抽穗前12 d至抽穗期穗莖干質(zhì)量比較高,有利于提高其穗粒數(shù)。機(jī)插拔節(jié)后群體生長(zhǎng)率及干物質(zhì)積累量較高,抽穗期葉面積指數(shù)較高,粒葉比高于機(jī)直播,較機(jī)直播更利于粒重的提高和穗長(zhǎng)及著粒數(shù)的增加。不同播栽方式生育進(jìn)程不同,機(jī)插穗分化期歷時(shí)較長(zhǎng),穗分化期積溫和光照時(shí)數(shù)較高;莖稈長(zhǎng)度和干質(zhì)量及穗長(zhǎng)受氣象因子影響較大,孕穗前適宜的溫度和一定的積溫有利于莖稈和幼穗伸長(zhǎng)及莖稈的物質(zhì)充實(shí)。生產(chǎn)上應(yīng)結(jié)合不同播栽方式和品種的生育進(jìn)程差異及莖稈和幼穗生長(zhǎng)特點(diǎn),在培育壯稈的基礎(chǔ)上提高穗莖比以保障穗粒數(shù)。

[1]丁穎, 李乃銘, 徐雪賓. 水稻幼穗發(fā)育和谷粒充實(shí)過(guò)程的觀察. 農(nóng)業(yè)學(xué)報(bào), 1959, (10): 59-85.

Ding Y, Li N M, Xu X B. Observation of panicle development and courses of gain of rice.AgricSci, 1959, (10): 59-85. (in Chinese with English abstract)

[2]劉利, 雷小龍, 王麗, 等.種植方式對(duì)雜交稻枝梗和穎花分化及退化的影響. 作物學(xué)報(bào), 2013, 39(8): 1434-1444.

Liu L, Lei X L, Wang L, et al.Effect of planting method on differentiation and retrogression of branches and spikelets of hybrid rice cultivar.ActaAgronSin, 2013, 39(8): 1434-1444. (in Chinese with English abstract)

[3]婁偉平, 孫永飛, 張寒, 等. 溫度對(duì)每穗穎花數(shù)的影響. 浙江農(nóng)業(yè)學(xué)報(bào), 2005, 17(2): 101-105.

Lou W P, Sun Y F, Zhang H, et al. Effects of temperatures on spikelets per panicle of rice.ActaAgricZhejiangensis, 2005, 17(2): 101-105. (in Chinese with English abstract)

[4]曾研華, 張玉屏, 向鏡, 等. 秈型常規(guī)早稻穗分化期低溫對(duì)穎花形成和籽粒充實(shí)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(7): 2007-2014.

Zeng Y H, Zhang Y P, Xiang J, et al. Effects of low temperature on formation of spikelets and grain filling of indica inbred rice during panicle initiation in early-season.ChinJApplEcol, 2015, 26(7): 2007-2014. (in Chinese with English abstract)

[5]李剛?cè)A, 王惠芝, 王紹華, 等. 穗肥對(duì)水稻穗分化期碳氮代謝及穎花數(shù)的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 33(1): 1-5.

Li G H, Wang H Z, Wang S H, et al. Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle.JNanjingAgricUniv, 2010, 33(1): 1-5. (in Chinese with English abstract)

[6]王惠芝, 尤娟, 王紹華, 等. 遲熟中粳稻穗莖生長(zhǎng)與每穗穎花數(shù)的關(guān)系. 作物學(xué)報(bào), 2007, 33(5): 820-825.

Wang H Z, You J, Wang S H, et al. Relationship between panicle and stem growth and spikelets per panicle in late-maturing medium japoncia rice.ActaAgronSin, 2007, 33(5): 820-825. (in Chinese with English abstract)

[7]楊世民, 謝力, 鄭順林, 等. 氮肥水平和栽插密度對(duì)雜交稻莖稈理化特性與抗倒伏性的影響. 作物學(xué)報(bào),2009, 35(1): 93-103.

Yang S M, Xie L, Zheng S L, et al. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice.ActaAgronSin, 2009, 35(1): 93-103. (in Chinese with English abstract)

[8]李國(guó)輝, 鐘旭華, 田卡, 等. 施氮對(duì)水稻莖稈抗倒伏能力的影響及其形態(tài)和力學(xué)機(jī)理. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(7): 1323-1334.

Li G H, Zhong X H, Tian K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms.SciAgricSin, 2013, 46(7): 1323-1334. (in Chinese with English abstract)

[9]陳小榮, 鐘蕾, 賀曉鵬, 等. 稻穗枝梗和穎花形成的基因型及播期效應(yīng)分析. 中國(guó)水稻科學(xué), 2006, 20(4): 424-428.

Chen X R, Zhong L, He X P, et al. Effects of genotype and seeding-date on formation of branches and spikelets in rice panicle.ChinJRiceSci, 2006, 20(4): 424-428. (in Chinese with English abstract)

[10]曾研華, 張玉屏, 王亞梁, 等. 秈粳雜交稻枝梗和穎花形成的播期效應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(7): 1300-1310.

Zeng Y H, Zhang Y P, Wang Y L, et al. Effect of sowing date on formation of branches and spikelets in indica japonica hybrid rice.SciAgricSin, 2015, 48(7): 1300-1310. (in Chinese with English abstract)

[11]凌啟鴻. 水稻莖稈維管束數(shù)與穗部性狀關(guān)系及其應(yīng)用的研究. 江蘇農(nóng)學(xué)院學(xué)報(bào), 1982, (3): 48-58.

Ling Q H. The relationship between the number of macro-vascular bundles in culm and the panicle characters in rice plant and its application.JJiangsuAgricColl, 1982,(3): 48-58. (in Chinese with English abstract)

[12]蘇祖芳. 水稻單莖莖鞘重與產(chǎn)量形成關(guān)系及其高產(chǎn)栽培途徑的探討. 江蘇農(nóng)學(xué)院學(xué)報(bào), 1993, 14(1): 37-39.

Sun Z F. Discussion on the relationship between the culm-sheath weight per shoot and yield in rice and its cultural approaches of high yield.AcadJJiangsuAgricColl, 1993, 14(1): 37-39. (in Chinese with English abstract)

[13] Takai T,Matsuura S, Nisiho T, et al.Rice yield potenital is closely related to crop growth rate duirng late reproductive peirod.FieldCropsRes,2006,96:328-335.

[14]雷小龍, 劉利, 劉波, 等. 雜交秈稻機(jī)械化種植的分蘗特性. 作物學(xué)報(bào), 2014, 40(6): 104-1055.

Lei X L, Liu L, Liu B, et al. Tillering characteristics of indica hybrid rice under mechanized planting.ActaAgronSin, 2014, 40(6): 104-1055. (in Chinese with English abstract)

[15]劉利, 雷小龍, 黃光忠, 等. 機(jī)械化播栽對(duì)雜交稻氮素積累分配及碳氮比的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2014, 20(4): 831-844.

Liu L, Lei X L, Huang G Z, et al.Influences of mechanical sowing and transplanting on nitrogen accumulation, distribution and C/N of hybrid rice cultivars.JPlantNutrFert, 2014, 20(4): 831-844. (in Chinese with English abstract)

[16]雷小龍, 劉利, 茍文, 等.種植方式對(duì)雜交秈稻植株抗倒伏特性的影響. 作物學(xué)報(bào), 2013, 39(10): 1814-1825.

Lei X L, Liu L, Gou w, et al.Effects of planting methods on culm lodging resistance ofindicahybrid rjce(OryzasativaL.).ActaAgronSin, 2013, 39(10): 1814-1825. (in Chinese with English abstract)

[17]田青蘭, 劉波, 鐘曉媛, 等. 不同播栽方式下雜交秈稻非結(jié)構(gòu)性碳水化合物與枝梗和穎花形成及產(chǎn)量性狀的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(1): 35-53.

Tian Q L, Liu B, Zhong X Y, et al. Relationship of NSC with the formation of branches and spikelets and the yield traits ofindicahybrid rice in different planting methods.SciAgricSin, 2016, 49(1): 35-53. (in Chinese with English abstract)

[18]馮永祥, 徐正進(jìn), 王聰. 水稻株型的研究進(jìn)展. 內(nèi)蒙古民族大學(xué)學(xué)報(bào):自然科學(xué)版, 2003, 18(3): 260-264.

Feng Y X, Xu Z J, Wang C. Advance on research of rice plant type.JInnerMonUniv, 2003, 18(3): 260-264. (in Chinese with English abstract)

[19]艾志勇, 馬國(guó)輝. 超高產(chǎn)雜交稻莖稈特征與抗倒性關(guān)系研究. 雜交水稻, 2010, 25(6): 65-69.

Ai Z Y, Ma G H. Studies on relationship between culm characteristics and lodging resistance of super-high-yield hybrid rice.HybridRice, 2010, 25(6): 65-69. (in Chinese with English abstract)

[20]馬均, 馬文波, 田彥華, 等. 重穗型水稻植株抗倒伏能力的研究. 作物學(xué)報(bào), 2004, 30(2): 143-148.

Ma J, Ma W B, Tian Y H, et al.The culm lodging resistance of heavy panicle type of rice.ActaAgronSin, 2004, 30(2): 143-148. (in Chinese with English abstract)

[21]吳曉然, 張巫軍, 伍龍梅, 等. 超級(jí)雜交秈稻抗倒能力比較及其對(duì)氮素的響應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(14): 2705-2717.

Wu X R, Zhang W J, Wu L M, et al, Tang S, Ding C Q, Zhang S H, Ding Y F. Characteristics of lodging resistance of super-hybridindicarice and its response to nitrogen.SciAgricSin, 2015, 48(14): 2705-2717. (in Chinese with English abstract)

[22]龔振平. 不同營(yíng)養(yǎng)水平水稻株高及構(gòu)成變化的研究. 黑龍江農(nóng)業(yè)科學(xué), 1997, 19(6): 18-20.

Gong Z P. Plant height and its constitutive variation the conditions of different fertilities in rice.HeilongjiangAgricSci, 1997, 19(6): 18-20.(in Chinese with English abstract)

[23]凌啟鴻, 張洪程, 蘇祖芳, 等. 稻作新理論——水稻葉齡模式. 北京: 科學(xué)出版社, 1994:19-82.

Ling Q H, Zhang H C, Su Z F, et al. New Theory of Rice—Rice Leaf Age Model. Beijing: Science Press, 1994, 19-82. (in Chinese with English abstract)

[24]楊惠杰, 房賢濤, 何花榕, 等. 福建超級(jí)稻品種莖稈結(jié)構(gòu)特征及其與抗倒性和產(chǎn)量的關(guān)系. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(7): 909-913.

Yang H J, Fang X T, He H R, et al.Relationship of characteristics of culm construction to lodging resistance and yield of Fujian-bred super-rice cultivars.ChinJEco-Agric, 2012, 20(7): 909-913. (in Chinese with English abstract)

[25]趙黎明, 蕭長(zhǎng)亮, 顧春梅, 等.植物生長(zhǎng)調(diào)節(jié)劑在水稻倒伏上的研究進(jìn)展. 北方水稻, 2009, 39(3): 114-117.

Zhao L M, Xiao C L, Gu C M, et al.Research advantage of plant growth regulation on lodging rice.NorthRice, 2009, 39(3): 114-117. (in Chinese with English abstract)

[26] Horie T, Shiraiwa T, Homma K, et al.Can yields of lowland rice resume the increases that they showed in the 1980s?PlantProdSci, 2005,8(3): 259-274.

[27]王亞梁, 張玉屏, 曾研華, 等. 水稻穗形成期高溫影響的研究進(jìn)展. 浙江農(nóng)業(yè)科學(xué), 2014(11): 1681-1685.

Wang Y L, Zhang Y P, Zeng Y H, et al. Research progress of effect of high temperature on rice panicle formation stage,ZhejiangAgricSci, 2014(11): 1681-1685. (in Chinese with English abstract)

[28]姚有禮, 王余龍, 蔡建中. 水稻大穗形成機(jī)理的研究(3)品種間每穗穎花現(xiàn)存數(shù)與穎花分化和抽穗期物質(zhì)生產(chǎn)的關(guān)系. 江蘇農(nóng)學(xué)院學(xué)報(bào), 1995, 16(2): 11-16.

Yao Y L, Wang Y L, Cai J Z. Formation of large panicle in rice (3) varietal difference of survived spikelet number per panicle and its relations with differentiated spikelet number and biomass at heading.AcadJJiangsuAgricColl, 1995, 16(2): 11-16. (in Chinese with English abstract)

[29] Yao Y, Yamamoto Y, Yoshida T, et al. Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles.SoilSciPlantNutr, 2000, 46(3): 631-641.

[30]張順堂, 張桂蓮, 陳立云, 等. 高溫脅迫對(duì)水稻劍葉凈光合速率和葉綠素?zé)晒鈪?shù)的影響. 中國(guó)水稻科學(xué), 2011, 25(3): 335-338.

Zhang S T, Zhang G L, Chen L Y, et al.Effects of high temperature stress on net photosynthetic rate and chlorophyll fluorescence parameters of flag leaf in rice.ChinJRiceSci, 2011, 25(3): 335-338. (in Chinese with English abstract)

[31]張桂蓮, 陳立云, 張順堂, 等. 高溫脅迫對(duì)水稻劍葉保護(hù)酶活性和膜透性的影響. 作物學(xué)報(bào), 2006, 36(9): 1306-1310.

Zhang G L, Chen L Y, Zhang S T, et al.Effect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice.ActaAgronSin, 2006, 36(9): 1306-1310. (in Chinese with English abstract)

[32]魏金連, 潘曉華. 夜間溫度升高對(duì)早稻生長(zhǎng)發(fā)育及產(chǎn)量的影響. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2008, 30(3): 428-432.

PAN J L, Pan X H. Effects of night temperature increase on growth and yield of early season rice.ActaAgricUnivJiangxiensis, 2008, 30(3): 428-432. (in Chinese with English abstract)

[33]耿立清, 王嘉宇, 陳溫福. 孕穗-灌漿期低溫對(duì)水稻穗部性狀的影響. 華北農(nóng)學(xué)報(bào), 2009, 24(3): 107-111.

Geng L Q, Wang J Y, Chen W F. Effect of low temperature on panicle characters of rice during booting and grain filling period.ActaAgricBoreali-Sin, 2009, 24(3): 107-111. (in Chinese with English abstract)

[34]楊東, 段留生, 謝華安, 等. 花前光照虧缺對(duì)水稻物質(zhì)積累及生理特性的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2011, 19(2): 347-352.

Yang D, Duan L S, Xie H A, Li Z H, Huang T X. Effect of pre-flowering light deficiency on biomass accumulation and physiological characteristics of rice.ChinJEco-Agric, 2011, 19(2): 347-352. (in Chinese with English abstract)

[35]譚孟祥, 景元書(shū), 薛楊, 等. 水層深度對(duì)早稻有穗分化期遭遇低溫過(guò)程時(shí)葉片生理特性的影響. 中國(guó)農(nóng)業(yè)氣象, 2015, 36(5): 553-560.

Tan M X, Jing Y S, Xue Y, et al. Effects of different water depth on leaf physiological characteristics of early rice during panicle primordium suffered to low temperature.ChinJAgrometeorol,2015, 36(5): 553-560. (in Chinese with English abstract)

Characteristics of Stem Growth and Formation of Grain of indica Hybrid Rice in Different Planting Methods and Their Correlation with Meteorological Factors

TIAN Qing-lan1, LIU Bo1, SUN Hong1, HE Sha2, ZHONG Xiao-yuan1, ZHAO Min1, REN Wan-jun1,*

(1College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest China / Institute of Ecological Agriculture, Sichuan Agricultural University, Wenjiang 611130, China;2Pixian Meteorological Bureau, Pixian 611730, China;*Corresponding author, E-mail: rwjun@126.com)

The objective of this study is to explore the growth pattern and differences of stem and panicle ofindicahybrid rice under various planting methods in panicle differentiation stage, and to investigate the effects of planting methods on grain formation. A split plot experiment was carried out in 2014 with two factors, including variety (Yixiangyou 2115 and F you 498) and planting method (mechanized direct-seeding, MD; mechanized transplanting, MT; hand transplanting, HT).The Growth pattern of stem and panicle, the formation characteristics of grain were researched, and the relationship between meteorological factors in panicle differentiation stage and the growth of stem and panicle were analyzed. The results were as follows: 1) Length of first to third elongated internodes from the base stablized 20 d, 16 d and 12 d before heading,respectively, indicating that reducing length and increasing roughness of basal first and second internodes should be done 16 d before heading. Dry panicle weight and ratio of panicle to stem increased rapidly 12 d before heading. 2) Dry weight ratio of panicle to stem was significantly positively correlated with rachis branches and spiketets from 16 d before heading to heading date. The ability that panicle competing assimilates with stem directly affected the formation of grain. 3) MT had higher dry weight ratio of panicle to stem in middle and late differentiation stage of panicle, MT also had higher dry matter accumulation of panicle than MD and HT in heading stage. So MT had an advantage in the number of grains. MT also had higher crop growth rate of population and higher dry matter accumulation per stem and population than MD and HT after jointing. MT also had higher leaf area index in heading, and its grain leaf ratio was higher than MD, so MT contributed to more grains and spikelets, longer panicle length. F you 498 with large panicle had higher dry matter weight of panicle in heading than Yixiangyou 2115 with middle panicle, and it had higher dry matter weight ratio of panicle to stem than Yixiangyou 2115, these were the important reason for that F you 498 had higher number of grains. Denser grain of F you 498 compared to Yixiangyou 2115 resulted from its larger leaf area index and grain to leaf ratio.4) MT had the longest growth duration,while MD had the shortest. MT had a longer panicle differentiation stage, higher accumulated temperature and illumination hours, providing a good temperature and light condition for the formation of grain in MT. Length and dry weight of stem and length of panicle were greatly influenced by meteorological factors. Suitable temperature and a certain amount of accumulated temperature before booting was conducive to the elongation of stem and panicle and filling of stem. Given the differences in growth under different planting methods and of varieties, we should take measures to regulate growth of stem and panicle and the distribution of assimilates in an appropriate time. In order to achieve the goal of increasing grain yield, the dry weight ratio of panicle to stem should be increased on the basis of cultivating strong stalk.

rice; panicle; stem; formation of grain; mechanized transplanting; mechanized direct-seeding; meteorological factors.

2016-01-26; 修改稿收到日期: 2016-05-14。

國(guó)家糧食豐產(chǎn)科技工程資助項(xiàng)目(2013BAD07B13-02, 2011BAD16B05); 國(guó)家公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201303102)。

S511.01

A

1001-7216(2016)05-0507-18

田青蘭, 劉波, 孫紅, 等. 不同播栽方式下雜交秈稻莖稈生長(zhǎng)和穗粒形成特點(diǎn)及與氣象因子的關(guān)系. 中國(guó)水稻科學(xué), 2016, 30(5): 507-524.

猜你喜歡
穎花枝梗秈稻
GLOBAL SOLUTIONS TO 1D COMPRESSIBLE NAVIER-STOKES/ALLEN-CAHN SYSTEM WITH DENSITY-DEPENDENT VISCOSITY AND FREE-BOUNDARY*
二氧化碳濃度對(duì)不育系和可育系水稻穎花關(guān)閉的影響
從稻名演變看秈稻的起源
2021年無(wú)為市優(yōu)質(zhì)中秈稻品種比較試驗(yàn)
增密減氮對(duì)不同類(lèi)型水稻品種穎花形成的影響
作物雜志(2022年6期)2022-02-03 04:56:22
播期對(duì)機(jī)插雜交秈稻不同莖蘗部位稻穗枝梗數(shù)和穎花數(shù)的影響
粳稻鹽粳188 航天誘變后代穗部性狀多樣性及相關(guān)性分析
北方水稻(2021年2期)2021-04-26 08:25:56
三個(gè)寒地水稻品種株高與穎花數(shù)的相關(guān)分析
北方水稻(2021年6期)2021-02-17 07:17:50
不同穗型粳稻品種(系)稻曲病粒在穗內(nèi)粒位上的分布
氮肥用量對(duì)水稻不同穗位與粒位籽粒灌漿速率的影響
新密市| 固镇县| 都匀市| 辽阳市| 平定县| 三门县| 南郑县| 兴业县| 凤凰县| 康乐县| 梁山县| 石楼县| 衡东县| 个旧市| 贡山| 桓仁| 彭水| 定州市| 安丘市| 项城市| 胶南市| 巴东县| 金华市| 平安县| 寻甸| 台江县| 堆龙德庆县| 盐池县| 天峨县| 勃利县| 积石山| 小金县| 防城港市| 闽清县| 禄丰县| 瓦房店市| 昭平县| 金塔县| 定兴县| 车致| 娄烦县|