国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

低氧環(huán)境對(duì)臍帶間充質(zhì)干細(xì)胞相關(guān)細(xì)胞因子表達(dá)的影響

2016-11-09 02:27張沖徐敏毛成剛錫洪敏聶娜娜高宏李自普
中國醫(yī)藥生物技術(shù) 2016年5期
關(guān)鍵詞:充質(zhì)臍帶低氧

張沖,徐敏,毛成剛,錫洪敏,聶娜娜,高宏,李自普

低氧環(huán)境對(duì)臍帶間充質(zhì)干細(xì)胞相關(guān)細(xì)胞因子表達(dá)的影響

張沖,徐敏,毛成剛,錫洪敏,聶娜娜,高宏,李自普

目的 觀察低氧環(huán)境對(duì)人臍帶間充質(zhì)干細(xì)胞(hUCMSCs)分泌血管內(nèi)皮生長(zhǎng)因子(VEGF)、肝細(xì)胞生長(zhǎng)因子(HGF)、堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)、基質(zhì)衍生因子-1(SDF-1)、干細(xì)胞因子(SCF)、胰島素樣生長(zhǎng)因子(IGF-1)和粒細(xì)胞集落刺激因子(G-CSF)表達(dá)的影響。

方法 將第 3 代 hUCMSCs 分別置于 20% O2(常氧組)和 5% O2(低氧組)環(huán)境中培養(yǎng),于 8、24、32、48、56、72 h ELISA 法檢測(cè)培養(yǎng)前及培養(yǎng)后上清液中 HGF、IGF-1、SDF-1、VEGF、bFGF、SCF、G-CSF 的濃度。

結(jié)果 低氧組培養(yǎng)上清液中 HGF、SDF-1、SCF、G-CSF 的濃度于培養(yǎng)后 72 h 明顯高于常氧組(P < 0.05);VEGF 的濃度于培養(yǎng)后 56 h 明顯高于常氧組(P < 0.05);bFGF 濃度于培養(yǎng)后 32 h 明顯高于常氧組(P < 0.05);IGF-1 濃度在培養(yǎng)后較常氧組無明顯變化(P > 0.05)。

結(jié)論 臍帶間充質(zhì)干細(xì)胞培養(yǎng)后可持續(xù)表達(dá)細(xì)胞因子VEGF、HGF、IGF、bFGF、SCF、SDF-1 和 G-CSF,且 5%低氧培養(yǎng)環(huán)境可促進(jìn) VEGF、HGF、bFGF、SCF、SDF-1 和G-CSF 的表達(dá),但對(duì) IGF-1 表達(dá)無影響。

間質(zhì)干細(xì)胞; 細(xì)胞低氧; 干細(xì)胞因子

www.cmbp.net.cn 中國醫(yī)藥生物技術(shù), 2016, 11(5):437-440

人臍帶間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells,hUCMSCs)存在于臍帶沃頓膠和血管周圍組織,較其他間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)具有更強(qiáng)的增殖分化能力、HLA-I 表達(dá)和神經(jīng)誘導(dǎo)分化能力,且免疫功能低,無異體排斥反應(yīng)。同時(shí)還具有來源廣泛,取材方便,便于保存及運(yùn)輸,對(duì)供體無影響、無倫理爭(zhēng)議等優(yōu)點(diǎn),因此具有更為廣闊的應(yīng)用前景。MSCs 可分泌血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)、基質(zhì)衍生因子-1(stromal cell derived factor-1,SDF-1)等多種細(xì)胞因子,參與細(xì)胞遷移募集,促進(jìn)血管生成,改善臟器功能。然而,目前大多體外細(xì)胞培養(yǎng)在常氧環(huán)境下進(jìn)行,與體內(nèi)生理或病理狀態(tài)下的低氧狀態(tài)相差甚遠(yuǎn)。本研究通過觀察常氧和低氧環(huán)境下hUCMSCs 多種細(xì)胞因子分泌的變化,旨在探討低氧環(huán)境對(duì) hUCMSCs 細(xì)胞因子分泌能力的影響。

1 材料與方法

1.1 材料

人臍血間充質(zhì)干細(xì)胞由青島大學(xué)醫(yī)學(xué)院附屬醫(yī)院干細(xì)胞中心提供,產(chǎn)婦及家屬同意用于科學(xué)研究。實(shí)驗(yàn)用間充質(zhì)干細(xì)胞均經(jīng)過微生物檢測(cè)及流式細(xì)胞儀檢測(cè),細(xì)胞表型符合間充質(zhì)干細(xì)胞的表型特征:CD34(-),CD45(-),CD90(+),CD105(+),HLA-DR(-)。微生物檢測(cè):支原體檢測(cè)陰性,乙型肝炎病毒陰性,丙型肝炎病毒陰性,梅毒螺旋體陰性,巨細(xì)胞病毒陰性,HIV 陰性,需氧菌培養(yǎng)陰性,真菌培養(yǎng)陰性。

1.2 方法

將第 3 代的 hUCMSCs 按照 1 × 104個(gè)/cm2接種 6 孔培養(yǎng)板,每孔加入培養(yǎng)基 2 ml(DMEM培養(yǎng)基 + 10% FBS),并將其分為 2 組,正常氧濃度組(20% O2、5% CO2、75% N2,簡(jiǎn)稱常氧組);低氧濃度組(5% O2、5% CO2、90% N2,簡(jiǎn)稱低氧組)。將常氧組各培養(yǎng)板放入 20% O2濃度的培養(yǎng)箱中,低氧組各培養(yǎng)板放入 5% O2濃度的三氣培養(yǎng)箱中培養(yǎng),分別于培養(yǎng)后第 8、24、32、48、56、72 小時(shí)取相應(yīng)培養(yǎng)孔的上清液,離心。應(yīng)用 ELISA法檢測(cè)上清液中各細(xì)胞因子的濃度。

1.3 統(tǒng)計(jì)學(xué)處理

2 結(jié)果

兩組 hUCMSCs 在不同培養(yǎng)時(shí)間 VEGF、SDF-1、肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)、堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF)、胰島素樣生長(zhǎng)因子-1(insulin-like growth factor-1,IGF-1)、干細(xì)胞因子(stem cell factor,SCF)、粒細(xì)胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)的表達(dá)水平見表 l。與常氧組比較,低氧組中 HGF、G-CSF 濃度于 72 h 開始明顯高于常氧組,VEGF濃度于 56 h 開始明顯高于常氧組,bFGF 濃度于32 h 開始明顯高于常氧組,且差異均有統(tǒng)計(jì)學(xué)意義(P < 0.05)。SDF-1 濃度于培養(yǎng)開始 8 h 較常氧組明顯減低(P < 0.05),后隨培養(yǎng)時(shí)間延長(zhǎng)逐漸升高,并于 72 h 明顯高于常氧組(P < 0.05)。SCF 濃度于 8、24、32 h 明顯低于常氧組(P 均 < 0.01),后隨時(shí)間延長(zhǎng)逐漸升高,并于 72 h 明顯高于常氧組(P < 0.05)。IGF-1 濃度則較常氧組無明顯變化(P > 0.05)。

3 討論

目前,基于間充質(zhì)干細(xì)胞的替代治療及組織工程等方面已經(jīng)做了大量實(shí)驗(yàn)研究和臨床試驗(yàn)。間充質(zhì)干細(xì)胞的旁分泌作用越來越受到研究者的重視。Ye 等[1]報(bào)道間充質(zhì)干細(xì)胞可以分泌多種細(xì)胞因子及調(diào)節(jié)肽等,至少包括 34 種蛋白質(zhì)。大量研究證實(shí)這些因子參與細(xì)胞的存活凋亡、營養(yǎng)代謝、增殖分化、遷移歸巢,有利于促進(jìn)血管的生成、組織修復(fù)、改善心臟功能[2-6]。Tang 等[7]將 MSCs 注入大鼠心肌梗死邊緣區(qū),2 周后發(fā)現(xiàn) VEGF、bFGF、SDF-1 表達(dá)明顯升高,且提高了左室收縮功能,而Bax 表達(dá)明顯下降。從而提示 MSCs 可以通過旁分泌作用抑制心肌細(xì)胞凋亡,促進(jìn)血管生成,改善心功能。隨著研究的深入,人們發(fā)現(xiàn) MSCs 的旁分泌與受損部位的低氧環(huán)境密切相關(guān)。

機(jī)體正常和受損組織均處于低氧環(huán)境,MSCs移植后也處于低氧微環(huán)境中,因此研究低氧條件對(duì)MSCs 旁分泌作用的影響具有重要意義。國內(nèi)外學(xué)者均已提出低氧可以作為誘導(dǎo)因素,刺激 MSCs的分泌,如 VEGF、HGF、SDF-1 等,但也有少數(shù)研究者得出不同結(jié)論。Wairiuko 等[8]提出體外低氧應(yīng)激情況下,能激活 MSCs 的分泌活性,顯著促進(jìn) VEGF 和 bFGF 的釋放。Rosova 等[9]對(duì) MSCs進(jìn)行低氧預(yù)處理后發(fā)現(xiàn)培養(yǎng)基中 HGF 釋放明顯增加。Liu 等[10]于體外 3% O2濃度下培養(yǎng)BMSCs,發(fā)現(xiàn) 24、36、48 h 其分泌的 SDF-1 及其表面受體 CXCR4 均較常氧環(huán)境明顯升高,但Jing 等[11]的研究結(jié)果則與其相反。L?nne 等[12]于2.5% 的 O2環(huán)境下培養(yǎng)臍帶間充質(zhì)干細(xì)胞 3 d,結(jié)果發(fā)現(xiàn) VEGF、IGF、SCF 明顯增加,但 bFGF 較對(duì)照組無明顯變化。本實(shí)驗(yàn)將臍帶間充質(zhì)干細(xì)胞分別置于 20% O2、5% O2環(huán)境下進(jìn)行培養(yǎng),于 8、24、32、48、56、72 h 動(dòng)態(tài)檢測(cè)培養(yǎng)基上清液中各生長(zhǎng)因子的濃度,發(fā)現(xiàn)臍帶間充質(zhì)干細(xì)胞可持續(xù)表達(dá) HGF、SDF-1、SCF、G-CSF、VEGF、bFGF、IGF-1 多種細(xì)胞因子。低氧組 HGF、SDF-1、SCF、G-CSF、VEGF、bFGF 濃度隨培養(yǎng)時(shí)間逐漸升高,并明顯高于常氧組,提示低氧促進(jìn)臍帶間充質(zhì)干細(xì)胞 VEGF、bFGF、HGF、SDF-1、SCF、G-CSF 的分泌。但 IGF 濃度則無明顯變化,考慮此結(jié)果與既往文獻(xiàn)報(bào)道有所差異,原因可能為:① IGF-1 對(duì)低氧環(huán)境的敏感性低,此次低氧預(yù)處理的氧濃度未能達(dá)到其有效刺激濃度。②培養(yǎng)時(shí)間較短,培養(yǎng)液中游離的 IGF-1 太少,仍需進(jìn)一步研究。此外本實(shí)驗(yàn)還發(fā)現(xiàn)低氧環(huán)境下,細(xì)胞培養(yǎng)早期 VEGF、HGF、SDF-1、SCF、G-CSF 濃度較常氧環(huán)境低,后隨時(shí)間推移逐漸升高,并分別于不同時(shí)間點(diǎn)高于常氧組,提示臍帶間充質(zhì)干細(xì)胞對(duì)低氧刺激需要一定的適應(yīng)及反應(yīng)時(shí)間。

表 1 低氧組和常氧組 hUCMSCs 細(xì)胞因子的表達(dá)()Table 1 The concentrations between hypoxia group and normoxia group ()

表 1 低氧組和常氧組 hUCMSCs 細(xì)胞因子的表達(dá)()Table 1 The concentrations between hypoxia group and normoxia group ()

注:與常氧組相比,aP < 0.05,bP < 0.01。Note: Compared with normoxia group,aP < 0.05,bP < 0.01.

時(shí)間(h) Time (h)8 24 32 48 56 72 VEGF(pg/ml)常氧組 Normoxia group 970.2 ± 114.2 953.8 ± 191.2 884.0 ± 135.2 884.2 ± 150.0 865.2 ± 67.2 836.4 ± 86.8低氧組 Hypoxia group 914.8 ± 142.0 919.4 ± 86.8 957.4 ± 59.9 972.8 ± 48.7 1007.4 ± 86.4a1079.5 ± 87.0bHGF(ng/L)常氧組 Normoxia group 1400.5 ± 125.6 1398.4 ± 95.4 1320.0 ± 140.6 1302.2 ± 180.6 1299.8 ± 107.5 1216.9 ± 62.0低氧組 Hypoxia group 1276.5 ± 162.0 1298.7 ± 126.8 1302.0 ± 76.6 1342.5 ± 88.0 1365.8 ± 95.2 1383.9 ± 87.0aSDF-1(ng/L)常氧組 Normoxia group 1301.5 ± 139.0 1162.4 ± 150.4 1246.6 ± 89.8 1230.8 ± 140.5 1227.5 ± 176.9 1142.8 ± 96.6低氧組 Hypoxia group 1078.0 ± 191.0a1001.4 ± 186.8 1111.0 ± 158.0 1091.4 ± 207.0 1147.2 ± 323.4 1309.0 ± 148.4abFGF(pg/ml)常氧組 Normoxia group 80.2 ± 15.0 76.2 ± 20.0 67.0 ± 14.3 65.2 ± 16.0 64.7 ± 16.0 64.7 ± 16.4低氧組 Hypoxia group 86.0 ± 15.6 83.5 ± 17.1 84.4 ± 4.6a87.7 ± 10.2a88.9 ± 10.6b90.0 ± 11.6bIGF-1(μg/L)常氧組 Normoxia group 51.0 ± 4.4 48.6 ± 7.7 49.3 ± 7.1 48.1 ± 8.2 47.2 ± 8.4 45.4 ± 6.8低氧組 Hypoxia group 50.6 ± 4.0 48.0 ± 6.3 49.8 ± 6.6 51.9 ± 6.2 48.6 ± 8.8 49.5 ± 10.1 SCF(ng/L)常氧組 Normoxia group 581.4 ± 55.6 525.6 ± 50.2 512.0 ± 42.7 504.8 ± 64.2 502.4 ± 57.3 459.8 ± 39.4低氧組 Hypoxia group 465.6 ± 44.7b420.6 ± 48.8b424.5 ± 12.0b425.6 ± 44.8a460.4 ± 38.0 505.4 ± 35.9aG-CSF(ng/L)常氧組 Normoxia group 363.5 ± 64.6 330.6 ± 106.2 381.1 ± 61.7 393.8 ± 149.0 341.2 ± 72.2 318.2 ± 71.5低氧組 Hypoxia group 288.6 ± 77.3 334.2 ± 102.5 346.2 ± 26.6 387.2 ± 127.7 402.4 ± 36.7 472.0 ± 50.0a

如上所述,低氧可以通過改變 MSCs 的細(xì)胞因子表達(dá),影響其旁分泌作用,但具體機(jī)制仍不明確。Martin-Rendon 等[13]將 MSCs 在體外經(jīng)低氧處理 24 h 后,發(fā)現(xiàn)約有 231 種 mRNA 受到缺氧的調(diào)節(jié)。進(jìn)一步研究發(fā)現(xiàn)主要與低氧誘導(dǎo)因子-1α(HIF-1α)、NF-κB 等有關(guān)。郭輝等[14]分別在 21%和 3% O2環(huán)境中培養(yǎng)骨髓間充質(zhì)干細(xì)胞 24 h,發(fā)現(xiàn)低氧組 HIF-1α 蛋白表達(dá)明顯增高。HIF-1α 是細(xì)胞適應(yīng)低氧環(huán)境的關(guān)鍵蛋白轉(zhuǎn)錄調(diào)節(jié)因子,也是影響 MSCs 旁分泌作用的主要原因。HIF-1α 調(diào)控的靶基因有 60 多個(gè)[15]。VEGF 及 SDF-1 是已經(jīng)證實(shí)的 HIF-1α 的兩大重要靶基因[16-19]。低氧增加間充質(zhì)干細(xì)胞 HIF-1α 的活性,促使 HIF-1α 與VEGF、SDF-1 編碼基因的低氧反應(yīng)元件結(jié)合,增加 VEGF、SDF-1 的分泌。HIF-1α 還可以誘導(dǎo)IGF-1、HGF 等多種細(xì)胞因子的表達(dá)。NF-κB 是一種存在于真核細(xì)胞的轉(zhuǎn)錄因子。近期的研究數(shù)據(jù)表明 NF-κB 在誘導(dǎo)因素的作用下可以促進(jìn) VEGF、bFGF 等細(xì)胞因子的分泌。Crisostomo 等[20]將人間充質(zhì)干細(xì)胞置于含 NF-κB 抑制劑的培養(yǎng)基,并于1% O2環(huán)境中培養(yǎng),24 h 后檢測(cè)培養(yǎng)液中 VEGF、bFGF、HGF 及 IGF 的濃度,發(fā)現(xiàn)低氧 +NF-κB 抑制劑組中各細(xì)胞因子的濃度較對(duì)照組明顯減低。此外細(xì)胞因子之間的相互作用也影響 MSCs 的分泌。SDF-1 與 CXCR4+ 間充質(zhì)干細(xì)胞結(jié)合,可促進(jìn) VEGF、bFGF、HGF、IGF-1 等的分泌[10,21]。bFGF、G-CSF 可以促進(jìn) HGF 的表達(dá)[22]。上述因子通過相互作用,可以形成級(jí)聯(lián)放大效應(yīng),影響細(xì)胞的旁分泌作用。

綜上所述,間充質(zhì)干細(xì)胞可持續(xù)分泌一些細(xì)胞因子,適度低氧刺激有利于間充質(zhì)干細(xì)胞細(xì)胞因子的分泌,但具體機(jī)制仍有待進(jìn)一步研究。

[1] Ye NS, Chen J, Luo GA, et al. Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine. Stem Cells Dev,2006, 15(5):665-676.

[2] Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res, 2004, 94(4):514-524.

[3] Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res, 2005, 97(7):663-673.

[4] Harada M, Qin Y, Takano H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med, 2005, 11(3):305-311.

[5] Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004, 428(6983):668-673.

[6] Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res, 2005, 66(1):45-54.

[7] Tang YL, Zhao Q, Qin X, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg,2005, 80(1):229-237.

[8] Wairiuko GM, Crisostomo PR, Wang M, et al. Stem cells improve right ventricular functional recovery after acute pressure overload and ischemia reperfusion injury. J Surg Res, 2007, 141(2):241-246.

[9] Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 2008, 26(8):2173-2182.

[10] Liu H, Liu S, Li Y, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One, 2012, 7(4):e34608.

[11] Jing D, Wobus M, Poitz DM, et al. Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica, 2012,97(3):331-339.

[12] L?nne M, Lavrentieva A, Walter JG, et al. Analysis of oxygen-dependent cytokine expression in human mesenchymal stemcells derived from umbilical cord. Cell Tissue Res, 2013, 353(1):117-122.

[13] Martin-Rendon E, Wilmot C, Carr C, et al. Hypoxic preconditioning promotes proliferation of mesenchymal stem cells in vitro and does not alter their effects in the infarcted rat heart in vivo//Annual autumn meeting of the British-society-for-cardiovascular-research. Southampton, England, 2005.

[14] Guo H, Zhang YJ, Chen YZ, et al. Expression of vascular endothelial growth factor in bone marrow mesenchymal stem cells under hypoxic conditions. J Clin Rehabil Tissue Eng Res, 2014, 23(18):3627-3632.(in Chinese)郭輝, 張于娟, 陳永珍, 等. 低氧環(huán)境下骨髓間充質(zhì)干細(xì)胞中血管內(nèi)皮生長(zhǎng)因子的表達(dá). 中國組織工程研究, 2014, 23(18):3627-3632.

[15] Acarregui MJ, Penisten ST, Goss KL, et al. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol, 1999, 20(1):14-23.

[16] Busletta C, Novo E, Valfrè Di Bonzo L, et al. Dissection of the biphasic nature of hypoxia-induced motogenic action in bone marrow-derived human mesenchymal stem cells. Stem Cells, 2011,29(6):952-963.

[17] Zou D, Zhang Z, Ye D, et al. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Stem Cells, 2011, 29(9):1380-1390.

[18] Yun SP, Lee MY, Ryu JM, et al. Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol:involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol Cell Physiol, 2009, 296(2):C317-C326.

[19] Liu L, Yu Q, Lin J, et al. Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev, 2011, 20(11):1961-1971.

[20] Crisostomo PR, Wang Y, Markel TA, et al. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol, 2008, 294(3):C675-C682.

[21] Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell, 2011, 2(10):845-854.

[22] Fujii K, Ishimaru F, Kozuka T, et al. Elevation of serum hepatocyte growth factor during granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Br J Haematol, 2004, 124(2):190-194.

Objective To observe the effects of low oxygen on the expression of VEGF, HGF, bFGF, SDF-1, SCF, IGF, G-CSF in human umbilical cord mesenchymal stem cells (hUCMSCs).

Methods The third generation of hUCMSCs was divided into hypoxia group and normoxia group cultured in 5% oxygen and 20% oxygen, respectively. The concentration of HGF, IGF-1, SDF-1, VEGF, bFGF, SCF and G-CSF was detected by ELISA after culturing 8, 24, 32, 48, 56 and 72 h, respectively.

Results The concentration of HGF, SDF-1, SCF and G-CSF in hypoxia group was significantly higher than that of normoxia group after 72 h culture (P < 0.05); The concentration of VEGF and bFGF in hypoxia group was significantly higher than that of normoxia group after 56 h and 32 h culture, respectively (P < 0.05). However, the concentration of IGF-1 in hypoxia group had no significant change as compared to that of normoxia group (P > 0.05).

Conclusions The continuous expression of cytokines in hUCMSCs, such as HGF, IGF-1, SDF-1, VEGF, bFGF, SCF and G-CSF,could be found, and the expression level of the above cytokines except IGF-1 is increased by 5% oxygen.

Author Affiliation: Department of Cardiorenal Pediatrics (ZHANG Chong, XU Min, MAO Cheng-gang, NIE Na-na, LI Zi-pu),Neonatal Department (XI Hong-min), Stem Cell Center (GAO Hong), Affiliated Hospital of Qingdao University, Qingdao 266003,China

www.cmbp.net.cn Chin Med Biotechnol, 2016, 11(5):437-440

Effects of low oxygen on the expression of related cytokines in human umbilical cord mesenchymal stem cells

ZHANG Chong, XU Min, MAO Cheng-gang, XI Hong-min, NIE Na-na, GAO-Hong, LI Zi-pu

Mesenchymal stem cells; Cells hypoxia; Stem cell factor

LI Zi-pu, Email: 13370871121@163.com

10.3969/j.issn.1673-713X.2016.05.009

266003 青島大學(xué)附屬醫(yī)院心腎免疫兒科(張沖、徐敏、毛成剛、聶娜娜、李自普),新生兒科(錫洪敏),干細(xì)胞中心(高宏)

李自普,Email:13370871121@163.com

2016-05-25

猜你喜歡
充質(zhì)臍帶低氧
miR-490-3p調(diào)控SW1990胰腺癌細(xì)胞上皮間充質(zhì)轉(zhuǎn)化
間充質(zhì)干細(xì)胞外泌體在口腔組織再生中的研究進(jìn)展
間歇性低氧干預(yù)對(duì)腦缺血大鼠神經(jīng)功能恢復(fù)的影響
間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
三七總皂苷對(duì)A549細(xì)胞上皮-間充質(zhì)轉(zhuǎn)化的影響
胎兒臍帶繞頸,如何化險(xiǎn)為夷
臍帶先露與臍帶脫垂對(duì)胎兒有影響嗎
低氧燃燒工況下鍋爐水冷壁管高溫腐蝕行為分析
胎兒臍帶繞頸,如何化險(xiǎn)為夷
小G蛋白R(shí)hoB在低氧激活巨噬細(xì)胞及功能調(diào)節(jié)中的作用*
健康| 海丰县| 调兵山市| 济源市| 高安市| 买车| 金门县| 阿尔山市| 峨眉山市| 阜新市| 江永县| 红桥区| 双鸭山市| 防城港市| 内丘县| 方正县| 望江县| 泰宁县| 普宁市| 噶尔县| 平江县| 南京市| 东丰县| 江西省| 平邑县| 浮梁县| 和平区| 中江县| 阿拉善右旗| 霸州市| 小金县| 绥滨县| 湘西| 商丘市| 屏边| 福建省| 洛扎县| 迁西县| 吉林省| 英超| 青铜峡市|