国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

2-氨基吡啶修飾的超高交聯(lián)樹脂對(duì)水楊酸的吸附性能

2016-12-07 09:35文瑞明游沛清劉愛姣肖谷清
關(guān)鍵詞:吡啶水楊酸氨基

文瑞明,游沛清,劉愛姣,肖谷清

(湖南城市學(xué)院 化學(xué)與環(huán)境工程學(xué)院,湖南 益陽,413000)

2-氨基吡啶修飾的超高交聯(lián)樹脂對(duì)水楊酸的吸附性能

文瑞明,游沛清,劉愛姣,肖谷清

(湖南城市學(xué)院 化學(xué)與環(huán)境工程學(xué)院,湖南 益陽,413000)

以二氯乙烷為溶劑,F(xiàn)eCl3為催化劑,氯球發(fā)生Friedel-Crafts反應(yīng)制備氯質(zhì)量分?jǐn)?shù)為6.32%的超高交聯(lián)樹脂(簡記為GQ-09),將GQ-09樹脂進(jìn)一步用2-氨基吡啶修飾,制備超高交聯(lián)樹脂(簡記為GQ-10),研究GQ-10樹脂對(duì)水楊酸的吸附性能。實(shí)驗(yàn)結(jié)果表明:GQ-10樹脂在pH為2.16時(shí)對(duì)水楊酸的吸附性能最好;GQ-10樹脂對(duì)水楊酸的吸附等溫線同時(shí)服從Langmuir方程和Freundlich方程;與樹脂的孔結(jié)構(gòu)對(duì)應(yīng),GQ-10樹脂對(duì)水楊酸的吸附在2個(gè)時(shí)間段均適用準(zhǔn)一級(jí)速率方程;GQ-10樹脂對(duì)水楊酸的吸附既有陰離子交換,又存在酸堿作用和疏水作用。GQ-10樹脂吸附的水楊酸可用80%乙醇-0.5 mol/L NaOH解吸,解吸率為99.41%。

2-氨基吡啶;超高交聯(lián)樹脂;水楊酸;吸附

水楊酸又名鄰羥基苯甲酸,具有酚和羧酸的雙重性質(zhì)[1]。水楊酸及其衍生物是合成阿司匹林、冬青油、止痛靈以及甲基異硫磷等殺蟲劑的主要原料[2]。在水楊酸的生產(chǎn)過程中,排放出大量酸性強(qiáng)、色度深、難以生物降解的含高濃度水楊酸的廢水[3]。處理水楊酸生產(chǎn)廢水的方法主要有萃取法、臭氧氧化法、光電催化法等[4]。萃取法處理有機(jī)廢水容易造成萃取劑的流失,導(dǎo)致新的污染物進(jìn)入水環(huán)境。采用臭氧氧化法和光電催化法處理能耗大[4]。樹脂吸附法工藝簡單,能耗低[5],不僅能實(shí)現(xiàn)廢水的達(dá)標(biāo)排放,而且能回收水楊酸[6]。超高交聯(lián)樹脂比表面積高,吸附量大,孔徑分布以微孔為主[7]。在超高交聯(lián)樹脂結(jié)構(gòu)中,引入氨基和吡啶基,可增強(qiáng)樹脂對(duì)水楊酸的吸附。本文作者以二氯乙烷為溶劑,F(xiàn)eCl3為催化劑,氯球發(fā)生Friedel-Crafts反應(yīng)制備氯質(zhì)量分?jǐn)?shù)為6.32%的GQ-09超高交聯(lián)樹脂;將GQ-09樹脂進(jìn)一步用2-氨基吡啶修飾,制備超高交聯(lián)樹脂GQ-10。研究GQ-10樹脂對(duì)水楊酸的吸附性能,以便為樹脂應(yīng)用于水楊酸生產(chǎn)廢水的治理提供參考。

1 實(shí)驗(yàn)

1.1主要儀器與試劑

主要儀器為:TU1810紫外?可見分光光度計(jì)(北京普析通用儀器有限責(zé)任公司制造);370FT-IR傅里葉變換紅外光譜儀(美國熱電尼高力公司制造);ASAP2010比表面測(cè)定儀(美國micromeritics公司制造)。

試劑為:氯球(交聯(lián)度6%,氯質(zhì)量分?jǐn)?shù)17.66%,南開大學(xué)化工廠生產(chǎn));H103樹脂,由南開大學(xué)化工廠提供;XAD-4樹脂,購于美國Rohm and Haas公司;水楊酸、2-氨基吡啶、1,4-二氧六環(huán)、1,2-二氯乙烷、乙醇等,均為分析純。

1.2GQ-10樹脂的合成

樹脂合成方法見圖1。取氯球42 g,在420 mL 1,2-二氯乙烷中溶脹10 h,加8.4 g無水FeCl3,在60 ℃油浴下,攪拌反應(yīng)30 min。樹脂依次用無水C2H5OH,2 mol/L HCl,H2O和無水C2H5OH洗滌,再用含1% HCl的乙醇抽提10 h,烘干得GQ-09超高交聯(lián)樹脂。

取GQ-09樹脂20 g,在300 mL 1,4-二氧六環(huán)中溶脹12 h,加72.5 g 2-氨基吡啶,在氮?dú)夥罩性O(shè)定溫度80 ℃,攪拌反應(yīng)12 h,樹脂依次用1,4-二氧六環(huán)、無水C2H5OH洗滌,再用質(zhì)量分?jǐn)?shù)為2%的NaOH溶液浸泡過夜,除去反應(yīng)生成的酸,然后用水洗滌至中性;將無水C2H5OH抽提12 h,于50 ℃真空干燥得GQ-10樹脂。

1.3樹脂的表征

采用KBr壓片法在傅里葉變換紅外光譜儀上測(cè)定樹脂的紅外光譜;樹脂中Cl元素的質(zhì)量分?jǐn)?shù)用Volhard法測(cè)定[8];樹脂的含水量按GB 5757—86的方法測(cè)定[9];樹脂交換容量用酸堿中和滴定法測(cè)定。樹脂的孔結(jié)構(gòu)用ASAP2010比表面測(cè)定儀測(cè)定。

1.4GQ-10樹脂對(duì)水楊酸的吸附

稱取一定量的GQ-10樹脂于錐形瓶中,加入50.00 mL不同濃度水楊酸,于恒溫振蕩使吸附達(dá)到平衡,用紫外?可見分光光度計(jì)在水楊酸最大吸收波長296.1 nm處測(cè)定吸附殘液中水楊酸的質(zhì)量濃度,根據(jù)下式計(jì)算GQ-10樹脂對(duì)水楊酸的吸附量:

式中:q為樹脂對(duì)水楊酸的吸附量(mg/g);ρ0和ρ分別為吸附前和吸附后溶液中水楊酸的質(zhì)量濃度(g/L);V為水楊酸溶液的體積(mL);m為GQ-10樹脂的質(zhì)量(g)。

1.5GQ-10樹脂的解吸

稱取一定量樹脂于具塞錐形瓶中,加入50.00 mL已知質(zhì)量濃度的水楊酸溶液50.00 mL,在298 K溫度下恒溫振蕩使吸附達(dá)到平衡,用紫外分光光度計(jì)在296.1 nm處測(cè)定各殘液中水楊酸的質(zhì)量濃度,計(jì)算樹脂對(duì)水楊酸的吸附量。過濾,用少量蒸餾水洗滌樹脂表面的水楊酸。往錐形瓶中加入解吸劑50.00 mL,在298 K恒溫振蕩解吸達(dá)到平衡。用紫外分光光度計(jì)在296.1 nm處測(cè)定各解吸液中水楊酸的濃度。解吸率為解吸液濃度與解吸液體積之積再除以吸附量。

圖1 樹脂的合成Fig. 1 Synthesis of resins

2 結(jié)果與討論

2.1樹脂的表征

圖2所示為氯球、GQ-09樹脂和GQ-10樹脂的紅外光譜圖,表1所示為氯球和GQ-10樹脂的性能。由圖2 可知:在2-氨基吡啶修飾的GQ-10樹脂的紅外光譜圖中1 260 cm?1及673 cm?1附近氯甲基的2個(gè)特征峰已基本消失,1 580 cm?1處出現(xiàn)吡啶環(huán)的特征吸收峰,769 cm?1和1 650 cm?1處出現(xiàn) N—H鍵的面外和面內(nèi)彎曲振動(dòng)吸收峰。從表1可以看出:球和GQ-10樹脂的氯質(zhì)量分?jǐn)?shù)分別為17.66%和1.18%;與氯球相比,2-氨基吡啶修飾的GQ-10樹脂交換容量為1.83 mmol/g;負(fù)載2-氨基吡啶后,氨基、吡啶基可與水形成氫鍵,GQ-10樹脂的含水量比氯球的高。

圖2 樹脂的紅外光譜圖Fig. 2 IR spectra of resins

圖3所示為氯球和GQ-10樹脂的孔徑分布圖,表1所示為氯球和GQ-10樹脂的性能。從圖3和表1可知:氯球發(fā)生Friedel-Crafts反應(yīng)后,經(jīng)亞甲基再次交聯(lián),形成了大量的微孔,BET比表面積、微孔面積、孔容增加,孔徑減少;GQ-10樹脂的孔徑以微孔分布為主,含有中孔(2~50 nm)和大孔(50~100 nm)。

圖3 樹脂的孔徑分布圖Fig. 3 Pore diameter distribution of resins

2.2pH對(duì)GQ-10樹脂吸附水楊酸性能的影響

配制質(zhì)量濃度為0.599 5 g/L的水楊酸溶液,用HCl和NaOH調(diào)節(jié)水楊酸溶液的pH。pH對(duì)GQ-10樹脂吸附水楊酸性能的影響如圖4所示。水楊酸的一級(jí)電離常數(shù)的負(fù)對(duì)數(shù)pKa1為2.98[10]。從圖4可見:pH對(duì)GQ-10樹脂吸附水楊酸的影響十分顯著,當(dāng)pH為2.16時(shí),GQ-10樹脂對(duì)水楊酸的吸附量最大;當(dāng)pH小于2.16時(shí),隨著pH減小,GQ-10樹脂中的氨基、吡啶基容易與H+結(jié)合形成陽離子,因而GQ-10樹脂對(duì)水楊酸的吸附量隨pH的減小而減??;當(dāng)pH為2.16~5.00時(shí),隨著pH增大,水楊酸分子中的羧基和酚羥基易電離出H+,GQ-10樹脂中的氨基、吡啶基對(duì)溶液中水楊酸的酸堿作用減弱,故吸附量下降;當(dāng)pH大于5.00時(shí),水楊酸分子中羧基幾乎完全電離,GQ-10樹脂對(duì)水楊酸的吸附量仍然維持在100~125 mg/g,其原因是水楊酸陰離子可與GQ-10樹脂中的陰離子交換位點(diǎn)進(jìn)行交換。

表1 氯球和GQ-10樹脂的性能Table 1 Properties of chloromethylated polystyrene and GQ-10

2.3鹽對(duì)GQ-10樹脂吸附水楊酸性能的影響

配制質(zhì)量濃度為0.599 5 g/L的水楊酸溶液,用NaCl調(diào)節(jié)水楊酸溶液中鹽的質(zhì)量分?jǐn)?shù)。鹽對(duì)GQ-10樹脂吸附水楊酸性能的影響如圖5所示。由圖5可知:鹽對(duì)樹脂吸附水楊酸有顯著影響;當(dāng)溶液中NaCl質(zhì)量分?jǐn)?shù)從0增加到1%時(shí),GQ-10樹脂對(duì)水楊酸的吸附量明顯減少;當(dāng)溶液中NaCl從1%增加到9%時(shí),GQ-10樹脂對(duì)水楊酸的吸附量略減小。這是因?yàn)镚Q-10樹脂吸附水楊酸存在離子交換的吸附機(jī)理,當(dāng)鹽存在時(shí),鹽中的Cl?與水楊酸陰離子競(jìng)爭(zhēng)GQ-10樹脂上的陰離子交換位點(diǎn);當(dāng)溶液中Cl?與水楊酸陰離子競(jìng)爭(zhēng)樹脂上的陰離子交換位點(diǎn)趨于平衡時(shí),GQ-10樹脂中氨基、吡啶基對(duì)水楊酸以酸堿相互作用為主。故當(dāng)溶液中NaCl質(zhì)量分?jǐn)?shù)從1%增加到9%時(shí),吸附量只略微下降。

2.4溫度對(duì)GQ-10樹脂吸附水楊酸性能的影響

圖6所示為GQ-10樹脂對(duì)水楊酸的吸附等溫線。從圖6可看出:GQ-10樹脂對(duì)水楊酸的吸附量隨著溶液溫度的升高而減少,表明GQ-10樹脂吸附水楊酸是一個(gè)放熱過程[11],降溫有利于GQ-10樹脂吸附水楊酸。

圖4 pH對(duì)GQ-10樹脂吸附水楊酸性能的影響Fig. 4 Effect of solution pH on adsorption of salicylic acid onto GQ-10

圖5 鹽對(duì)水楊酸吸附量的影響Fig. 5 Effect of salt on adsorption of salicylic acid onto GQ-10

圖6 樹脂對(duì)水楊酸的吸附等溫線Fig. 6 Adsorption isotherms of salicylic acid

表2 Freundlich和Langmuir方程擬合相關(guān)參數(shù)Table 2 Correlated parameters according to the Langmuir and Freundlich equation

2.5GQ-10樹脂對(duì)水楊酸的吸附動(dòng)力學(xué)

配制質(zhì)量濃度為0.599 7 g/L的水楊酸溶液,GQ-10樹脂吸附水楊酸的動(dòng)力學(xué)曲線如圖7所示。從圖7可知:GQ-10樹脂吸附水楊酸780 min達(dá)平衡。

圖7 GQ-10樹脂對(duì)水楊酸的吸附動(dòng)力學(xué)Fig. 7 Adsorption kinetic curve of salicylic acid onto GQ-10

其中:q和qt分別為平衡和時(shí)間t時(shí)的吸附量(mg/g);k1和k2分別為準(zhǔn)一級(jí)速率方程、準(zhǔn)二級(jí)速率方程的速率常數(shù)(單位分別為min?1和g·mg?1·min?1)[14]。將GQ-10樹脂吸附水楊酸的動(dòng)力學(xué)數(shù)據(jù)按準(zhǔn)一級(jí)速率方程、準(zhǔn)二級(jí)速率方程擬合,擬合結(jié)果見表3。從表3可知:在整個(gè)吸附過程中,準(zhǔn)一級(jí)速率方程對(duì)GQ-10樹脂吸附水楊酸的擬合相關(guān)系數(shù)低。將吸附過程分成2個(gè)階段,準(zhǔn)一級(jí)速率方程對(duì)GQ-10樹脂吸附水楊酸的擬合相關(guān)系數(shù)均大于0.99,這與文獻(xiàn)[18]中的實(shí)驗(yàn)結(jié)果一致。這是由于在第1階段(0~240 min),水楊酸分子吸附進(jìn)入GQ-10樹脂的中孔(2~50 nm)和大孔(50~100 nm)。在第2階段(240~780 min),水楊酸分子吸附進(jìn)入GQ-10樹脂的微孔(0~2 nm)中,水楊酸分子擴(kuò)散進(jìn)入微孔所受阻力大,對(duì)應(yīng)的速率常數(shù)k1=0.005 9,小于第1階段的0.011 8。

表3 吸附動(dòng)力學(xué)擬合相關(guān)參數(shù)Table 3 Correlation parameters of adsorption kinetic data

2.6GQ-10樹脂的解吸

GQ-10樹脂的解吸見表4。從表4可以看出:當(dāng)解吸劑中乙醇濃度從20%增加到100%,解吸率增加,乙醇能把GQ-10樹脂吸附的水楊酸解吸,說明GQ-10樹脂可通過疏水作用吸附水楊酸;0.5 mol/L HCl能將GQ-10樹脂吸附的水楊酸解吸,說明HCl中和了GQ-10樹脂中氨基、吡啶基的堿性,反過來說明GQ-10樹脂可通過酸堿作用吸附水楊酸;1.0 mol/L NaOH尚不能將GQ-10樹脂吸附的水楊酸GQ-10完全解吸,也說明GQ-10樹脂與水楊酸陰離子中間存在疏水作用。GQ-10樹脂可用80%乙醇-0.5mol/L NaOH解吸,解吸率為99.41%。GQ-10樹脂吸附解吸循環(huán)10次,其性能無明顯變化。

表4 GQ-10樹脂的解吸率Table 4 Static desorption of GQ-10 %

3 結(jié)論

1) 用氯球?yàn)樵?,通過2步合成2-氨基吡啶修飾的GQ-10超高交聯(lián)樹脂。

2) GQ-10樹脂在pH為2.16時(shí)對(duì)水楊酸的吸附性能最好。

3) GQ-10樹脂對(duì)水楊酸的吸附是放熱過程,吸附等溫線同時(shí)服從Langmuir方程和Freundlich方程。GQ-10樹脂吸附的水楊酸可用80%乙醇-0.5 mol/L NaOH解吸,解吸率為99.41%。GQ-10樹脂在含水楊酸廢水的治理方面具有潛在應(yīng)用價(jià)值。

[1] HUANG Jianhan. Hydroquinone modified hyper-cross-linkedresin to be used as a polymeric adsorbent for adsorption of salicylic acid from aqueous solution[J]. Journal of Applied Polymer Science, 2011, 121(6): 3717?3723.

[2] WANG Xiaomei, LIANG Xiaolei, HUANG Jianhan, et al. Hydrophobic-hydrophilic interpenetrating polymer networks (IPN) composed of polydivinylbenzene/polyacryldiethylenetriamine (PDVB/PADETA) and its adsorption performance towards salicylic acid from aqueous solutions[J]. AIChE Journal, 2014, 60(1): 2636?2643.

[3] WATKINSON A J, MURBY E J, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed: from wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8): 2711?2723.

[4] XIAO Guqing, LI Hua, XU Mancai. Adsorption of salicylic acid in aqueous solution by a water-compatible hyper-cross-linked resin functionalized with amino-group[J]. Journal of Applied Polymer Science, 2013, 127(5): 3858?3863.

[5] 何天明, 陳白珍, 石西昌, 等. XSC-700 樹脂對(duì)鹽湖鹵水中硼的吸附研究[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 42(6): 1538?1542. HE Tianming, CHEN Baizhen, SHI Xichang, et al. Boron adsorption from salt lake brine on XSC-700 resin[J]. Journal of Central South University (Science and Technology), 2011, 42(6): 1538?1542.

[6] HUANG Jianhan, JIN Xiaoying, MAO Jinglin, et al. Synthesis, characterization and adsorption properties of diethylenetriaminemodified hypercrosslinked resins for efficient removal of salicylic acid from aqueous solution[J]. Journal of Hazardous Materials, 2012, 217/218(3): 406?415.

[7] WANG Xiaomei, YUAN Xiaojun, HAN Shan, et al. Aniline modified hypercrosslinked polystyrene resins and their adsorption equilibriums, kinetics and dynamics towards salicylic acid from aqueous solutions[J]. Chemical Engineering Journal 2013, 233 (1): 124–131.

[8] XIAO Guqing, LONG Liping. Efficient removal of aniline by a water-compatible microporous and mesoporou hyper-crosslinked resin and XAD-4 resin: a comparative study[J]. Applied Surface Science, 2012, 258(1): 6465?6471.

[9] XIAO Guqing, FU Lichun, LI Aimin. Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-crosslinked polymeric adsorbent: effect of the cross-linked bridge[J]. Chemical Engineering Journal, 2012, 191(4): 171?176.

[10] DEAN J A. Lange’s handbook of chemistry[M]. 15th ed. New York: McGraw-Hill Book Co, 1999: 129.

[11] ARASTEH R, MASOUMI M, RASHIDI A M, et al. Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions[J]. Applied Surface Science, 2010, 256(5): 4447?4455.

[12] ZHANG Mancheng, LI Aimin, ZHOU Qing. Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins[J]. Microporous and Mesoporous Materials, 2014, 184(3): 105?111.

[13] VALDERRAMA C, BARIOS J I, CAETANO M, et al. Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hypercrosslinked polymeric resin (MN200)[J]. Reactive and Functional Polymers, 2010, 70(1): 142?150.

[14] MARCZEWSKA A D, BUCZEK B, SWIATKOWSKI A. Effect of oxygen surface groups on adsorption of benzene derivatives from aqueous solutions onto active carbon samples[J]. Applied Surface Science, 2011, 257(4): 9466?9472.

[15] FAN Jun, YANG Weiben, LI Aimin. Adsorption of phenol, bisphenol A and nonylphenol ethoxylates onto hypercrosslinked and aminated adsorbents[J]. Reactive and Functional Polymers, 2011, 71(1): 994?1000.

[16] SHUANG Chendong, PAN Fei, ZHOU Qing, et al. Magnetic polyacrylic anion exchange resin: preparation, characterization and adsorption behavior of humic acid[J]. Industrial and Engineering Chemistry Research, 2012, 51(1): 4380?4387.

[17] HUANG Jianhan, WU Xiaofei, ZHA Hongwei, et al. A hypercrosslinked poly(styrene-co-divinylbenzene) PS resin as a specific polymeric adsorbent for adsorption of 2-naphthol from aqueous solutions[J]. Chemical Engineering Journal, 2013, 218(2): 267–275.

[18] MILMILE S N, PANDE J V, KARMAKAR S, et al. Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin[J]. Desalination, 2011, 276(1): 38?44.

(編輯 陳燦華)

Adsorption properties of salicylic acid onto
hypercrosslinked resin modified with 2-aminopyridine

WEN Ruiming, YOU Peiqing, LIU Aijiao, XIAO Guqing
(College of Chemistry and Environmental Engineering, Hunan City University, Yiyang 413000, China)

Dichloroethane was used as solvent and ferric chloride was used as catalyst, and the hyper-cross-linked resin with 6.32% chlorine content (denoted GQ-09) was synthesized with chloromethylated polystyrene by Friedel-Crafts reaction.GQ-09 resin was modified with aminopyridine to achieve the hyper-cross-linked resin with aminopyridine (denoted GQ-10).The adsorption properties for salicylic acid onto GQ-10 was studied. The results show that the maximum adsorption capacity of salicylic acid onto GQ-10 can be observed at pH of 2.16.The adsorption isotherms of salicylic acid onto GQ-10 can be characterized by both Langmuir equation and Freundlich equation. The pseudo-first-order rate equation can describe the adsorption of salicylic acid onto GQ-10 well if the adsorption process is divided into two stages, which is consistent with the pore structure of GQ-10.Salicylic acid is absorbed onto GQ-10 through anion exchange, acid-base interaction and hydrophobic effect. More than 99.41% regeneration efficiency for GQ-10 is achieved by 80% ethanol-0.5 mol/L NaOH.

2-aminopyridine; hypercross-linked resin; salicylic acid; adsorption

O647.3

A

1672?7207(2016)03?0724?06

10.11817/j.issn.1672-7207.2016.03.003

2015?04?10;

2015?06?21

湖南省科技計(jì)劃資助項(xiàng)目(2013WK2008) (Project(2013WK2008) supported by the Science and Technology Plan of Hunan Province)

文瑞明,教授,從事功能高分子材料研究;E-mail: wenruiming@sohu.com

猜你喜歡
吡啶水楊酸氨基
吡啶和3-甲基吡啶的合成工藝研究
1565nm非剝脫點(diǎn)陣激光聯(lián)合超分子水楊酸治療面部輕中度痤瘡的療效觀察
水楊酸聯(lián)合果酸治療輕中度痤瘡的臨床療效觀察
美沙拉嗪與柳氮磺吡啶治療潰瘍性結(jié)腸炎療效比較
勘 誤
今日農(nóng)業(yè)(2019年11期)2019-08-13
HPLC法同時(shí)測(cè)定氯柳酊中氯霉素和水楊酸的含量
1,1′-二羥基-5,5′-聯(lián)四唑-5-氨基四唑鹽的合成及性能預(yù)估
兩種含1,3,4-噻二唑α-氨基膦酸酯與蛋白質(zhì)弱相互作用的ESI-MS研究
2-(4-氯苯氨基)甲基苯酚降解的動(dòng)力學(xué)研究
哈巴河县| 镇安县| 汝阳县| 灵武市| 博爱县| 玉门市| 颍上县| 锡林浩特市| 石柱| 梨树县| 泸溪县| 勐海县| 高雄县| 海淀区| 连城县| 老河口市| 揭阳市| 驻马店市| 大足县| 东莞市| 阳山县| 梅州市| 肇源县| 堆龙德庆县| 华蓥市| 石台县| 静宁县| 贵阳市| 会昌县| 阿勒泰市| 崇阳县| 读书| 咸宁市| 太保市| 张家港市| 柯坪县| 闵行区| 阳朔县| 丰顺县| 兴国县| 海宁市|