鄧琦,毛筱菲,吳銘浩
1海軍裝備部艦船辦公室,北京100071
2武漢理工大學(xué)交通學(xué)院,湖北武漢430063
主體瘦長度對三體船耐波性和波浪載荷的影響
鄧琦1,毛筱菲2,吳銘浩2
1海軍裝備部艦船辦公室,北京100071
2武漢理工大學(xué)交通學(xué)院,湖北武漢430063
針對某千噸級三體船母型船,在保持排水量不變的前提下,調(diào)查長寬比對運(yùn)動和載荷的影響,并通過船型變換得到長寬比在12~19之間的6種系列派生船型;應(yīng)用三維時域Rankine方法軟件WASIM對不同長寬比系列船體的縱向運(yùn)動和波浪載荷進(jìn)行頻響計(jì)算,并進(jìn)一步結(jié)合海浪譜分別計(jì)算4~6級海況下船體縱搖和升沉運(yùn)動統(tǒng)計(jì)值以及船體剖面彎矩和剪力沿船長單位的分布。分析發(fā)現(xiàn),當(dāng)主體長寬比從12.27增加至19.16時,縱搖和升沉的最大峰值分別下降了近60%和35%,但剪力和彎矩的峰值則分別增大了2倍和3.5倍。進(jìn)一步將直接計(jì)算的總縱彎矩和剪力與英國勞氏規(guī)范相比較,發(fā)現(xiàn)6級海況下剖面剪力有義值的計(jì)算結(jié)果已超過規(guī)范的規(guī)定。結(jié)果表明:主船體的長寬比對耐波性和波浪載荷具有相反的影響,即主體越瘦長,運(yùn)動響應(yīng)越小,耐波性越好;但主體越瘦長,總縱彎矩和剪力會大幅增加,對船體結(jié)構(gòu)產(chǎn)生不利影響。因此,在設(shè)計(jì)之初確定瘦長三體船的主尺度,特別是瘦長度時,應(yīng)兼顧考慮船體運(yùn)動響應(yīng)與波浪載荷的影響。
三體船;船型;系列變換;船舶運(yùn)動響應(yīng);波浪載荷
三體船是目前很受軍民歡迎的一類高速海洋運(yùn)載工具,其主船體和2個側(cè)體的結(jié)構(gòu)賦予了其比普通單體船更好的橫向穩(wěn)定性。因此,主體可以設(shè)計(jì)得比單體船更加細(xì)長,這使得其阻力降低,快速性得到了極大的提升,同時對耐波性也有利。根據(jù)對現(xiàn)有三體船的調(diào)查[1],將三體船的主尺度比(包括主體L/B和B/T)按照排水量大小進(jìn)行了分布統(tǒng)計(jì),如圖1所示。三體船主要參數(shù)的范圍如表1所示。由表1和圖1可以看出,目前三體船主體長寬比L/B的范圍在12~18之間,寬度吃水比B/T的范圍在1.2~2.3之間,側(cè)體排水量占總排水量的比例ΔS/Δ不超過7%。三體船的主體更瘦長可能會改善耐波性,但是也會增加船體的波浪載荷,影響船舶結(jié)構(gòu)安全。本文將定量分析主要船型參數(shù),特別是主體瘦長度對船舶運(yùn)動響應(yīng)和波浪載荷的綜合影響。
圖1 三體船主體主尺度比例系數(shù)統(tǒng)計(jì)Fig.1 Statistics of L/B,B/T range of trimaran main hull
表1 三體船主要參數(shù)變化范圍Tab.1 Range of main particulars of trimaran
計(jì)算三體船在波浪中的運(yùn)動響應(yīng)和載荷一般基于頻域和時域勢流理論方法,其中頻域方法包括脈動源和移動脈動源方法。Fang和Too[2]開發(fā)了三維脈動源方法,用于預(yù)報(bào)船舶六自由度運(yùn)動;Bingham等[3]運(yùn)用三維移動脈動源方法得到了三體船在波浪中的運(yùn)動和載荷,并指出頻域方法僅能在Fn<0.45時使用。對于較高航速,F(xiàn)altinsen和Zhao[4]發(fā)展了二維半理論,Duan等[5]將其應(yīng)用到了多體船耐波性計(jì)算;更多的學(xué)者運(yùn)用了時域的方法,包括時域格林函數(shù)法和時域Rankine方法,如Peng[6]運(yùn)用三維時域格林函數(shù)法進(jìn)行了多體船水動力研究,Bruzzone和Grasso[7]綜合頻域和時域的方法分析了三體船在波浪中運(yùn)動時的非線性[8]。三維時域Rankine面元法是解決高速多體船耐波性問題的一個有效方法,以該方法為基礎(chǔ)的商業(yè)軟件WASIM被國內(nèi)外學(xué)者用于三體船的運(yùn)動和載荷預(yù)報(bào)[1],被公認(rèn)為是預(yù)報(bào)有航速三體船的運(yùn)動和載荷的有力工具。時域方法既可考慮非線性,也適合用于較高航速的情況。
為了研究三體船主要參數(shù)對水動力結(jié)果的影響,需要生成一系列新的船型。本文使用Hollister的基于型值的船型變換方法來編制船型變換程序[9],程序包括4個模塊:拉伸變換(STRETCH)模塊、剖面變換(CMVARY)模塊、棱形系數(shù)變換(LACKENBY)模塊和靜水力計(jì)算(HYDROSTATICS)模塊,流程如圖2所示。在4個模塊的反復(fù)迭代計(jì)算過程中,可以保證除目標(biāo)參數(shù)和補(bǔ)償參數(shù)改變外,其他參數(shù)均保持不變。本文中因主體的排水量保持一致,側(cè)體占排水量的比例較小,因此僅需進(jìn)行縮放變換、調(diào)整水線、重新定位即可,且變換前、后片體之間的相對位置不發(fā)生改變。保持主體排水量不變,系列變換派生出的6種船型參數(shù)如表2所示。
圖2 船型變換流程圖Fig.2 Workflow chart of trimaran hull variation
表2 系列變換派生船型參數(shù)Tab.2 Parameters of variated trimaran hulls
2.1 數(shù)值計(jì)算方法
采用WASIM對三體船在波浪上的運(yùn)動和載荷進(jìn)行計(jì)算能夠得到較好的結(jié)果。在本研究中,縱向運(yùn)動和波浪載荷均在迎浪狀態(tài)下計(jì)算,通過譜分析法來得到特定海況下的縱搖、升沉、垂向彎矩和剪應(yīng)力。所有計(jì)算船速均保持其傅汝德數(shù)Fn=0.322。6條派生船型的質(zhì)量分布如圖3所示,船的片體布局如圖4所示,片體尾部形狀均為方尾。
圖3 質(zhì)量分布Fig.3 Mass distribution
圖4 S1,S2,S6號船片體分布Fig.4 Arrangement of S1,S2 and S6 ships
2.2 規(guī)則波中運(yùn)動和載荷的傳遞函數(shù)
針對6艘派生船型,計(jì)算了迎浪規(guī)則波中的運(yùn)動和載荷響應(yīng),保持排水量不變,6個不同長寬比派生船型的運(yùn)動和載荷的傳遞函數(shù)比較如圖5~圖9所示。圖中,橫坐標(biāo)ω表示波浪圓頻率,縱坐標(biāo)分別為升沉、縱搖以及典型位置橫剖面的剪力及彎矩的無因次傳遞函數(shù)。
圖5 升沉無因次傳遞函數(shù)隨長寬比的變化Fig.5 The change of heave transfer function with L/B
圖6 縱搖無因次傳遞函數(shù)隨長寬比的變化Fig.6 The change of pitch transfer function with L/B
通過對升沉和縱搖運(yùn)動頻響的分析發(fā)現(xiàn),隨著L/B的增大,主體越瘦長,縱搖和升沉運(yùn)動響應(yīng)峰值下降的幅度就越大。當(dāng)L/B>14.444時,縱搖
傳遞函數(shù)未出現(xiàn)明顯的峰值點(diǎn)??梢娭黧w越瘦長,規(guī)則波中的運(yùn)動響應(yīng)越小,耐波性也越好。
因不同長寬比船型的載荷比較是通過各剖面載荷沿船長的短期預(yù)報(bào)分布來進(jìn)行,所以,有必要進(jìn)行耐波性和波浪載荷的短期預(yù)報(bào)。
圖7 5號站剪力傳遞函數(shù)隨長寬比的變化Fig.7 The change of shear force transfer function with L/B at station 5
圖8 10號站彎矩傳遞函數(shù)隨長寬比的變化Fig.8 The change of bending moment transfer function with L/B at station 10
圖9 15號站剪力傳遞函數(shù)隨長寬比的變化Fig.9 The change of shear force transfer function with L/B at station 15
2.3 不規(guī)則波中短期預(yù)報(bào)分析
2.3.1 縱搖、升沉運(yùn)動統(tǒng)計(jì)值預(yù)報(bào)
短期預(yù)報(bào)基于的是譜分析法,本文使用Pierson-Moscowitz海浪譜:
圖10 不同長寬比單位波高升沉有義值比較(H1/3=1 m)Fig.10 Comparison of heave short-term response of differentL/B(H1/3=1 m)
圖11 不同長寬比單位波高縱搖有義值比較(H1/3=1 m)Fig.11 Comparison of pitch short-term response of differentL/B(H1/3=1 m)
圖12 不同長寬比單位波高垂向加速度有義值比較(H1/3=1 m)Fig.12 Comparison of vertical acceleration short-term response of different L/B(H1/3=1 m)
表3統(tǒng)計(jì)了6艘派生船型在過零周期Tz=6,8, 10 s和有義波高H1/3=1 m時的運(yùn)動與加速度。由表可發(fā)現(xiàn),較大L/B船在迎浪航行時在耐波性方面體現(xiàn)出了明顯的優(yōu)勢。在過零周期Tz=6 s時,S6的升沉運(yùn)動響應(yīng)減小了34.5%,縱搖運(yùn)動響應(yīng)減小了60.3%,艏部垂向加速度減小了50.8%,這說明主體越瘦長,L/B越大,不規(guī)則波中的運(yùn)動越緩和,對耐波性越有利。
表3 單位有義波高短期預(yù)報(bào)統(tǒng)計(jì)(H1/3=1 m)Tab.3 Short-term statistics of trimaran motion in unit siginificant wave height(H1/3=1 m)
2.3.2 垂向剪力與彎矩短期預(yù)報(bào)
本文計(jì)算了4~6級海況下的總體結(jié)構(gòu)載荷,其中4級海況下的有義波高H1/3=2 m,過零周期Tz=6 s;5級海況下的有義波高H1/3=3 m,過零周期Tz=8 s;6級海況下的有義波高H1/3=5 m,過零周期Tz=10 s。不同長寬比L/B下各橫剖面垂向剪力和彎矩的比較如圖13~圖18所示。
圖14 5級海況不同長寬比各站垂向剪力比較(Tz=8 s,H1/3=3 m)Fig.14 Comparison of vertical shear force of different L/B in sea state 5(Tz=8 s,H1/3=3 m)
圖15 6級海況不同長寬比各站垂向剪力比較(Tz=10 s,H1/3=5 m)Fig.15 Comparison of vertical shear force of different L/B in sea state 6(Tz=10 s,H1/3=5 m)
圖16 4級海況不同長寬比各站垂向彎矩比較(Tz=6 s,H1/3=2 m)Fig.16 Comparison of vertical bending moment of different L/B in sea state 4(Tz=6 s,H1/3=2 m)
表4列出了不同長寬比下各剖面剪力和彎矩最大值。與S2(L/B=12.27)相比,S6(L/B=19.16)剖面上的最大剪力在4級海況下增加了112.8%,5級海況下增加了171.7%,6級海況下增加了190.1%;最大彎矩在4級海況下增加了208.5%,6級海況下增加了345.6%。由此可見,主體瘦長度的增加將導(dǎo)致總體結(jié)構(gòu)載荷大幅度增加。
圖17 5級海況不同長寬比各站垂向彎矩比較(Tz=8 s,H1/3=3 m)Fig.17 Comparison of vertical bending moment of different L/B in sea state 5(Tz=8 s,H1/3=3 m)
圖18 6級海況不同長寬比各站垂向彎矩比較(Tz=10 s,H1/3=5 m)Fig.18 Comparison of vertical bending moment of different L/B in sea state 6(Tz=10 s,H1/3=5 m)
表4 不同長寬比各剖面載荷最大值Tab.4 Maximum sectional load of different trimaran hulls
表5列出了典型海況下最小和最大長寬比船型的耐波性和載荷比較結(jié)果。由表5可知,4級海況下,S6的縱搖運(yùn)動響應(yīng)比S2減小了60.35%,但最大彎矩值增加了208.54%,載荷產(chǎn)生了很大的改變,可見過于細(xì)長的主體對結(jié)構(gòu)載荷非常不利。
表5 船體運(yùn)動和載荷有義值Tab.5 Summary of typical significant values of motion and load
出于對船舶安全的考慮,英國勞氏規(guī)范(LR)[10]制定了總體載荷規(guī)范。垂向彎矩和剪力的計(jì)算公式如下:
式中:Df和Kf分別為彎矩和剪力的分布因子;Ft為與中拱和中垂相關(guān)的系數(shù);M0為與規(guī)范船長LR、船寬和方形系數(shù)有關(guān)的系數(shù)。
圖19對比了由LR規(guī)范方法和本文方法計(jì)算的S5,S6派生船在6級海況下的載荷分布。由圖可見,該兩船的彎矩計(jì)算值與規(guī)范中的設(shè)計(jì)載荷非常接近,最大值還有可能超過規(guī)范設(shè)計(jì)值;剖面剪力有義值的計(jì)算結(jié)果則已經(jīng)超過了規(guī)范的規(guī)定。這表明,過分細(xì)長的船體有可能會導(dǎo)致總體載荷增加,若要考慮船體強(qiáng)度安全,勢必增加船舶在高海況條件下的航行安全風(fēng)險(xiǎn)和工程造價(jià)。
本文基于調(diào)查獲取的細(xì)長三體船主體瘦長度
變化范圍,使用基于型值的船型變換方法,在保證主船體排水量和菱形系數(shù)不變的情況下,得到了一系列派生船型。通過對6條派生船型方案在迎浪下的運(yùn)動響應(yīng)和波浪載荷的直接計(jì)算,以及總縱載荷與LR規(guī)范的比較,得到以下結(jié)論:
圖19 6級海況下S5和S6號船的垂向載荷計(jì)算與LR規(guī)范的比較(Tz=10 s,H1/3=5 m)Fig.19 Comparison between design loads in LR and calculated vertical loads of S5 and S6 ship in sea state 6(Tz=10 s,H1/3=5 m)
1)三體船主片體的長寬比L/B一般介于12~18之間,隨著L/B的增加,傳遞函數(shù)和短期預(yù)報(bào)結(jié)果均表明船舶在迎浪狀態(tài)下其升沉和縱搖運(yùn)動會減小,說明主體越細(xì)長,耐波性越好。
2)主體瘦長度對縱向波浪載荷的影響與對運(yùn)動的影響相反,是隨著長寬比的增加而大幅增加,主體過于瘦長對總體結(jié)構(gòu)載荷不利,海況越高,載荷增幅越大。
3)三體船細(xì)長的主體對阻力和耐波性有利,但有可能會導(dǎo)致結(jié)構(gòu)載荷在高海況下大幅度增加,超過規(guī)范設(shè)計(jì)值,在優(yōu)化三體船運(yùn)動時導(dǎo)致較高的總體結(jié)構(gòu)載荷,所以在進(jìn)行瘦長的三體船主體尺度方案設(shè)計(jì)時,應(yīng)同時權(quán)衡船舶耐波性和縱向波浪載荷的綜合影響。
[1] 項(xiàng)久洋.船型要素對三體船耐波性和波浪載荷影響的數(shù)值計(jì)算[D].武漢:武漢理工大學(xué),2008. XIAGN Jiuyang.The numerical calculation of trimaran s seakeeping and wave loads affected by hull form factors[D].Wuhan:Wuhan University of Technology,2008.
[2] FANG M C,TOO G Y.The effect of side hull arrangements on the motions of the trimaran ship in waves[J]. Naval Engineers Journal,2006,118(1):27-37.
[3] BINGHAM A E,HAMPSHIRE J K,MIAO S H,et al. Motions and loads of a trimaran travelling in regular waves[C]//FAST 2001 The 6th International Conference on Fast Sea Transportation.[S.l.:s.n.],2001.
[4] FALTINSEN O,ZHAO R.Numerical predictions of ship motions at high forward speed[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1991,334(1634):241-252.
[5] DUAN W Y,HUANG D B,HUDSON D A,et al.Comparison of two seakeeping prediction methods for high speed multi-hull vessels[C]//FAST 2001 6th International Conference on Fast Sea Transportation.[S.l.:s. n.],2001.
[6] PENG H X.Numerical computation of multi-hull ship resistance and motion[D].Halifax:Dalhouse Universty,2001.
[7] BRUZZONE D,GRASSO A.Nonlinear time domain analysis of vertical ship motions[J].Archives of Civil and Mechanical Engineering,2007,7(4):27-37.
[8] SHIN Y S,BELENKY V L,LIN W M,et al.Nonlinear time domain simulation technology for seakeeping and wave-load analysis for modern ship design[C]//ABS Technical Papers 2003.[S.l.:s.n.],2003:257-281.
[9] HOLLISTER S M.Automatic hull variation and optimization[C]//The Meeting of the New England Section of the Society of Naval Architects and Marine Engineers,1996.
[10] Lloyd's Register.Rules for the classification of trimarans[S].Britain:Lloyd's Register,2016.
Effect of principal dimensions on seakeeping and wave loads of trimarans
DENG Qi1,MAO Xiaofei2,WU Minghao2
1 Ship Office,Naval Armament Department of PLAN,Beijing 100071,China
2 School of Transportation,Wuhan University of Technology,Wuhan 430063,China
In this paper,an investigation is carried out on how the hull form and arrangement influence the seakeeping and global hull girder loads of a trimaran.By means of a ship hull variation method,a series of derived trimarans with the same displacement and different length to breadth ratio(L/B)from 12 to 19 is generated for a 1 000 tons trimaran.The longitudinal motion and wave load of the ships with forward speed in regular wave are calculated with the WASIM code based on a time-domain three dimensional Rankine method.The statistics of the pitch and heave motion,sectional bending moment and shear force of the hull girder are analyzed combining the wave spectrum in sea state 4 to 6.It is observed that as the L/B increases from 12.27 to 19.16,the peak value of pitch and heave motion is decreased by nearly 60%and 35% respectively,but the shear force is tripled and the bending moment is increased by 3.5 times.Further direct calculation of the wave loads compared with British LR Rule showed that slender ship section shear significant value have already exceeded the Rules in sea state 6.These results show that the slenderness of the main hull has a contradiction impact on motion and wave load,namely the slender body,the smaller the motion response,the better seakeeping.But the body is slender,total longitudinal bending moment and shear force will increase sharply,more slenderness hull is likely to lead to increase the ship navigation safety risk on the high sea state conditions.There fore,it is important to consider motion behavior and global longitudinal strength together when determining the principal dimensions of trimaran main hulls.
trimaran;hull form;series variation;ship motion response;wave load
U661.3
A
10.3969/j.issn.1673-3185.2016.06.002
2016-09-21
時間:2016-11-18 15:19
鄧琦,男,1978年生,碩士,工程師。研究方向:船舶工程毛筱菲(通信作者),女,1962年生,碩士,教授。研究方向:船舶耐波性與波浪載荷。E-mail:mxfzh@whut.edu.cn
http://www.cnki.net/kcms/detail/42.1755.tj.20161118.1519.004.html 期刊網(wǎng)址:www.ship-research.com
鄧琦,毛筱菲,吳銘浩.主體瘦長度對三體船耐波性和波浪載荷的影響[J].中國艦船研究,2016,11(6):8-14. DENG Qi,MAO Xiaofei,WU Minghao.Effect of principal dimensions on seakeeping and wave loads of trimarans[J]. Chinese Journal of Ship Research,2016,11(6):8-14.