趙凌燕,李寶毅
(天津師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,天津300387)
羅爾定理的推廣及其應(yīng)用
趙凌燕,李寶毅
(天津師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,天津300387)
基于羅爾定理,研究2種函數(shù)零點(diǎn)個(gè)數(shù)上界的問題.對(duì)于第1種函數(shù),利用導(dǎo)函數(shù)的性質(zhì)確定了不含間斷點(diǎn)的函數(shù)零點(diǎn)個(gè)數(shù)的上界,進(jìn)而確定了含間斷點(diǎn)的函數(shù)零點(diǎn)個(gè)數(shù)的上界.對(duì)于第2種函數(shù),利用函數(shù)滿足的微分方程的特征確定了函數(shù)零點(diǎn)個(gè)數(shù)的上界.
羅爾定理;零點(diǎn)個(gè)數(shù);零點(diǎn)重?cái)?shù);間斷點(diǎn)
羅爾定理反映了函數(shù)與導(dǎo)函數(shù)之間的內(nèi)在聯(lián)系,對(duì)函數(shù)零點(diǎn)個(gè)數(shù)的研究有重要意義.許多學(xué)者對(duì)羅爾定理的推廣進(jìn)行了研究,這些結(jié)果主要可分為2類:第1類為通過函數(shù)性質(zhì)估計(jì)導(dǎo)數(shù)零點(diǎn)個(gè)數(shù)的下界;第2類為通過導(dǎo)數(shù)性質(zhì)估計(jì)原函數(shù)零點(diǎn)個(gè)數(shù)的上界.第1類推廣較為常見[1-4],第2類推廣相對(duì)較少[5-6],而第2類推廣對(duì)常微分方程極限環(huán)個(gè)數(shù)的研究具有重要意義[7-8].本研究考慮羅爾定理的第2類推廣形式,得到2種函數(shù)零點(diǎn)個(gè)數(shù)的上界.本研究是在原有的羅爾定理推廣上再次進(jìn)行推廣,對(duì)常微分方程極限環(huán)個(gè)數(shù)的確定有重要幫助.
下面的引理是本研究羅爾定理推廣形式的基礎(chǔ).
引理1[6]設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù)可導(dǎo).
(1)若f(n)(x)存在且在開區(qū)間(a,b)內(nèi)有k個(gè)零點(diǎn)(不計(jì)重?cái)?shù)),則f(x)在閉區(qū)間[a,b]上最多有n+k個(gè)零點(diǎn)(不計(jì)重?cái)?shù)).
(2)若f(n)(x)存在且在開區(qū)間(a,b)內(nèi)有k個(gè)零點(diǎn)(計(jì)重?cái)?shù)),則f(x)在開區(qū)間(a,b)內(nèi)最多有n+k個(gè)零點(diǎn)(計(jì)重?cái)?shù)).
推論 設(shè)函數(shù)f(x)是定義在閉區(qū)間[a,b]上的函數(shù),f(x)在開區(qū)間(a,b)內(nèi)有s個(gè)間斷點(diǎn),且f(x)在非間斷點(diǎn)處連續(xù)可導(dǎo).
(1)若f(n)(x)在開區(qū)間(a,b)內(nèi)有k個(gè)零點(diǎn)(不計(jì)重?cái)?shù)),則f(x)在閉區(qū)間[a,b]上除間斷點(diǎn)外最多有(s+ 1)n+k個(gè)零點(diǎn)(不計(jì)重?cái)?shù)).
(2)若f(n)(x)在開區(qū)間(a,b)內(nèi)有k個(gè)零點(diǎn)(計(jì)重?cái)?shù)),則f(x)在開區(qū)間(a,b)內(nèi)除間斷點(diǎn)外最多有(s+ 1)n+k個(gè)零點(diǎn)(計(jì)重?cái)?shù)).
記P(n)(x)為關(guān)于x的n次多項(xiàng)式,deg0=-1,#f為函數(shù)f(x)的零點(diǎn)個(gè)數(shù)(計(jì)重?cái)?shù)).
引理4 設(shè)a≠b,a?Z,對(duì)于非負(fù)整數(shù)n、k,若0≤k≤n,則
其中:Ci,j,s是關(guān)于i、j與s的函數(shù),Qi,j,s(x)=(P(k)(x))(i)·(x+a)n-k-j(x+b)n-k-s,deg(P(k)(x))(i)=k-i,degQi,j,s(x)=(k-i)+(n-k-j)+(n-k-s)=n.
記Q(n)(x)=Qi,j,s(x),則有
證明 設(shè)P(n)(x)=anxn+an-1xn-1+…+a1x+a0,an≠0.利用函數(shù)在x=a處的泰勒展開式以及引理4即可得結(jié)論成立.
#f≤(n0+1)+(k-1)(n1+1)+n1=k+n0+kn1
x的最高次冪指數(shù)是20 161,則函數(shù)f(x)零點(diǎn)個(gè)數(shù)不超過20 161.根據(jù)定理1,,k=2,n0=-1, n1=10,故f(x)的零點(diǎn)個(gè)數(shù)不超過21.
由該例可以看出,定理1可以大幅減小函數(shù)零點(diǎn)個(gè)數(shù)上界的估計(jì)值.
(a)P(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo).
(b)A(x)與B(x)在閉區(qū)間[a,b]上連續(xù),F(xiàn)(x,P)在[a,b]×[mp,Mp]上連續(xù),其中[mp,Mp]是P(x)在[a,b]上的值域.
則有以下結(jié)論成立
(1)若A(x)與B(x)在開區(qū)間(a,b)內(nèi)分別有u*(u*∈N)個(gè)和v*(v*∈N)個(gè)零點(diǎn)(不計(jì)重?cái)?shù)),則函數(shù)
定理2 設(shè)系統(tǒng)P(x)在閉區(qū)間[a,b]上至多有u*+v*+1個(gè)零點(diǎn)(不計(jì)重?cái)?shù)).
(2)若A(x)與B(x)在開區(qū)間(a,b)內(nèi)分別有u(u∈N)個(gè)和v(v∈N)個(gè)零點(diǎn)(計(jì)重?cái)?shù)),則函數(shù)P(x)在開區(qū)間(a,b)內(nèi)至多有u+v+1個(gè)零點(diǎn)(計(jì)重?cái)?shù)).
證明 (1)設(shè)P(x)在閉區(qū)間[a,b]上有k*個(gè)零點(diǎn)x*i(1≤i≤k*),且a≤x*1<x*2<…<x*k*≤b.
當(dāng)B(x*i+1)=0時(shí),則結(jié)論顯然成立.
當(dāng)B(x*i+1)≠0且B(x*i)=0時(shí),設(shè)x*i是B(x)=0的βi次重根,B(x)=(x-x*i)βiB*(x),則必有B*(x*i+0)· B(x*i+1)<0,否則B*(x*i+0)B(x*i+1)>0.由P′(x*i)=,可知P′(x*i+0)P′(x*i+1)>0,由前述證明過程知P(x)在(x*i,x*i+1]內(nèi)至少有1個(gè)零點(diǎn),這與x*i、x*i+1是相鄰2個(gè)零點(diǎn)矛盾.則B*(x*i+0)B(x*i+1)<0,B(x)在(x*i,x*i+1]內(nèi)至少有1個(gè)零點(diǎn).
綜上可知,P(x)的零點(diǎn)的個(gè)數(shù)k*與B(x)的零點(diǎn)個(gè)數(shù)v*滿足:k*-1≤v*,即k*≤v*+1.
②若A(x)在閉區(qū)間[a,b]上有零點(diǎn),下面證明A(x)或B(x)在(x*i,x*i+1]內(nèi)至少有1個(gè)零點(diǎn).
若A(x)在[x*i,x*i+1]上沒有零點(diǎn),則由前面討論可知B(x)在(x*i,x*i+1]內(nèi)至少有1個(gè)零點(diǎn).
若A(x)在(x*i,x*i+1]內(nèi)有零點(diǎn),即存在c∈(x*i,x*i+1],使得A(c)=0,結(jié)論顯然成立.
若A(x*i)=0且A(x)在(x*i,x*i+1]內(nèi)沒有零點(diǎn),則F(x*i,P)P(x*i)+B(x*i)=0,即B(x*i)=0,在(x*i-1,x*i]∪(x*i,x*i+1]上至少存在A(x)或B(x)的2個(gè)零點(diǎn).
綜上可知,A(x)、B(x)和P(x)的零點(diǎn)個(gè)數(shù)u*、v*
和k*滿足k*≤u*+v*+1.
(2)設(shè)P(x)在(a,b)內(nèi)有n個(gè)零點(diǎn)xi(1≤i≤n),且滿足a<x1<x2<…<xn<b,其重?cái)?shù)分別是k1,k2,…,kn,且k1+k2+…+kn=k.
在點(diǎn)xi(1≤i≤n)處,xi是P(x)的ki次重根.由 B(x)=F(x,P)P(x)-A(x)可知,xi是P(x)的至少ki-1次重根.下面證明A(x)或B(x)在(xi,xi+1)內(nèi)至少有1個(gè)零點(diǎn).
當(dāng)A(x)在(xi,xi+1)內(nèi)有零點(diǎn)時(shí),結(jié)論顯然成立.
當(dāng)A(x)在(xi,xi+1)內(nèi)沒有零點(diǎn)且A(xi)=0時(shí),由A(x)=F(x,P)P(x)+B(x),可知B(x)i=-F(xi,P(x)i)·P(xi),則xi是B(x)的至少ki次重根.此時(shí)可看作在(xi-1,xi)與(xi,xi+1)內(nèi)共有A(x)和B(x)的2個(gè)零點(diǎn).
當(dāng)A(x)在[xi,xi+1]內(nèi)沒有零點(diǎn)時(shí),不妨設(shè)A(x)>0(x∈[xi,xi+1])恒成立,則必有B(xi+0)B(xi+1-0)<0.否則B(xi+0)B(xi+1-0)>0,由
可知P′(xi+0)P′(xi+1-0)>0,則有P′(xi+0)>0,P′(xi+1-0)>0或P′(xi+0)<0,P′(xi+1-0)<0.對(duì)這2種情況,由連續(xù)函數(shù)介值存在定理可知,在(xi,xi+1)內(nèi)必存在P(x)的1個(gè)零點(diǎn),與(xi,xi+1)內(nèi)無零點(diǎn)矛盾.所以B(xi+ 0)B(xi+1-0)<0,在(xi,xi+1)內(nèi)存在B(x)的1個(gè)零點(diǎn).
例2 考慮函數(shù)f(x)=A(x)eB(x)+C(x)的零點(diǎn)個(gè)數(shù),其中:A(x)、B(x)和C(x)是關(guān)于x的多項(xiàng)式,由f′(x)=A′(x)eB(x)+A(x)eB(x)B′(x)+C′(x)得
根據(jù)定理2,f(x)零點(diǎn)個(gè)數(shù)不超過
[1]汪軍.廣義羅爾定理及其應(yīng)用實(shí)例[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào):自然科學(xué)版,2000,19(1):93-94.WANG J.The generalized Rolle Theorem and its applied example[J]. Journal of Liaoning Technical University:Natural Science,2000,19(1):93-94(in Chinese).
[2]劉艷,姚邵義.羅爾定理的推廣形式[J].天津師范大學(xué)學(xué)報(bào):自然科學(xué)版,2005,25(2):45-46. LIU Y,YAO S Y.On the generalization of Rolle Theorem[J].Journal of Tianjin Normal University:Natural Science Edition,2005,25(2):45-46(in Chinese).
[3]劉曉玲,閆峰.羅爾定理的三種推廣形式[J].高等數(shù)學(xué)研究,2011,14(5):7-8. LIU X L,YAN F.Three generalizations of Rolle Theorem[J].Studies in College Mathematics,2011,14(5):7-8(in Chinese).
[4]惠菊梅.羅爾定理的推廣形式及應(yīng)用再討論[J].青海大學(xué)學(xué)報(bào):自然科學(xué)版,2007,25(5):82-84.HUI J M.Generalizations of Rolle Theorem and re-discussion of its application[J].Journal of Qinghai University:Natural Science,2007,25(5):82-84(in Chinese).
[5]GASULL A,ILIEV D.Two-dimensional Fuchsian systems and the Chebyshev property[J].Journal of Differential Equations,2003,191:105-120.
[6]段敏敏.一類五次Hamilton系統(tǒng)Abel積分零點(diǎn)個(gè)數(shù)上界的估計(jì)[D].天津:天津師范大學(xué),2014. DUAN M M.Estimation of upper bound of number of zeros for Abelian integrals of a kind of quintic Hamiltonian system[D].Tianjin:Tianjin Normal University,2014(in Chinese).
[7]WANG J.Estimate of the number of zeros of Abelian integrals for a perturbation of hyperelliptic Hamiltonian system with nilpotent center[J]. Chaos Solitons Fractals,2012,45:1140-1146.
[8]ASHEGHI R,ZANGENEH H R Z,ATABAIGI A.On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems[J].Nonlinear Analysis,2012,75:574-587.
(責(zé)任編校 馬新光)
Promotion of Rolle Theorem and it's application
ZHAO Lingyan,LI Baoyi
(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)
On the basis of Rolle Theorem,the upper bounds of numbers of zeros for two kinds of functions are studied.For the first kind,the upper bound of zeros for the functions without discontinuities is determined by using the properties of derived functions,and then the upper bound of zeros for the functions with discontinuities is given.For the second kind,the upper bound of zeros is determined by using the features of the differential equation for the functions.
Rolle Theorem;number of zeros;zero multiplicity;discontinuities
O175.1
A
1671-1114(2016)03-0006-04
2015-09-30
國(guó)家自然科學(xué)基金資助項(xiàng)目(11271046);天津師范大學(xué)博士基金資助項(xiàng)目(52XB1414).
趙凌燕(1993—),女,碩士研究生.
李寶毅(1963—),男,教授,主要從事常微分方程定性理論及其應(yīng)用方面的研究.