魏鳳香 張蕾 王紹娟
?
·講座·
胞外信號(hào)調(diào)節(jié)激酶促進(jìn)DNA損傷反應(yīng)的作用機(jī)制
魏鳳香1,3張蕾1王紹娟2★
[摘要]機(jī)體在長(zhǎng)期進(jìn)化中擁有一整套DNA損傷反應(yīng)(DNA damage response,DDR)系統(tǒng)來保證基因組的完整性,其中最重要的就是通過激活檢驗(yàn)點(diǎn)以阻止細(xì)胞周期進(jìn)程,并修復(fù)損傷的DNA。細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinases,ERK)/絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路是經(jīng)典的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路,具有調(diào)節(jié)細(xì)胞增殖、分化、凋亡等多種功能,二者的功能性聯(lián)系都能調(diào)節(jié)細(xì)胞增殖。本綜述旨在闡述ERK激酶在DNA損傷反應(yīng)中的作用。
[關(guān)鍵詞]DNA損傷反應(yīng)(DDR);胞外信號(hào)調(diào)節(jié)激酶(ERK1/2);細(xì)胞周期阻滯;ATM;ATR
★通訊作者:王紹娟,E-mail:lgwsj@hotmail.com
DNA是大而復(fù)雜的整體,它在細(xì)胞內(nèi)外各種因素的作用下不斷產(chǎn)生損傷。DNA損傷反應(yīng)(DNA damage response,DDR)可通過識(shí)別DNA損傷、激活檢驗(yàn)點(diǎn)以阻斷細(xì)胞周期進(jìn)程,從而修復(fù)損傷的DNA,確保遺傳物質(zhì)準(zhǔn)確地傳遞給子細(xì)胞提供時(shí)間,這是機(jī)體維持基因組穩(wěn)定性的基礎(chǔ)[1]。所有真核生物中,DNA損傷反應(yīng)集中于一對(duì)相關(guān)的蛋白激酶:ATM(ataxia-telangiectasia mutated)和ATR(ATM-and Rad3-related)。DNA損傷可激活A(yù)TM激酶,后者磷酸化其下游的反應(yīng)元件使細(xì)胞周期阻滯。包括激活檢驗(yàn)點(diǎn)激酶2(checkpoint kinases 2,CHK2)和上調(diào)蛋白 p21CIP1。p21CIP1是CDK(cyclin-dependent kinases,CDK)的一種抑制劑[2]。CHK2隨后使CDC25C失活,CDC25C的活性是激活CDK1和CDK2所必需的[3]?;罨疉TM 和ATR,激活檢驗(yàn)點(diǎn),阻滯細(xì)胞周期進(jìn)行。
細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinases,ERK)/絲裂原活化蛋白激酶(mitogen -activated protein kinase,MAPK)通路是經(jīng)典的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路,具有調(diào)節(jié)細(xì)胞增殖、分化、凋亡等多種功能。最新的研究發(fā)現(xiàn)通常在癌細(xì)胞中過表達(dá)并促進(jìn)細(xì)胞增殖的ERK激酶,在DNA損傷反應(yīng)中有重要作用[4]。本文簡(jiǎn)要闡述ATM/ATR介導(dǎo)的DNA損傷反應(yīng),ERK信號(hào)通路,以及ERK在DNA損傷反應(yīng)中的作用。
DNA損傷反應(yīng)是維持真核細(xì)胞基因組完整性與保證遺傳信息準(zhǔn)確傳遞的重要監(jiān)督機(jī)制。ATM、ATR同屬于PIKK家族[1],是DNA損傷檢查點(diǎn)的主要成員,它們被不同類型的DNA損傷所激活。
普遍的觀點(diǎn)認(rèn)為,ATM主要被DNA雙鏈斷裂所激活,對(duì)雙鏈斷裂的ATM反應(yīng)依賴于3個(gè)蛋白的三聚體復(fù)合物:Mre11、Rad50和Nbs1(MRN復(fù)合物),雙鏈斷裂立即在該處快速組裝,并幫助將2個(gè)末端連接在一起。ATM與MRN復(fù)合物中的Nbs1亞單位相互作用,這不僅能將ATM招募到損傷位點(diǎn)處,也能使ATM從無活性的二聚體轉(zhuǎn)變?yōu)橛屑っ富钚缘膯误w形式[5-6]。但最近也有研究顯示,ATM的激活在沒有DNA的情況下,ATP能夠使ATM二聚體發(fā)生分子間自磷酸化(S1981位點(diǎn))[7],導(dǎo)致二聚體的分開,從而引起ATM的激活。最近發(fā)現(xiàn)了ATM發(fā)生自磷酸化的新位點(diǎn):Ser367和Ser1893[8]。ATM的這種自磷酸化對(duì)其自身的激活可能是必需的?;罨腁TM通過磷酸化它的靶蛋白來啟動(dòng)損傷反應(yīng)。
而ATR能被很多不同形式的DNA損傷所激活,包括核苷酸損傷、復(fù)制叉停滯、雙鏈斷裂等,這是因?yàn)锳TR能特定識(shí)別單鏈DNA區(qū)域,且在對(duì)損傷位點(diǎn)處理過程中單鏈DNA的產(chǎn)生對(duì)于反應(yīng)是必需的[9]。ATR招募到單鏈DNA上可能需要通過與包被在單鏈DNA上的單鏈結(jié)合蛋白R(shí)PA相互作用。ATR與單鏈DNA和RPA復(fù)合物的相互作用部分依賴于RPA直接結(jié)合到與ATR相結(jié)合的接頭蛋白亞單位ATRIP。帶有ATRIP突變的細(xì)胞與ATR突變的細(xì)胞有相同的損傷反應(yīng)缺陷,這表明ATRIP在ATR功能上的核心作用[10]。除了ATR-ATRIP復(fù)合物與包被在單鏈DNA上的RPA的結(jié)合是激活A(yù)TR所必需的以外,9-1-1復(fù)合物也是ATR介導(dǎo)的DNA損傷反應(yīng)所必需的[11]。9-1-1復(fù)合物與DNA的結(jié)合依賴于另一個(gè)大復(fù)合物RAD17-RFC,它為9-1-1復(fù)合物裝載到損傷DNA上所必需。9-1-1復(fù)合物與ATR-ATRIP被獨(dú)立地招募到DNA損傷位點(diǎn),隨后9-1-1復(fù)合物招募TOPBP1,TOPBP1能通過與ATR和ATRIP亞基結(jié)合而激活A(yù)TR[12]?;钚訟TR能通過磷酸化一系列下游靶蛋白使細(xì)胞周期進(jìn)程阻滯于S期并起始DNA損傷修復(fù),包括磷酸化位于組蛋白H2AX尾部的SQE序列的S139、p53 S15和CHK1的S345[13]。
2.1ERK MAP激酶
ERK1/2屬于MAPK家族,是Ras/Raf/MEK/ ERK信號(hào)通路的重要成分?;罨腅RK激酶在多種信號(hào)轉(zhuǎn)導(dǎo)通路包括細(xì)胞增殖、分化和凋亡的通路中發(fā)揮作用。MEK1/2酶通過磷酸化Thr-Glu-Tyr位點(diǎn)的Thr183和Tyr185來激活ERK酶[14]。許多對(duì)于細(xì)胞的刺激,例如能激活一些轉(zhuǎn)錄因子及其它一些與細(xì)胞增殖、分化、細(xì)胞周期調(diào)節(jié)和細(xì)胞存活有關(guān)的絲/蘇氨酸激酶的刺激,都能激活ERK1/ERK2。ERK1和ERK2是脯氨酸定向激酶,活化的ERK1/ ERK2將磷酸化底物蛋白中一個(gè)脯氨酸引導(dǎo)的基團(tuán)內(nèi)的絲氨酸或蘇氨酸殘基,S/T-P是ERK1/ERK2進(jìn)行底物識(shí)別的最嚴(yán)格的一致序列。許多ERK底物蛋白包含1~2個(gè)與ERK結(jié)合的位點(diǎn),通過這些位點(diǎn)與ERK結(jié)合后能促進(jìn)底物蛋白的磷酸化,這些位點(diǎn)包括DEJL(結(jié)合ERK、JNK和LXL的部位)和DEF(結(jié)合ERK、FXFP的部位)。它們的一致序列是(R/K)2X2-6(I/L)X(I/L)(X指任何殘基)[15]。
2.2ERK激酶在DNA損傷反應(yīng)中發(fā)揮作用
DNA損傷反應(yīng)與細(xì)胞分裂緊密聯(lián)系。ATM或ATR的激活導(dǎo)致蛋白激酶Chk1和Chk2的活化,Chk1和Chk2對(duì)Cdc25磷酸酶家族的3個(gè)成員有復(fù)雜的抑制效應(yīng),因而Cdk1-cyclingB1的活性被阻斷,阻止了有絲分裂的進(jìn)入。抑制Cdk的活性或阻滯細(xì)胞分裂是ATM或ATR激酶誘導(dǎo)的最終結(jié)果。但最新研究表明,細(xì)胞分裂也能參與DNA損傷反應(yīng)。Cdk的活性能促進(jìn)DNA損傷誘導(dǎo)的ATM或ATR的激活[16]。這能夠給相對(duì)于正常組織細(xì)胞惡性腫瘤細(xì)胞對(duì)基因毒性試劑更加敏感提供部分解釋。
大量研究表明PIKKs的激活受特定的DNA序列和蛋白所調(diào)控,如NBS1對(duì)ATM的激活是必需的,TOPBP1對(duì)ATR的激活是必需的[17]。但是,DNA損傷反應(yīng)中ATM與ATR的激活機(jī)制仍是未知的。因此可根據(jù)現(xiàn)有的研究設(shè)想DNA損傷誘導(dǎo)ERK激酶激活,ERK激酶再促進(jìn)ATM和ATR的活化。
有報(bào)道稱順鉑能強(qiáng)烈誘導(dǎo)卵巢癌細(xì)胞A2780 中ERK的活化,使用ERK活性抑制劑PD98059減少了順鉑誘導(dǎo)的p53 S15的磷酸化[18]。使用U0126抑制ERK活性減少了H9c2細(xì)胞中阿霉素誘導(dǎo)的p53 S15的磷酸化[19]。因S15不直接連接在脯氨酸之后,故ERK1/2不能直接磷酸化p53 S15。S15連接在QE之后,而S/TQE序列是ATM 和ATR的磷酸化位點(diǎn),所以DNA損傷反應(yīng)中的p53 S15是被ATM和ATR磷酸化激活的。由此推斷,ERK激酶是通過促進(jìn)ATM和ATR的激活進(jìn)而增強(qiáng)p53 S15的磷酸化的。有類似的報(bào)道支持上述假設(shè),在U87細(xì)胞中使用MEK抑制劑PD184352抑制ERK活性后,IR誘導(dǎo)ATM的S1981磷酸化形成的核焦點(diǎn)顯著減少[20]。類似的觀察結(jié)果也在MCF7細(xì)胞中發(fā)現(xiàn),U0126減弱了IR誘導(dǎo)的ATR及ATR的下游靶酶包括CHK1的活化、CDC25和CDC2的失活[21]??紤]到ERK1/2作為MEK的主要靶酶,本課題組研究證實(shí)了敲除ERK1或ERK2能顯著減弱ETOP誘導(dǎo)的ATM的激活(ATM S1981的磷酸化及磷酸化的ATM的核焦點(diǎn)),同時(shí)也減弱了ATM的底物的磷酸化,包括rH2AX的S139,p53 S15和CHK2的T68。CHK2通過磷酸化CDC25C的S216使CDC25C失活從而導(dǎo)致G2/M阻滯,敲除ERK1或ERK2能顯著減弱MCF7細(xì)胞中ETOP誘導(dǎo)的CD25C S216的磷酸化并減弱ETOP誘導(dǎo)的G2/M檢驗(yàn)點(diǎn)的阻滯[22]。
總之,DNA損傷反應(yīng)、ERK1和ERK2都能參與調(diào)控細(xì)胞增殖。ERK不僅能促進(jìn)細(xì)胞周期進(jìn)程,也能通過依賴或不依賴于p53的機(jī)制、或處于ATM和ATR的下游、或促進(jìn)ATM和ATR的活性來參與調(diào)控DNA損傷反應(yīng)。
2.3ERK激酶調(diào)控DNA損傷反應(yīng)具有細(xì)胞類型依賴性
ERK通路一般情況下主要由生長(zhǎng)因子激活,但觀察到當(dāng)細(xì)胞受到各種基因毒性刺激(包括電離輻射、紫外線損傷、阿霉素、羥基脲、絲裂霉素C等)時(shí),ERK也能被激活[23]。ERK激酶調(diào)控的檢驗(yàn)點(diǎn)激活具有細(xì)胞類型依賴性。用MEK抑制劑(PD98059和U0126)和MEK1K97M能抑制ERK的活性,這能減弱許多細(xì)胞系中包括NIH3T3、MCF7、MEF和HCT116中依托泊苷和羥基脲誘導(dǎo)的G2/M和S期阻滯[23]。與此一致,敲除ERK1或ERK2基因也能減弱MCF7細(xì)胞中依托泊苷和羥基脲誘導(dǎo)的G2/M或S期阻滯[24]。相反,使用活性誘變劑MEK1Q56P能增強(qiáng)ERK1/2的活性,這能使HU誘導(dǎo)的S期檢驗(yàn)點(diǎn)的激活更加敏感[25]。在果蠅細(xì)胞中發(fā)生的電離輻射誘導(dǎo)的檢驗(yàn)點(diǎn)激活的內(nèi)在原因是由于MEK-ERK通路的作用[26]。在足突狀細(xì)胞中,cyb-9能誘導(dǎo)DNA損傷、細(xì)胞周期阻滯以及ERK的激活,抑制ERK活性能減弱細(xì)胞周期的阻滯[27]。在神經(jīng)細(xì)胞中,MCC能激活ERK,這促進(jìn)了MCC誘導(dǎo)的細(xì)胞凋亡[28]。同樣,活性ERK也能促進(jìn)NIH3T3細(xì)胞中ETOP誘導(dǎo)的細(xì)胞凋亡[23],也能促進(jìn)Hela細(xì)胞中順鉑誘導(dǎo)的細(xì)胞凋亡[29],以及人的惡性膠質(zhì)瘤T98G細(xì)胞中順鉑和UN誘導(dǎo)的細(xì)胞凋亡[30]。但是,也有報(bào)道稱活性ERK抑制骨髓瘤細(xì)胞和白血病細(xì)胞中DNA損傷誘導(dǎo)的凋亡。在人的多種骨髓瘤細(xì)胞中,CHK1的抑制劑能誘導(dǎo)DNA損傷,同時(shí)激活ERK。抑制ERK的活性使MM細(xì)胞中Chk1的抑制劑UCN-01誘導(dǎo)的DNA損傷及凋亡更敏感[31]。同樣,在急性粒細(xì)胞白血?。╝cute myeloid leukemia,AML)、NB4和HL60細(xì)胞中由阿糖胞苷誘導(dǎo)的DNA損傷中均有類似的報(bào)道[32]。此外,對(duì)于DNA損傷誘導(dǎo)的細(xì)胞周期阻滯后的細(xì)胞周期重啟,活性ERK也有作用。KSR1是促進(jìn)MEK調(diào)控ERK激活的一種支架蛋白,它在MMC誘導(dǎo)的ERK的激活中是必需的,去掉KSR1蛋白后使細(xì)胞在經(jīng)歷DNA損傷后不能重新進(jìn)入細(xì)胞周期[33]?;钚訣RK調(diào)節(jié)HeLa細(xì)胞中阿霉素和ETOP誘導(dǎo)的葡萄糖轉(zhuǎn)移酶3的上調(diào)[34],也在電離輻射誘導(dǎo)的NF-κB的激活中發(fā)揮作用[35]??傊?,大量研究結(jié)果證明ERK激酶在DNA損傷反應(yīng)中發(fā)揮重要作用。
雖然損傷DNA誘導(dǎo)ERK激活的機(jī)制仍不清楚,但大量證據(jù)顯示MEK激酶在DNA損傷反應(yīng)中調(diào)控ERK激酶的活性,因?yàn)橛肕EK抑制劑(PD98059,U0126)、MEK siRNA抑制MEK活性后,能抑制各種基因毒試劑誘導(dǎo)的ERK的激活。然而,DNA損傷是否是通過Raf來激活MEK還有待研究。MMC在野生型而不是p53缺陷型MEFs中激活ERK,而ETOP在野生型和p53缺陷型MEFs中均誘導(dǎo)ERK激活。另外,順鉑和紫外線都能在缺乏功能性p53的人惡性膠質(zhì)瘤T98G細(xì)胞中強(qiáng)烈激活ERK。因此,雖然在一定情況下p53可能對(duì)DNA損傷誘導(dǎo)ERK的激活有作用,但p53的功能在DNA損傷誘導(dǎo)的ERK的激活中可能不是必需的。這能解釋至少一半的癌癥患者表達(dá)突變型p53。ATM是電離輻射誘導(dǎo)DNA損傷反應(yīng)的上游激酶,與此一致,有研究稱U87細(xì)胞中電離輻射誘導(dǎo)的ERK的激活部分由ATM調(diào)控。類似的觀察結(jié)果也可從光解誘導(dǎo)的雙鏈損傷中獲得。
近年來開展的大量研究都證實(shí)了MEK/ERK激酶促進(jìn)DNA損傷反應(yīng),然而對(duì)于DNA損傷信號(hào)是如何激活A(yù)TM和ATR的機(jī)制仍然是未知的,故對(duì)于DNA損傷信號(hào)如何激活ERK激酶的機(jī)制也是未知的。但是,基于大量研究表明ERK激酶在DNA損傷反應(yīng)中起重要作用,闡明ERK激酶對(duì)DNA損傷反應(yīng)的生理作用將把ERK-DDR的相關(guān)研究推進(jìn)到一個(gè)新的水平。因?yàn)镸EK/ERK激酶能促進(jìn)ATM和ATR的激活,這增加了ERK激酶在DNA損傷反應(yīng)調(diào)控中的重要性,因此需要闡明該潛在機(jī)制。使用特異性抑制劑阻斷MEK的活性,使DNA損傷誘導(dǎo)的ATM和ATR的激活減弱,這說明ERK激酶促進(jìn)ATM和ATR的激活。那么ERK是直接磷酸化ATM/ATR嗎?還是磷酸化ATM/ATR活化所需的其它成分?這些磷酸化在ATM/ATR的活化中有作用嗎?這些問題都有待解決。
本課題組研究發(fā)現(xiàn)HU強(qiáng)烈誘導(dǎo)ATR的S428磷酸化,且在敲除ERK1和ERK2基因后此事件顯著減弱。磷酸化S428的酶和此事件對(duì)ATR功能的影響均是未知的。S428直接位于脯氨酸之后,此位點(diǎn)能與ERK激酶的特異性底物匹配。此外,ERK激酶在DNA損傷調(diào)控中的生理相關(guān)性將進(jìn)一步在基因敲除的小鼠中進(jìn)行檢測(cè)。
雖然化療藥物通常能誘導(dǎo)DNA損傷,ERK途徑的小分子抑制劑也被積極探索用于癌癥治療。聯(lián)合使用基因毒性藥物和ERK激酶抑制劑用于治療癌癥的想法還需要謹(jǐn)慎考慮。因?yàn)镋RK促進(jìn)DNA損傷反應(yīng),可以設(shè)想上述聯(lián)合療法可能引起DNA損傷的積累。這將增強(qiáng)化療藥物的遺傳毒性效應(yīng)的敏感性。然而,另一方面,抑制ERK激酶的活性可能會(huì)使檢驗(yàn)點(diǎn)的激活減弱因此使有DNA損傷的細(xì)胞增殖。這可能會(huì)導(dǎo)致突變并形成二級(jí)癌癥。因此,更好的了解ERK激酶在DNA損傷反應(yīng)中的作用,將為優(yōu)化這種聯(lián)合療法做好準(zhǔn)備。
參考文獻(xiàn)
[1]Li Z,Pearlman AH,Hsieh P.DNA mismatch repair and the DNA damage response[J].DNA Repair (Amst).2015.Epub ahead of print.
[2]Orlando S,Gallastegui E,Besson A,et al.p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdkcomplexes on the promoters of target genes[J].Nucleic Acids Res,2015,43 (14):6860-6873.
[3]Magni M,Ruscica V,Buscemi G,et al.Chk2 and REGγ-dependent DBC1 regulation in DNA damage induced apoptosis[J].Nucleic Acids Res,2014,42(21):13150-13160.
[4]Tang S,Hou Y,Zhang H,et al.Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT,MEK-ERK,and Wnt-β-catenin signaling pathways[J].Cell Cycle,2015,14(12):1908-1924.
[5]Lee JH,Paull TT.ATM activation by DNA doublestrand breaks through the Mre11-Rad50-Nbs1 complex [J].Science,2005,308(5721)551-554.
[6]Khalil HS,Tummala H,Hupp TR,et al.Pharmacological inhibition of ATM by KU55933 stimulates ATM transcription[J].Exp Biol Med,2012,237(6):622-634.
[7]Liu Q,Xu C,Kirubakaran S,et al.Characterization of Torin2,an ATP-competitive inhibitor of mTOR,ATM,and ATR[J].Cancer Res,2013,73(8):2574-2586.
[8]Kozlov SV,Graham ME,Peng C,et al.Involvement of novel autophosphorylation sites in ATM activation [J].EMBO J,2006,25(15):3504-3514.
[9]Abu-Odeh M,Hereema NA,Aqeilan RI.WWOX modulates the ATR-mediated DNA damage checkpoint response[J].Oncotarget,2015.Epub ahead of print.
[10] Ohashi E,Takeishi Y,Ueda S,et al.Interaction between Rad9-Hus1-Rad1 and TopBP1 activates ATRATRIP and promotes TopBP1 recruitment to sites of UV-damage[J].DNA Repair(Amst),2014,21:1-11.
[11] Navadgi-Patil VM,Burgers PM.The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms[J].Mol Cell,2009,36(5):743-753.
[12] Kar A,Kaur M,Ghosh T,et al.RPA70 depletion in-duces hSSB1/2-INTS3 complex initiate ATR signaling [J].Nucleic Acids Res,2015,43(10):4962-4974.
[13] Awasthi P,F(xiàn)oiani M,Kumar A.ATM and ATR signaling at a glance[J].J Cell Sci,2015,128(23):4255-4262.
[14] Wu PK,Park JI.MEK1/2 Inhibitors:Molecular Activity and Resistance Mechanisms[J].Semin Oncol,2015,42(6):849-862.
[15] Francis DM,Koveal D,Tortajada A,et al.Interaction of kinase-interaction-motif protein tyrosine phosphatases with the mitogen-activated protein kinase ERK2[J]. Plos One,2014,9(3):e91934.
[16] Wu CS,Ouyang J,Mori E,et al.SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway[J]. Genes Dev,2014,28(13):1472-1484.
[17] Zhang J.The role of BRCA1 in homologous recombination repair in response to replication stress:significance in tumorigenesis and cancer therapy[J].Cell Biosci,2013,3(1):11.
[18] Persons DL,Yazlovitskaya EM,Pelling JC.Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin[J].J Biol Chem,2000,275(46):35778-35785.
[19] Wei CD,Li Y,Zheng HY,et al.Palmitate induces H9c2 cell apoptosis by increasing reactive oxygen species generation and activation of the ERK1/2 signaling pathway[J].Mol Med Rep,2013,7(3):855-861.
[20] Booth L,Cruickshanks N,Ridder T,et al.PARP and CHK inhibitors interact to cause DNA damage and cell death in mammary carcinoma cells[J].Cancer Biol Ther,2013,14(5):458-465.
[21] Kolb RH,Greer PM,Cao PT,et al.ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpointactivation[J].Plos One,2012,7(11):e50281.
[22] Wei F,Xie Y,Tao L,et al.Both ERK1 and ERK2 kinases promote G2/M arrest in etoposide-treated MCF7 cells by facilitating ATM activation[J].Cell Signal,2010,22(11):1783-1789.
[23] Ahn YT,Shin IJ,Kim JM,et al.Counteracting the activation of pAkt by inhibition of MEK/Erk inhibition reduces actin disruption-mediated apoptosis in PTEN-null PC3M prostate cancer cell lines[J].Oncol Lett,2013,6(5):1383-1389.
[24] Wei F,Xie Y,Lizh H,et al.ERK1 and ERK2 kinases activate hydroxyurea-induced S-phase checkpoint in MCF7 cells by mediating ATR activation[J].Cell Signal,2011,23(1):259-268.
[25] Wu D,Chen B,Parihar K,et al.ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function[J].Oncogene,2006,25 (8):1153-1164.
[26] Dai Y,Grant S,Dent P.Enhancing CHK1 inhibitor lethality in glioblastoma[J].Cancer Biol Ther,2012,13 (6):379-388.
[27] Tang Y,Chiluiza D,Krishna S,et al.Gain-of-functionmutationsintransientreceptorpotentialC6 (TRPC6)activate extracellular signal-regulated kinases 1/2(ERK1/2)[J].J Biol Chem,2013,288(25):18407-18420.
[28] Lee JH,Kim KT.Regulation of cyclin-dependent kinase 5 and p53 by ERK1/2 pathway in the DNA damageinduced neuronal death[J].J Cell Physiol,2007,210 (3):784-797.
[29] Carmo CR,Lyons-Lewis J,Seckl MJ,et al.A novel requirement for Janus kinases as mediators of drug resistance induced by fibroblast growth factor-2 in human cancer cells[J].Plos One,2011,6(5):e19861.
[30] Hamdi M,Popeijus HE,Carlotti F,et al.ATF3 and Fra1 have opposite functions in JNK-and ERK-dependent DNA damage responses[J].DNA Repair,2008,7 (3):487-496.
[31] Dai Y,Chen S,Pei XY,et al.Interruption of the Ras/ MEK/ERK signaling cascade enhances Chk1 inhibitorinduced DNA damage in vitro and in vivo in human multiple myeloma cells[J].Blood,2008,112(6):2439-2449.
[32] Nishioka C,Ikezoe T,Yang J,et al.Inhibition of MEK signaling enhances the ability of cytarabine to induce growth arrest and apoptosis of acute myelogenous eukemia cells[J].Apoptosis,2000,14(9):1108-1120.
[33] Razidlo GL,Johnson HJ,Stoeger SM,et al.KSR1 is required for cell cycle reinitiation following DNA damage[J].J Biol Chem,2009,284(11):6705-6715.
[34] Watanabe M,Naraba H,Sakyo T,et al.DNA damageinduced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells[J].Mol Cancer Res,2010,8(11):1547-1557.
[35] Ahmed KM,Nantajit D,F(xiàn)an M,et al.Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes[J].Free Radic Biol Med,2009,46(11):1543-1550.
The mechanism of ERK1/2 kinases facilitate DNA damage response
WEI Fengxiang1,3,ZHANG Lei1,WANG Shaojuan2★
(1.The Genetics Laboratory,Longgang District Maternity and Child Healthcare Hospital,Shenzhen,Guangdong,China,518172;2.Department of Obstetrics and Gynecology,Longgang District Renmin Hospital,Shenzhen,Guangdong,China,518172;3.Zunyi Medical University,Zunyi,Guizhou,China,563003)
[ABSTRACT]The DNA damage response(DDR)helps to maintain genome integrity,and a critical event in this process is the prevention of cell division by activating the checkpoint until the DNA lesions can be repaired.The extracellular signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)pathway is a classic pathway for signal transduction and possesses multiple functions in regulating cellular proliferation,differentiation,and apoptosis.The functional connection between the DDR and ERK is the regulation of cell proliferation.This review aims to describe our current understanding of the function of ERK kinases in DDR.
[KEY WORDS]DNA damage response(DDR);Extracellular signal-regulated kinases(ERK1/2);Cell cycle arrest;ATM;ATR
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81201568);深圳市海外高層次人才創(chuàng)新創(chuàng)業(yè)項(xiàng)目(KQCX20120814150420241);深圳市科技計(jì)劃重點(diǎn)項(xiàng)目(201201009)
作者單位:1.深圳市龍崗區(qū)婦幼保健院中心實(shí)驗(yàn)室,廣東,深圳518172 2.深圳市龍崗區(qū)人民醫(yī)院婦產(chǎn)科,廣東,廣州518172 3.遵義醫(yī)學(xué)院,貴州,遵義563003