夏 惠,林 玲,高 帆,倪知游,高麗揚(yáng),呂秀蘭,梁 東*
(1 四川農(nóng)業(yè)大學(xué) 果蔬研究所,成都 611130;2 四川農(nóng)業(yè)大學(xué) 園藝學(xué)院,成都 611130)
?
甜櫻桃‘佐藤錦’果實(shí)生長發(fā)育過程AsA含量及其相關(guān)酶活性的變化
夏 惠1,林 玲2,高 帆2,倪知游2,高麗揚(yáng)2,呂秀蘭1,梁 東1*
(1 四川農(nóng)業(yè)大學(xué) 果蔬研究所,成都 611130;2 四川農(nóng)業(yè)大學(xué) 園藝學(xué)院,成都 611130)
以黃肉甜櫻桃品種‘佐藤錦’為材料,測定了其果實(shí)生長發(fā)育過程中抗壞血酸(AsA)和谷胱甘肽(GSH)的含量變化,及其相關(guān)代謝酶L-半乳糖脫氫酶(GalDH)、L-半乳糖-1-4-內(nèi)酯酶(GalLDH)、單脫氫抗壞血酸還原酶(MDHAR)、脫氫抗壞血酸還原酶(DHAR)、谷胱甘肽還原酶(GR)和過氧化物酶(APX)的活性變化,分析它們在果實(shí)生長發(fā)育過程中對AsA積累所起的作用。結(jié)果表明:(1)‘佐藤錦’果實(shí)生長發(fā)育過程中總抗壞血酸(T-AsA)、還原型抗壞血酸(AsA)、脫氫抗壞血酸(DHA)、氧化型谷胱甘肽(GSSG)含量均在花后0 d最高,隨后持續(xù)下降,而總谷胱甘肽(T-GSH)和還原型谷胱甘肽(GSH)含量先升后降。(2)隨著果實(shí)生長發(fā)育,AsA和DHA的單果積累量均持續(xù)增加,且在果實(shí)第二次快速生長期增幅最大;各相關(guān)代謝酶活性在甜櫻桃果實(shí)生長發(fā)育過程中呈現(xiàn)出不同的變化趨勢,其中GalLDH、MDHAR和DHAR的活性變化同AsA含量變化趨勢基本一致。(3)相關(guān)性分析發(fā)現(xiàn),GalLDH、MDHAR和DHAR的活性與AsA含量呈極顯著正相關(guān)關(guān)系,說明它們是影響甜櫻桃果實(shí)AsA含量的關(guān)鍵酶。
甜櫻桃;果實(shí);抗壞血酸;代謝酶活性
抗壞血酸(ascorbic acid,AsA)又名維生素C(Vc),是植物代謝過程中合成的小分子物質(zhì),在植物體內(nèi)起著重要作用,是重要的抗氧化劑、酶的輔因子、電子供體,影響植物種子發(fā)芽[1]、根系生長發(fā)育[2]、開花[3]、成熟和衰老[4]等,并在維持光合作用、保護(hù)光合器官中起重要作用[5]。在人體上,AsA能作為抗氧化劑消除活性氧對組織細(xì)胞的損傷[6],參與神經(jīng)遞質(zhì)、膠原質(zhì)和脂類的代謝[7],促進(jìn)人體對鋅和鐵的吸收[8]。AsA是人類正常生長發(fā)育所必需的化合物,但人類不能直接合成,因而只能從其它物質(zhì)中獲取,蔬菜及水果則成為人類攝取AsA的主要來源,AsA含量的高低更成為衡量果蔬品質(zhì)高低的重要指標(biāo)之一。
植物AsA的積累是一個動態(tài)變化的結(jié)果,它在不斷合成的同時又在不斷地被氧化,氧化的產(chǎn)物可再生為AsA,也可進(jìn)一步分解代謝。AsA的合成存在多種途徑,其中L-半乳糖途徑是高等植物中首先發(fā)現(xiàn)的合成途徑,也是AsA合成的主要途徑[9]。這一途徑中D-葡萄糖經(jīng)一系列反應(yīng)生成L-半乳糖,通過L-半乳糖脫氫酶(L-galactose dehydrogenase, GalDH)和L-半乳糖-1-4-內(nèi)酯酶(L-galactono-1-4-lactone dehydrogenase, GalLDH)完成兩步脫氫反應(yīng),最終合成AsA。而AsA的再生途徑主要依賴于AsA-GSH的循環(huán),該途徑中抗壞血酸過氧化物酶(ascorbic acid peroxidase, APX)以AsA為電子供體清除活性氧,同時AsA被氧化成單脫氫抗壞血酸(monodehydroascorbate, MDHA),MDHA極不穩(wěn)定,一部分可通過單脫氫抗壞血酸還原酶(monodehydroascorbate reductase, MDHAR)還原成AsA,另一部分則可通過非酶歧化反應(yīng)生成等量的AsA和脫氫抗壞血酸(dehydroascorbate, DHA),DHA可被脫氫抗壞血酸還原酶(dehydroascorbate reductase, DHAR)還原為AsA,也可被進(jìn)一步分解,DHA還原為AsA的過程會將谷胱甘肽(glutathione, GSH)氧化為氧化型谷胱甘肽,又被谷胱甘肽還原酶(glutathione reductase, GR)還原成GSH,最終完成循環(huán),提高AsA的積累量。
甜櫻桃屬薔薇科(Rosaceae)李屬(PrunusL.)櫻亞屬(Cerasus)植物,是人類重要的Vc來源。然而,目前對甜櫻桃果實(shí)AsA的研究僅僅涉及到不同品種含量的測定和比較,對甜櫻桃果實(shí)發(fā)育期AsA積累特性的研究鮮有報道。‘佐藤錦’果肉為黃色,果皮帶紅暈,是四川主要的黃肉甜櫻桃品種。本試驗(yàn)以甜櫻桃品種‘佐藤錦’為材料,研究其果實(shí)發(fā)育過程中AsA、GSH的含量及合成與再生途徑相關(guān)酶的活性變化,分析它們在果實(shí)生長發(fā)育過程中對AsA積累所起的作用,為通過生物技術(shù)或相應(yīng)栽培技術(shù)手段來提高甜櫻桃果實(shí)AsA含量提供理論依據(jù)。
1.1 試材及取樣
供試材料‘佐藤錦’果實(shí)采自四川雅安市漢源縣九襄鎮(zhèn)甜櫻桃示范園,樹齡5~8年,管理條件一致。采樣時間為2015年3~6月,3月27日,全樹70%以上的花瓣已脫落記為花后第0 天,每10 d采1次樣,以單株為試驗(yàn)單元,重復(fù)3次,每次在同一時間(晴朗天氣上午9:00開始)從固定單株的不同部位均勻采集樣品,每次采樣果實(shí)至少30個,總重量不得低于300 g,計數(shù)和稱重后,樣品切片混勻(從第30 天起在果實(shí)表面用刀片垂直切取去核),立即用液氮速凍,分裝保存于-80 ℃冰箱備用。
1.2 AsA、GSH含量測定
AsA含量測定參考Kampfenkel等的方法[10],測525 nm處的吸光值,分別計算AsA含量和T-AsA含量,DHA含量為T-AsA與AsA的差值。AsA積累量為AsA含量與果實(shí)單果重之積。GSH含量測定參考Griffith的方法[11],測定412 nm處二硫雙對硝基苯甲酸的還原量,計算T-GSH和GSSG的含量。GSH含量為T-GSH含量與GSSG含量的差值。GSH積累量為GSH含量與果實(shí)單果重之積。
1.3 GalDH及GalLDH活性測定
GalDH活性參考Gatzek等的方法[12],測定340 nm下NADH的生成量,定義1 min內(nèi)還原1 μmol NAD+或生成1 μmol NADH為1個酶活力單位(U)。GalLDH活性測定參考Oba等的方法[13],25 ℃下測定550 nm處還原態(tài)細(xì)胞色素C(Cyt C)的生成,并定義1 min內(nèi)氧化1 μmol L-半乳糖或生成2 μmol還原態(tài)Cyt C為1個酶活力單位(U)。
1.4 MDHAR、DHAR、GR和APX活性測定
(1) APX、MDHAR、DHAR和GR 酶液的提?。悍Q取3.0 g果實(shí),在含0.1 mmol·L-1EDTA、0.3% Triton X-100和4%(W/V) PVP-40的磷酸緩沖液(50 mmol·L-1,pH7.5)中研磨成勻漿,定容至8 mL,于16 000 ×g、2 ℃離心15 min,上清液即為酶液。(2)各種酶活性測定:MDHAR和DHAR活性參考Ma和Cheng的方法[14],測定265 nm處吸光值變化;GR活性參考Ma和Cheng的方法[14],測定340 nm處吸光值的變化;APX 活性參考Nakano和Asada的方法[15],測定290 nm處吸光值的變化。(3)酶活性單位定義:氧化1 μmol·min-1AsA為1單位(U) APX酶活性;氧化1 μmol·min-1NADH為1單位(U)MDHAR酶活性;還原1 μmol·min-1DHA為1單位(U)DHAR 酶活性;氧化1 μmol·min-1NADPH為1單位(U)GR酶活性。
1.5 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)處理采用Sigma Plot10.0和SPSS17數(shù)據(jù)處理系統(tǒng)。
2.1 甜櫻桃果實(shí)生長發(fā)育過程中AsA含量與積累量的變化
在‘佐藤錦’果實(shí)生長發(fā)育過程中,甜櫻桃果實(shí)中抗壞血酸主要以還原態(tài)的AsA形式存在, 脫氫抗壞血酸(DHA)不足總抗環(huán)血酸含量(T-AsA)的1/4,且均隨生育期表現(xiàn)出下降的趨勢(圖1,A)。其中,甜櫻桃果實(shí)中T-AsA和AsA含量隨生育期的變化趨勢基本一致,均在盛花后0 d含量最高,在花后10 d時分別迅速大幅減少至0 d的59.0%和55.4%;之后處于緩慢下降期,果實(shí)轉(zhuǎn)色后即花后40 d T-AsA和AsA含量又略有上升;到果實(shí)完全成熟時,果實(shí)內(nèi)T-AsA、AsA和DHA含量分別為花后0 d的25.1%、28.8%和12.5%。
同時,甜櫻桃果實(shí)中AsA的積累也發(fā)生在整個果實(shí)生長發(fā)育時期,且T-AsA和AsA積累量的變化趨勢相同(圖1,B)。其中,果實(shí)的快速生長發(fā)育期也是AsA積累的高峰期,花后30 d(第Ⅰ快速生長期)AsA積累量為花后10 d的3.00倍,花后50 d(第Ⅱ快速生長期)AsA積累量為花后40 d的2.00倍?!籼馘\’甜櫻桃果實(shí)成熟時AsA的積累量達(dá)到了每個鮮果1.24 mg。以上結(jié)果說明甜櫻桃果實(shí)中T-AsA和ASA含量在子房期最高,隨著果實(shí)生長發(fā)育而下降;而單果抗壞血酸含量則隨著果實(shí)的生長發(fā)育而持續(xù)積累。
2.2 甜櫻桃果實(shí)生長發(fā)育過程中GSH含量與積累量的變化
‘佐藤錦’果實(shí)生長發(fā)育過程中,果實(shí)T-GSH含量從花后0~20 d緩慢上升,20~30 d快速降低,之后波動不大;GSH含量在花后0 d最低,到花后20 d時迅速上升到最高值,為花后0 d的3.31倍,之后GSH含量減小,在花后30 d后其含量無顯著變化;而氧化型谷胱甘肽(GSSG)含量在花后0 d時最高,之后持續(xù)減小,直到果實(shí)成熟時GSSG含量略有升高(圖2,A)。同時,‘佐藤錦’果實(shí)T-GSH和GSH的積累發(fā)生在整個生長發(fā)育時期(圖2,B),其中的T-GSH積累主要發(fā)生在花后0~20 d及40~50 d,到果實(shí)完全成熟時的積累量為子房時期的20倍;果實(shí)GSH的積累主要發(fā)生在花后0~20 d和30~50 d之間,果實(shí)完全成熟時最終GSH的積累量為花后0 d的64.25倍??梢?,甜櫻桃果實(shí)中T-GSH和GSH含量在果實(shí)生長發(fā)育期呈反‘S’變化,均在花后10~20 d達(dá)到最高值,在果實(shí)生長中后期含量明顯下降;而T-GSH和GSH在單果中的積累量在整個果實(shí)生長過程持續(xù)積累。
同一指標(biāo)內(nèi)不同字母表示發(fā)育時期間在0.05水平存在顯著性差異;下同圖1 ‘佐藤錦’果實(shí)生長發(fā)育過程中AsA含量和積累水平變化The different normal letters within the same character indicate significant difference between growth stages at 0.05 level; The same as belowFig.1 Changes of AsA content and accumulation during fruit growth of ‘Satonishiki’
2.3 甜櫻桃果實(shí)生長發(fā)育過程中AsA及GSH氧化還原能力變化
AsA/DHA、GSH/GSSG的大小代表了AsA和GSH氧化還原程度的高低。由圖3可知,‘佐藤錦’甜櫻桃果實(shí)AsA/DHA及GSH/GSSG比值在第Ⅰ迅速生長發(fā)育期(花后30 d)緩慢增高,而在花后30~40 d果實(shí)緩慢生長發(fā)育期迅速增高,但到果實(shí)第Ⅱ迅速生長發(fā)育期(花后50 d)時AsA/DHA迅速降低,而GSH/GSSG的僅稍有所降低。另外,在甜櫻桃果實(shí)生長發(fā)育過程中AsA/DHA始終明顯高于GSH/GSSG??梢姡籼馘\’甜櫻桃果實(shí)生長發(fā)育過程中AsA、GSH氧化還原程度表現(xiàn)出升高的趨勢,并在花后30~40 d升高最快,且AsA比GSH表現(xiàn)更明顯。
2.4 甜櫻桃果實(shí)生長發(fā)育過程中AsA關(guān)鍵合成酶活性的變化
GalDH和GalLDH是植物AsA合成L-半乳糖途徑中最后兩步反應(yīng)的脫氫酶。如圖4所示,‘佐藤錦’甜櫻桃果實(shí)單位鮮重下GalDH活性變化幅度較大,其先在果實(shí)生長發(fā)育初期迅速增強(qiáng),并于花后10 d時活性達(dá)到最高值,為0 d的1.6倍;之后,其活性迅速大幅度下降,花后30 d后變動不大。而同期GalLDH活性在花后0 d最高,并在0~10 d快速顯著下降,但在花后10 d以后至果實(shí)完全成熟均無顯著變化。因此,可以推測GalLDH是AsA合成途徑中的限速酶,直接影響果實(shí)中AsA含量。
圖2 ‘佐藤錦’果實(shí)生長發(fā)育過程中GSH含量和積累水平變化Fig.2 Changes of GSH content and accumulation during fruit growth of ‘Satonishiki’
圖3 ‘佐藤錦’果實(shí)生長發(fā)育過程中AsA、GSH氧化還原狀態(tài)比值的變化Fig.3 Changes of AsA/DHA ratio and GSH/GSSG ratio during fruit growth of ‘Satonishiki’
圖4 ‘佐藤錦’果實(shí)生長發(fā)育過程中AsA關(guān)鍵合成酶活性的變化Fig.4 Enzyme activities involved in AsA biosynthesis during fruit growth of ‘Satonishiki’
2.5 甜櫻桃果實(shí)生長發(fā)育過程中MDHAR、DHAR、GR和APX活性的變化
AsA在APX的作用下被氧化生成MDHA,最終生成DHA,而MDHA和DHA又可分別被MDHAR、DHAR催化使AsA得以再生。圖5顯示,APX活性在‘佐藤錦’甜櫻桃果實(shí)生長發(fā)育過程中變化幅度較大并維持在很高水平,其先在果實(shí)第Ⅰ迅速生長發(fā)育期持續(xù)上升,于花后30 d活性達(dá)到最大值,此時為0 d的2.94倍,之后10 d內(nèi)迅速下降至接近0 d水平,最終在花后50 d時活性顯著低于子房時期(0 d)。同時,果實(shí)中MDHAR和DHAR的活性變化趨勢基本一致,而且變化幅度較大,它們在花后0 d活性最高,隨后10 d內(nèi)急速顯著下降,花后10 d時活性分別比花后0 d下降了72.04%和68%;之后,2種酶活性隨生育期波動降低,但變化幅度較小,維持在較低水平;在果實(shí)發(fā)育過程中,MDHAR活性在花后前20 d稍高于DHAR活性,之后較明顯低于DHAR活性。另外,果實(shí)中GR活性在甜櫻桃果實(shí)迅速生長發(fā)育期無顯著變化,而在果實(shí)第Ⅱ迅速生長發(fā)育期和生長發(fā)育停滯期活性迅速顯著降低。以上結(jié)果說明在甜櫻桃果實(shí)生長發(fā)育過程中AsA-GSH循環(huán)系統(tǒng)中MDHAR、DHAR和GR的活性呈現(xiàn)出高-低-高-低-高的復(fù)雜變化趨勢,而APX活性比前三者高出2倍以上,且變化趨勢也與前3個酶完全不同,呈單峰形變化。
2.6 甜櫻桃果實(shí)生長發(fā)育過程中AsA積累相關(guān)指標(biāo)的相關(guān)性分析
通過相關(guān)性分析(表1),結(jié)果表明‘佐藤錦’果實(shí)生長發(fā)育過程中T-AsA、AsA和DHA含量與GalLDH、MDHAR和DHAR活性都呈極顯著正相關(guān),相關(guān)系數(shù)均達(dá)到0.92以上。與GSSG含量顯著正相關(guān)。而T-GSH的含量則與GalDH活性呈極顯著正相關(guān),GSSG含量與MDHAR酶活性呈顯著正相關(guān),GSH/GSSG比值與MDHAR和GR活性呈顯著負(fù)相關(guān)。結(jié)果表明,抗壞血酸合成途徑中的GalLDH酶活性和AsA-GSH循環(huán)途徑中的MDHAR和DHAR酶活性對甜櫻桃果實(shí)ASA含量起了關(guān)鍵作用;而果實(shí)中T-GSH含量依賴于GalDH活性。
圖5 ‘佐藤錦’果實(shí)生長發(fā)育過程中APX及AsA-GSH循環(huán)酶活性的變化Fig.5 Activities of APX and enzymes involved in AsA-GSH recycle during fruit growth of ‘Satonishiki’
指標(biāo)IndicatorGalLDGalDHMDHARDHARGRAPXT-AsA0.958**0.30020.971**0.930**0.569-0.252AsA0.959**0.3220.970**0.925**0.570-0.259DHA0.953**0.2410.998**0.942**0.573-0.221T-GSH0.3410.975**0.4460.3260.6640.251GSH-0.7160.360-0.626-0.673-0.1600.419GSSG0.8060.7610.854*0.7630.778-0.013GSH/GSSG-0.866*-0.645-0.811*-0.795-0.842*-0.114
注:*表示顯著水平0.05,而**表示顯著水平0.01
Note,* denotes signification at 0.05, while ** denote signification at 0.01
3.1 甜櫻桃果實(shí)發(fā)育過程中AsA的積累特征
AsA是植物生長發(fā)育所必需的物質(zhì),其代謝分為合成和降解兩個方向,當(dāng)合成速率大于降解速率時AsA就積累。本研究表明,‘佐藤錦’甜櫻桃果實(shí)單位鮮果重AsA含量在花后0 d的子房期最高,然后迅速下降。這可能是由于果實(shí)細(xì)胞處于快速生長發(fā)育期,AsA參與了細(xì)胞分裂引起的[16];也可能是隨著細(xì)胞的膨大,果實(shí)水分加重對AsA起到了稀釋的作用,水分稀釋被認(rèn)為是導(dǎo)致植物果實(shí)發(fā)育期AsA濃度降低的直接原因[17]。另外,本研究從花后40 d起果實(shí)中AsA含量開始緩慢上升,推測可能與甜櫻桃花色苷的合成有關(guān)[18],AsA的抗氧化作用有利于花色苷保持穩(wěn)定狀態(tài)。
AsA的積累發(fā)生在‘佐藤錦’ 果實(shí)生長發(fā)育的整個時期,尤其是快速生長發(fā)育期。這與蘋果[19]、桃[20]、西印度櫻桃[21]果實(shí)AsA的積累趨勢類似;但與此不同的是草莓[22]、番茄[23]等AsA的積累主要發(fā)生在果實(shí)生長發(fā)育后期,而獼猴桃[24]、黑加侖[25]果實(shí)在幼果時期大量積累AsA。
3.2 甜櫻桃果實(shí)生長發(fā)育過程中AsA的合成特征
GalDH是以半乳糖為底物的脫氫酶,GalLDH是以半乳糖醛酸內(nèi)酯為底物的脫氫酶,它們催化合成AsA的L-半乳糖途徑中最后兩步反應(yīng)。本研究‘佐藤錦’甜櫻桃果實(shí)生長發(fā)育過程中GalDH活性呈先升后降,最后穩(wěn)定的變化趨勢;而GalLDH活性在花后0 d最高,10 d以后保持不變。同時,進(jìn)一步相關(guān)性分析表明GalLDH活性與AsA含量水平極顯著正相關(guān),而GalDH活性與AsA的含量相關(guān)性不顯著。因此,推測GalLDH可能在甜櫻桃果實(shí)AsA合成過程中起更關(guān)鍵的作用。
3.3 果實(shí)生長發(fā)育過程中AsA的再生
AsA-GSH循環(huán)影響著細(xì)胞內(nèi)AsA的再生和積累水平。GSH含量越高,DHA還原為AsA的可能性越低,AsA的積累則越少;相反,GSSG含量越高,AsA越有可能被積累。本試驗(yàn)中GSH與AsA水平及DHAR活性的相關(guān)性不顯著,GSH/GSSG比值低于AsA/DHA比值,催化GSSG還原為GSH的GR活性在甜櫻桃果實(shí)生長發(fā)育發(fā)育后期降低,且與GSH/GSSG顯著負(fù)相關(guān),這說明GSH水平對AsA的代謝活動參與程度不高,對甜櫻桃果實(shí)生長發(fā)育過程中AsA的積累不起關(guān)鍵作用。
另外,本研究中甜櫻桃果實(shí)APX活性明顯高于其它酶活性,可有效防止活性氧對細(xì)胞的毒害。MDHAR和DHAR的活性變化趨勢一致,在花后0 d的子房時期最高,之后活性降低,與AsA的含量變化趨勢基本一致。果實(shí)生長發(fā)育前20 d MDHAR活性高于DHAR活性,之后DHAR活性高于MDHAR活性,說明AsA含量的高低主要取決于MDHAR和DHAR的活性。物種不同,AsA的再生過程中起關(guān)鍵作用的酶則不同,草莓[22,26]、藍(lán)莓[27]、番茄[28-29]、蘋果[19]等果實(shí)中MDHAR在對AsA的循環(huán)上起更主要的作用,但對刺梨[17]果實(shí)的研究卻發(fā)現(xiàn)DHAR的反應(yīng)活性和表達(dá)水平均高于MDHAR,至于甜櫻桃果實(shí)MDHAR和DHAR哪個對AsA的積累起更關(guān)鍵的作用,還需進(jìn)一步的研究。
[1] YE N, ZHU G, LIU Y,etal. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds[J].JournalofExperimentalBotany, 2012,63(5): 1 809-1 822.
[2] BARTH C, GOUZD Z A, STEELE H P,etal. A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis[J].JournalofExperimentalBotany, 2010,61(2): 379-394.
[3] KOTCHONI S O, LARRIMORE K E, MUKHERJEE M,etal. Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis[J].PlantPhysiology, 2009,149(2): 803-815.
[4] WANG P, YIN L, LIANG D,etal. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle[J].JournalofPinealResearch, 2012,53(1): 11-20.
[5] IVANOV B N. Role of ascorbic acid in photosynthesis[J].Biochemistry(Moscow), 2014,79: 282-289.
[6] MANDL J, SZARKA A, BANHEGYI G. Vitamin C:update on physiology and pharmacology[J].BritishJournalofPharmacology, 2009,157(7): 1 097-1 110.
[7] KOJO S.Vitamin C: basic metabolism and its function as an index of oxidative stress[J].CurrMedChem, 2004,11:1 041-1 064.
[8] FROSSARD E, BUCHER M, MACHLER F,etal. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition[J].JournaloftheScienceofFoodandAgriculture, 2000,80: 861-879.
[9] WHEELER G L, JONES M A, SMIRNOFF N. The biosynthetic pathway of vitamin C in higher plants[J].Nature, 1998,393(6 683): 365-369.
[10] KAMPFENKEL K, VAN MONTAGU M, INZE D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J].AnalyticalBiochemistry, 1995,225: 165-167.
[11] GRIFFITH O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J].AnalyticalBiochemistry, 1980,106: 207-212.
[12] GATZEK S, WHEELER G L, SMIRNOFF N. Antisense suppression of L-galactose dehydrogenase inArabidopsisthalianaprovides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis[J].ThePlantJournal, 2002,30: 541-553.
[13] OBA K, ISHIKAWA S, NISHIKAWA M,etal. Purification and properties of L-galactono-gama-lactone dehydrogenase,a key enzyme for ascorbic acid biosynthesis, from sweet potato roots[J].JournalofBiochemistry, 1995,117: 120-124.
[14] MA F, CHENG L. The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shade peel[J].PlantScience, 2003,165: 819-827.
[15] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts[J].PlantCellPhysiology, 1981,22: 867-880.
[16] VELJOVIC-JOVANOVIC S D, PIGNOCCHI C, NOCTOR G,etal. Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system[J].PlantPhysiology, 2001,127(2): 426-435.
[17] HUANG M, XU Q, DENG X. L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (RosaroxburghiiTratt)[J].JournalofPlantPhysiology, 2014,171: 1 205-1 216.
[18] PAGE M, SULTANA N, PASZKIEWICZ K,etal. The influence of ascorbate on anthocyanin accumulation during high light acclimation inArabidopsisthaliana: further evidence for redox control of anthocyanin synthesis[J].PlantCellandEnvironment, 2012,35(2): 388-404.
[19] LI M, CHEN X, WANG P,etal. Ascorbic acid accumulation and expression of genes involved in its biosynthesis and recycling in developing apple fruit[J].JournaloftheAmericanSocietyforHorticulturalScience, 2011,136(4): 231-238.
[20] TSUYOSHI I, YUSUKE B, SHINGO T,etal. L-Ascorbate biosynthesis in peach:cloning of six L-galactose pathway-related genes and their expression during peach fruit development[J].PlantPhysiology, 2009,136: 139-149.
[21] BADEJO A A, JEONG S T, GOTO-YAMAMOTO N,etal. Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (MalpighiaglabraL.) fruit at ripening stages[J].PlantPhysiologyandBiochemistry, 2007,45(9): 665-672.
[22] AGIUS F, ARNAYA I, BOTELLA M A,etal. Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression[J].JoumalofExperimentalBotany, 2005,56(409), 37-46.
[23] IOANNIDI E, KALAMAKI M S, ENGINEER C,etal. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions[J].JournalofExperimentalBotany, 2009,60(2): 663-678.
[24] LI M, MA F, LIANG D,etal. Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi[J].PLoSOne, 2010,5(12): e14281.
[25] HANCOCK R D, WALKER PG, PONT S D A,etal. L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway[J].FunctionalPlantBiology, 2007,34(12): 1 080-1 091.
[26] CRUZ-RUS E, AMAYA I, SANCHEZ-SEVILLA J F,etal. Regulation of L-ascorbic acid content in strawberry fruits[J].JournalofExperimentalBotany, 2011,62(12): 4 191-4 201.
[27] LIU F, WANG L, GU L,etal. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry[J].FoodChemistry, 2015,188: 399-405.
[28] STEVENS R, PAGE D, GOUBLE B,etal. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress[J].PlantCellandEnvironment, 2008,31: 1 086-1 096.
[29] BERMUDEZ L, URIAS U, MILSTEIN D,etal. Candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit[J].JournalofExperimentalBotany, 2008,59: 2 875-2 890.
(編輯:裴阿衛(wèi))
Changes of AsA Content and Related Enzyme Activities in Sweet Cherry ‘Satonishiki’ Fruit during Development
XIA Hui1, LIN Ling2, GAO Fan2, NI Zhiyou2, GAO Liyang2, Lü Xiulan1, LIANG Dong1*
(1 Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; 2 College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China)
In this paper, the contents of ascorbic acid (AsA), glutathione (GSH), and related enzyme activities of L-galactose dehydrogenase (GalDH), L-galactono-1-4-lactone dehydrogenase (GalLDH), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and ascorbic acid peroxidase (APX) were investigated during the fruit development in sweet cherry ‘Satonishiki’. The results showed that: (1) the contents of total AsA, AsA, DHA and GSSG was the highest at the 0 day after anthesis (DAA), and then decreased persistently. However, the contents of total GSH and GSH was first increased and then decreased. (2) The accumulation of AsA and GSH increased during the whole growth process of sweet cherry fruit, especially during the second rapid growth period of fruit development. Different enzymes involved in metabolism of AsA showed different patterns during the development of sweet cherry fruit, but the changes of GalLDH, MDHAR and DHAR activities were similar to that of AsA. (3) The correlation analysis showed that they had a significantly positive correlation with the content of AsA, which indicated that they may be the key enzymes of AsA accumulation in sweet cherry fruit.
sweet cherry; fruit; ascorbic acid; enzyme activity
1000-4025(2016)10-2008-07
10.7606/j.issn.1000-4025.2016.10.2008
2016-06-01;修改稿收到日期:2016-10-24
四川省教育廳重點(diǎn)項目(16ZA0024);四川農(nóng)業(yè)大學(xué)學(xué)科建設(shè)雙支計劃(2015年)
夏 惠(1978-),女,博士,副研究員,主要從事果實(shí)品質(zhì)調(diào)控研究。E-mail:susanxia_2001@163.com
*通信作者:梁 東,博士,副教授,碩士生導(dǎo)師,主要從事果實(shí)品質(zhì)調(diào)控研究。 E-mail:liangeast@sina.com
Q945.6+4
A