朱光旭,王金祥,周 芳,李自安,劉菊芬,阮光萍,白盈盈,潘興華
骨髓源性脂肪祖細(xì)胞培養(yǎng)及生物學(xué)特性研究
朱光旭,王金祥,周 芳,李自安,劉菊芬,阮光萍,白盈盈,潘興華
目的體外培養(yǎng)骨髓脂肪祖細(xì)胞(BMAPs),比較其與骨髓間充質(zhì)干細(xì)胞(BMSCs)在形態(tài)、表型特征、成脂肪分化能力以及脂肪分化相關(guān)基因表達(dá)方面的差異。方法無(wú)菌取1~2月齡雄性SD大鼠的股骨和脛骨骨髓制作細(xì)胞懸液,EBM-2 (含20%FBS、15 μg/ml ECGs)培養(yǎng)基差速貼壁法培養(yǎng)第3次貼壁細(xì)胞,取傳代至第3~5代細(xì)胞用于實(shí)驗(yàn)。流式細(xì)胞分析檢測(cè)CD34、CD44、CD45及CD90表達(dá);STEMPROAdipogenesis Differentiation Kit檢測(cè)細(xì)胞成脂肪分化能力;實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(real-time qPCR)檢測(cè)過(guò)氧化物酶體增殖激活受體γ(Ppaγ)、脂肪酸結(jié)合蛋白4(Fabp4)、脂蛋白脂肪酶(Lpl)、CCAAT/增強(qiáng)子結(jié)合蛋白α(Cebpa)、葡萄糖轉(zhuǎn)運(yùn)蛋白4(Slc2a4)及前脂肪細(xì)胞因子1(pread1)mRNA表達(dá)水平。結(jié)果傳代接種培養(yǎng)24 h后,BMSCs形態(tài)上呈寬大、扁平狀,而B(niǎo)MAPs大部呈長(zhǎng)三角狀;接種48 h后,BMSCs排列更為有序,而B(niǎo)MAPs多交織成網(wǎng)狀。BMAP表達(dá)CD34、CD44、CD45及CD90,BMSC表達(dá)CD44及CD90,未檢測(cè)到CD34和CD45表達(dá)。誘導(dǎo)培養(yǎng)后第4 d,BMAPs成脂率顯著高于BMSCs(P<0.01);到第8 d,BMAPs成脂率為(87.2±11.67)%,BMSCs成脂率為(18.5±10.2)%,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01)。誘導(dǎo)分化后第4、8 d,Cebpa、Fabp4、Lp1、Ppaγ和Slc2a4 mRNA在BMAPs表達(dá)水平均顯著高于BMSCs(P<0.01)。結(jié)論本實(shí)驗(yàn)獲得了1種具有干細(xì)胞的生物學(xué)特性,高表達(dá)脂肪分化相關(guān)的特異性基因,可高效均質(zhì)性地分化為脂肪細(xì)胞的BMAPs。
骨髓;脂肪祖細(xì)胞;間充質(zhì)干細(xì)胞;脂肪細(xì)胞;分化
骨質(zhì)疏松癥患者往往伴隨了骨髓肥胖,而骨髓脂肪細(xì)胞的生成造成的骨髓脂肪堆積是促進(jìn)骨髓疏松癥發(fā)病進(jìn)程的關(guān)鍵[1]。骨髓間充質(zhì)干細(xì)胞(BMSCs)可以向脂肪細(xì)胞分化,但其成脂肪分化能力并不一致。文獻(xiàn)報(bào)道,人原代培養(yǎng)的BMSC在體外誘導(dǎo)時(shí),絕大部分細(xì)胞并不能分化為脂肪細(xì)胞[2],因此,骨髓內(nèi)可能存在其他具有脂肪細(xì)胞分化潛能的細(xì)胞。在正常骨髓,隨著年齡的增長(zhǎng),相當(dāng)一部分紅骨髓會(huì)被黃骨髓取代,而黃骨髓內(nèi)主要包含大量脂肪細(xì)胞,因此,研究骨髓脂肪堆積和骨髓細(xì)胞脂肪分化及其機(jī)制有重要的潛在醫(yī)學(xué)價(jià)值。骨髓內(nèi)主要包含造血干細(xì)胞和基質(zhì)細(xì)胞兩種類(lèi)型的干細(xì)胞[3],二者均具有多向分化潛能,造血干細(xì)胞在適當(dāng)培養(yǎng)條件下可被誘導(dǎo)分化為內(nèi)皮祖細(xì)胞[4],骨髓內(nèi)干細(xì)胞是否也可以被誘導(dǎo)培養(yǎng)分化為脂肪祖細(xì)胞(BMAPs),未見(jiàn)研究報(bào)道。本實(shí)驗(yàn)應(yīng)用內(nèi)皮基礎(chǔ)培養(yǎng)基-2(EBM-2)聯(lián)合內(nèi)皮生長(zhǎng)因子添加劑(ECGs),在含20%胎牛血清條件下,差速貼壁法去除BMSCs與其他類(lèi)型單個(gè)核細(xì)胞后,培養(yǎng)出一類(lèi)具備較強(qiáng)的成脂肪分化能力和一定成骨分化能力的細(xì)胞。
1.1 實(shí)驗(yàn)材料 1~2月齡雄性SD大鼠由昆明醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供,動(dòng)物實(shí)驗(yàn)經(jīng)倫理委員會(huì)批準(zhǔn)。DMEM/F12干粉培養(yǎng)基(Hyclone公司),優(yōu)質(zhì)胎牛血清 (FBS,PAA公司),GoScript反轉(zhuǎn)錄系統(tǒng)、逆轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng) (RT-PCR)marker、GoTaqqPCRMaster M iX(Progema公司),STEMPROOsteogenesis Differentiation Kit(Gibco),STEMPROAdipogenesis Differentiation Kit(Gibco),內(nèi)皮基礎(chǔ)培養(yǎng)基-2(EBM-2,Lonza),內(nèi)皮生長(zhǎng)因子添加劑(ECGs, Millipore),PE-抗大鼠CD34(abcam),F(xiàn)ITC-抗大鼠CD45(ebioscience),PE-抗大鼠 CD44(ebioscience),F(xiàn)ITC-抗大鼠CD90 (ebioscience),4’,6-二脒基-2-苯基吲哚(DAPI,Sigma),實(shí)時(shí)定量PCR儀以及凝膠掃描儀(Bio-RAD),FT-6000酶標(biāo)儀(RAYTO公司),流式細(xì)胞分析儀(FACScan,Becton Dickinson)。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng) 脫臼處死SD大鼠,無(wú)菌取股骨和脛骨,PBS沖洗骨髓入無(wú)菌培養(yǎng)皿,輕輕吹打使細(xì)胞分散,將細(xì)胞懸液轉(zhuǎn)移到離心管,靜置8~10 min,使組織塊沉降到管底,轉(zhuǎn)移細(xì)胞懸液到另一離心管,1500 r/m離心5 min棄上清,以EBM-2(含20%FBS、15 μg/ml ECGs及青、鏈霉素各100 U/ml)培養(yǎng)基小心吹打混勻,以1×107/cm2接種于培養(yǎng)瓶,37℃、5%CO2條件下培養(yǎng)。24 h后棄貼壁細(xì)胞,轉(zhuǎn)移細(xì)胞懸液到另一培養(yǎng)瓶,再次孵育24 h后棄貼壁細(xì)胞,轉(zhuǎn)移細(xì)胞懸液到另一新培養(yǎng)瓶繼續(xù)培養(yǎng);48 h后再次棄懸浮細(xì)胞,對(duì)第3次貼壁細(xì)胞進(jìn)行培養(yǎng),以后每4 d換一次液,待細(xì)胞鋪滿瓶底約80%~90%后,進(jìn)行傳代培養(yǎng),取第3~5代細(xì)胞用于實(shí)驗(yàn)。
1.2.2 流式細(xì)胞分析 取P4細(xì)胞制作細(xì)胞懸液,取3×105細(xì)胞與含1~2%的牛血清白蛋白和0.1%疊氮鈉的冷PBS稀釋的相應(yīng)抗體在4℃孵育45 min,以PBS或同型抗體為對(duì)照,孵育完畢后加入冷PBS 1 ml,離心洗滌2次,以除去未結(jié)合的多余抗體成分。加入冷PBS 500 μl,吹打混勻,置流式管中,4℃避光保存、待測(cè)。對(duì)非直接熒光標(biāo)記抗體,用含1%~2%的牛血清白蛋白和0.1%疊氮鈉的冷PBS稀釋第1抗體,輕輕吹打混勻,4℃或置冰上孵育1.5 h;離心棄上清,加入含1%~2%的牛血清白蛋白和0.1%疊氮鈉的冷PBS稀釋第2抗體,4℃或置冰上孵育避光30 min;將細(xì)胞重新懸浮于500 μl PBS中混勻,置流式管中,4℃冰箱避光保存,流式細(xì)胞分析儀進(jìn)行檢測(cè)。
1.2.3 成脂、成骨分化實(shí)驗(yàn) 成脂誘導(dǎo):消化收集P4代細(xì)胞,按照1×104個(gè)/cm2接種到12孔板中靜置培養(yǎng),至細(xì)胞100%甚至是過(guò)度融合時(shí),棄培養(yǎng)液,加入成脂分化誘導(dǎo)液培養(yǎng),每隔3 d換液。誘導(dǎo)培養(yǎng)14 d后,用4%多聚甲醛固定細(xì)胞,進(jìn)行油紅O染色。采用DAPI標(biāo)記細(xì)胞核,檢測(cè)DAPI陽(yáng)性細(xì)胞數(shù),同一視野下觀察脂肪細(xì)胞分布及數(shù)量,計(jì)算公式為:脂肪細(xì)胞百分率=(油紅O染色陽(yáng)性細(xì)胞數(shù)÷細(xì)胞總數(shù))×100%。成骨誘導(dǎo):將P4代細(xì)胞按照5× 103/cm2接種到12孔板中靜置培養(yǎng),至細(xì)胞60%融合狀態(tài)時(shí),棄培養(yǎng)液,加入成骨誘導(dǎo)液連續(xù)培養(yǎng),每隔3 d換液,培養(yǎng)21 d后,用4%多聚甲醛固定細(xì)胞,加入茜素紅進(jìn)行染色。
1.2.4 實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)檢測(cè)基因表達(dá) 按照GoScript反轉(zhuǎn)錄試劑說(shuō)明,取細(xì)胞進(jìn)行mRNA提取并進(jìn)行反轉(zhuǎn)錄,獲得cDNA。所獲得的cDNA用GoTaqqPCRMaster MiX,按照操作說(shuō)明進(jìn)行實(shí)時(shí)定量PCR測(cè)定。以甘油醛-3-磷酸脫氫酶(GAPDH)作內(nèi)參照。反應(yīng)條件為50℃2 min,95℃變性10 min→95℃15 s→55℃退火1 min→72℃延伸30 s,循環(huán)次數(shù)35次,溶解曲線65~55℃,增量0.5℃5 s。反應(yīng)結(jié)束后各取PCR產(chǎn)物4 μl,進(jìn)行1.7%瓊脂糖電泳,用Gel Doc 2000凝膠圖像掃描儀分析。所需PCR引物應(yīng)用Primer3web version 4.0.0(http://primer3.ut.ee/)設(shè)計(jì)(表1)。
表1 實(shí)時(shí)定量聚合酶鏈?zhǔn)椒磻?yīng)引物
2.1 培養(yǎng)細(xì)胞的生長(zhǎng)特征與成骨及成脂肪分化
由于BMSCs同樣具有成脂肪分化能力,因此以BMSCs為對(duì)比進(jìn)行分析。接種后24 h,BMSCs形態(tài)上呈寬大、扁平狀(圖1D),第三次貼壁細(xì)胞(BMAPs)大部呈三角狀 (圖1A);接種后培養(yǎng)48 h,相較于BMAPs,BMSCs排列更為有序(圖1E),前者多交織成網(wǎng)狀(圖1B);在融合生長(zhǎng)期,BMSCs的有序排列狀況(圖1F)較BMAPs(圖1C)更為明顯,呈漩渦式生長(zhǎng)。成骨分化實(shí)驗(yàn)表明,BMSCs和BMAPs均能夠被誘導(dǎo)向成骨細(xì)胞(圖1G和H)和脂肪細(xì)胞(圖1I和J)分化。
2.2 BMAPs和BMSCs的表面標(biāo)志表達(dá) 流式細(xì)胞分析表明BMAPs表達(dá)CD34、CD44、CD45及CD90等表面標(biāo)志,其中CD34表達(dá)率為(86.6±6.7)%,CD44表達(dá)率為 (92.1±7.9)%,CD45表達(dá)率為 (88.4±3.6)%,CD90表達(dá)率為(81.3±7.8)%。BMSCs主要表達(dá)CD44以及CD90,未檢測(cè)到CD34和CD45表達(dá),其中CD44表達(dá)率為(88.1±3.1)%,CD90表達(dá)率為(73.4±6.2)%。見(jiàn)圖2。
2.3 BMAPs與BMSCs脂肪細(xì)胞分化能力的比較
BMAPs與BMSCs均可以被誘導(dǎo)分化為脂肪細(xì)胞,但是二者向脂肪細(xì)胞分化能力有顯著區(qū)別(圖3)。誘導(dǎo)培養(yǎng)后第4、8 d,BMAPs成脂率為(47.6±4.7)%,顯著高于BMSCs組的(4.4±3.2)%(P<0.01);到第8 d,BMAPs成脂率為(87.2±11.67)%,同樣顯著高于BMSCs組的(18.5±10.2)%(P<0.01)。見(jiàn)圖3。
2.4 脂肪相關(guān)基因在BMAPs與BMSCs成脂肪分化誘導(dǎo)中的表達(dá)變化 Ppaγ、Fabp4、Lpl、Cebpa、Slc2a4及 pread1等 6種脂肪分化標(biāo)志基因在BMAPs呈不同程度表達(dá) (圖4A),real-time PCR檢測(cè)結(jié)果表明,除了 pread1外,Cebpa、Fabp4、Lp1、Ppaγ和Slc2a4總體上在BMSCs和BMAPs的表達(dá),均隨脂肪誘導(dǎo)分化而升高,而pread1隨脂肪誘導(dǎo)分化而降低;到誘導(dǎo)分化后第4、8 d,Cebpa、Fabp4、Lp1、Ppaγ和 Slc2a4在BMAPs表達(dá)均顯著高于在BMSCs的表達(dá)(P<0.01),即使在未進(jìn)行誘導(dǎo)分化前,Cebpa、Ppaγ和Fabp4、特別是Fabp4在BMAPs的表達(dá)也顯著高于在BMSCs表達(dá)(P<0.01)。
新近研究證實(shí),骨髓來(lái)源干細(xì)胞參與了哺乳動(dòng)物的脂肪生成[6],骨髓可以被看作為BMAPs的儲(chǔ)存庫(kù)[6],但骨髓內(nèi)是否存在BMAPs的研究較少。BMSCs已被證實(shí)可以向脂肪細(xì)胞分化,但人原代培養(yǎng)BMSCs在體外誘導(dǎo)時(shí)絕大部分細(xì)胞并不能分化為脂肪細(xì)胞[2],因此,很難把BMSCs等同于BMAPs。Lu等[5]應(yīng)用免疫磁珠從 BMSCs分離獲得的 Sca-1+、CD73-、CD90-、CD105+細(xì)胞亞群具有極強(qiáng)的成脂肪分化能力,且命名為BMAPs,但該亞群細(xì)胞僅占BMSCs微小部分。
本實(shí)驗(yàn)應(yīng)用EBM-2培養(yǎng)基聯(lián)合ECGs,在含20%FBS條件下,培養(yǎng)第三次貼壁的骨髓單個(gè)核細(xì)胞,理論上排除了BMSCs和其他類(lèi)型單個(gè)核細(xì)胞污染。與BMSCs比較,培養(yǎng)細(xì)胞形態(tài)上略有區(qū)別,接種培養(yǎng)24 h后,該細(xì)胞大部分呈三角狀,而B(niǎo)MSCs呈寬大、扁平狀。培養(yǎng)48 h后,BMSCs排列更為有序,前者多交織成網(wǎng)狀;在融合生長(zhǎng)期,BMSCs的有序排列狀況更為明顯,呈漩渦式生長(zhǎng)。成骨分化實(shí)驗(yàn)表明,二者均具有向成骨細(xì)胞分化能力,但誘導(dǎo)培養(yǎng)后第4 d,該細(xì)胞成脂率顯著高于BMSCs組,到第8 d該細(xì)胞成脂率高達(dá)為(87.2±11.67)%,而B(niǎo)MSCs組僅為(18.5±10.2)%。由于具有極高的成脂肪細(xì)胞分化能力,并且具有干細(xì)胞多向分化特性,表明該細(xì)胞具有BMAPs屬性。
圖1 培養(yǎng)BMAPs和BMSCs的生長(zhǎng)特征及成骨、成脂分化
圖2 BMAPs和BMSCs的表型分析結(jié)果
圖3 BMAPs與BMSCs向脂肪細(xì)胞分化能力
圖4 脂肪相關(guān)基因在BMAPs和BMSCS成脂分化過(guò)程中的表達(dá)變化
流式細(xì)胞分析表明,BMAPs表達(dá)CD34、CD44、CD45以及CD90等表面標(biāo)志,其中CD34表達(dá)率高達(dá)為(86.6±6.7)%。在骨髓,CD34是HSCs的主要標(biāo)志,表明該細(xì)胞應(yīng)由HSCs分化而來(lái);CD45表達(dá)率為(88.4±3.6)%。BMSCs主要表達(dá)CD44以及CD90,未檢測(cè)到CD34和CD45表達(dá)。Ppaγ[7-8]、Cebpa和Fabp4[5,9]以及Slc2a4[10]是脂肪分化相關(guān)特異性轉(zhuǎn)錄因子,在脂肪生成的調(diào)節(jié)中起關(guān)鍵作用。Ppaγ、Cebpa和Fabp4在脂肪分化早期即有表達(dá),且它還可調(diào)控其他脂肪細(xì)胞特異性基因的表達(dá),從而調(diào)控成脂肪分化。通過(guò)RT-PCR技術(shù)檢測(cè)這些相關(guān)基因的表達(dá),結(jié)果表明包括 pread1、Ppaγ、Cebpa和Fabp4,在BMAPs表達(dá)的水平均顯著高于在BMSCs表達(dá);Ppaγ、Cebpa、Fabp4、Lp1和 Slc2a4均隨細(xì)胞脂肪分化而顯著上升,BMAPs各組的表達(dá)水平均顯著高于在BMSCs表達(dá),而pread1則隨成脂肪細(xì)胞誘導(dǎo)分化而顯著降低,特別是誘導(dǎo)后第8 d,pread1在BMAPs表達(dá)水平顯著低于其在BMSCs的表達(dá)。
本實(shí)驗(yàn)所獲得的細(xì)胞具有成骨和成脂肪分化潛力,具有干細(xì)胞的生物學(xué)特性,同時(shí)高表達(dá)脂肪分化相關(guān)的特異性基因,可高效均質(zhì)性地分化為脂肪細(xì)胞,可定義為BMAPs,結(jié)果為肥胖以及脂肪組織增生的研究提供了新的理論基礎(chǔ)和細(xì)胞模型。
[1] Rosen CJ,Ackert-Bicknel C,Rodriguez JP,et al.Marrow fat and the bone microenvironment:developmental,functional,and pathological implications[J].Crit Rev Eukaryot Gene Expr,2009, 19(2):109-124.
[2] Russel KC,DG Phinney,MR Lacey,et al.In vitro high capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitmen[J].Stem Cells,2010,28:788-798.
[3] Oswald J,Boxberger S,Jθrgensen B,et al.Mesenchymal stem cells can be differentiated into endothelial cells in vitro[J].Stem Cells,2004,22(3):377-384.
[4] Asahara T,Murohara T,Sullivan A,et al.Isolation of putative progenitor endothelial cells for angiogenesis[J].Science,1997, 275(5302):964-967.
[5] Lu Q,Liu H,Cao T.Efficient isolation of bone marrow adipocyte progenitors by silica microbeads incubation[J].Stem Cells Dev, 2013,22(18):2520-2531.
[6] Rydén M,Uzunel M,H?rd JL,et al.Transplanted bone marrow-derived cells contribute to human adipogenesis[J].Cell Metab,2015,22(3):408-417.
[7] 張艷,劉友學(xué).脂肪細(xì)胞分化過(guò)程中的分子事件 [J].兒科藥學(xué)雜志,2008,14(1):56-57.
[8] 高宇,余慶雄,李青峰.脂肪干細(xì)胞體外誘導(dǎo)分化的研究進(jìn)展[J].組織工程與重建外科雜志,2014,10(2):106-108.
[9] Gao Y,Sun Y,Duan K,et al.CpG site DNA methylation of the CCAAT/enhancer-binding protein,alpha promoter in chicken lines divergently selected for fatness[J].Anim Genet,2015,46(4): 410-417.
[10] Lee N,Kim I,Park S,et al.Creatine inhibits adipogenesis by downregulating insulin-induced activation of the phosphatidylinositol 3-kinase signaling pathway[J].Stem Cells Dev,2015,24(8):983-994.
Study on culture and biological characteristics of BMAPCs
Zhu Guangxu1,Wang Jinxiang1,Zhou Fang1,2,Li Zi'an1,Liu Jufen1,Ruan Guangping1,Bai Yingying1,2,Pan Xinghua11.Cell Biological Therapy Center,Kunming General Hospital of Chengdu Military Command,Kunming,Yunnan,650032,China;National Joint Engineering Laboratory of Stem Cells and Immune Cells and Biological Medicine Technology,Kunming,Yunnan,650032, China;Key Laboratory of Cell Therapy Technology and Translational Medicine of Yunnan Province,Kunming,Yunnan,650032, China;2.Clinical College of Kunming General Hospital of Chengdu Military Command,Kunming Medical University,Kunming, Yunnan,650032,China
Objective To explore the difference in morphology,phenotypic characteristics,capacity to differentiate into fat cells and expressions of genes relevant to differentiation into fat cells between bone marrow adipocyte progenitor cells(BMAPCs)and bone mesenchymal stem cells(BMSCs).MethodsThe femoral and tibial bone marrow of male SD rats aged one to two months was sampled in a sterile manner to prepare cell suspension.The third adherent cells were cultivated by differential adhesion method in EBM-2 (containing 20%FBS,15 μg/m l ECGs)culture media.Passage three(P3)-passage five(P5)of the third adherent cells were used in the experiments.The expressions of CD34,CD44,CD45 and CD90 were detected by flow cytometry;the capacity of cells to differentiate into fat cells was detected by STEMPROAdipogenesis Differentiation Kit.The levels of Ppaγ,Fabp4,Lpl,CCAAT/enhancer binding protein α(Cebpa),glucose transporter(GLUT)4(Slc2a4)and pread1 mRNA were detected by real-time qPCR.Results24 hours after the passage inoculation culture,BMSCs were wide and flat in morphology,while the most of BMAPCs were in long triangle shape.48 hours after the inoculation,the arrangement of BMSCs was more orderly,while most BMAPCs were interwoven into a network.BMAPCs expressed CD34,CD44,CD45 and CD90;BMSCs expressed CD44 and CD90,CD34 and CD45 were not expressed.On the fourth day after the induction culture,the fat cell percentage of BMAPCs was significantly higher than that of BMSCs(P<0.01);on the eighth day,the fat cell percentage of BMAPCs was(87.2±11.67)%,while that of BMSCs was(18.5±10.2)%, showing a more significantly difference(P<0.01).On the fourth and eighth day after the induction differentiation,the levels of Cebpa, Fabp4,Lp1,Ppaγ and Slc2a4 mRNA in BMAPCs were significantly higher than those in BMSCs(P<0.01).ConclusionOne kind of BMAPCs which have the biological characteristics of stem cells and high levels of distinctive genes relevant to differentiation into fat cells and can be effectively and homogenously differentiated into fat cells are obtained in the experiment.
BMAPC;MSC;fat cell;differentiation
R 318.1
A
1004-0188(2016)12-1386-06
10.3969/j.issn.1004-0188.2016.12.010
2016-07-04)
國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BI01B00);國(guó)家自然科學(xué)基金(81170316);云南省科技計(jì)劃項(xiàng)目(20111HB050,2013DA004)
650032昆明,成都軍區(qū)昆明總醫(yī)院細(xì)胞生物治療中心,干細(xì)胞與免疫細(xì)胞生物醫(yī)藥技術(shù)國(guó)家地方聯(lián)合實(shí)驗(yàn)室,云南省細(xì)胞治療技術(shù)轉(zhuǎn)化醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室(朱光旭,王金祥,周 芳,李自安,劉菊芬,阮光萍,白盈盈,潘興華);昆明醫(yī)科大學(xué)成都軍區(qū)昆明總醫(yī)院臨床學(xué)院(周 芳,白盈盈)
潘興華:E-mail:panxinghua@aliyun.com