康秀文,石遠(yuǎn)峰,謝永鵬,陳曉兵,李小民
康秀文,石遠(yuǎn)峰,謝永鵬,陳曉兵,李小民
目的探討腹腔感染致膿毒癥患者外周血血清淀粉樣蛋白 A( serum amyloid A protein,SAA)、程序性細(xì)胞死亡因子-1(programmed cell death-1, PD-1)、及 CD4+、CD8+T細(xì)胞的表達(dá)。方法選擇2014-01至2015-12連云港市某人民醫(yī)院重癥監(jiān)護(hù)病房(intensive care unit, ICU)收治的37例腹腔感染致膿毒癥患者為研究對象,根據(jù)病情分為膿毒癥組(20例)和嚴(yán)重膿毒癥休克組(17例),另選18名健康人作為對照組?;颊咴谄鸩∪肟茣r(shí)抽取外周血,采用酶聯(lián)免疫吸附法(enzyme-linked immunoassay,ELISA)檢測SAA、PD-1的濃度,流式細(xì)胞儀檢測外周血T細(xì)胞亞群CD+、4的表達(dá)。結(jié)果與健康對照組比,膿毒癥組、嚴(yán)重膿毒癥及休克組外周血SAA濃度升高,PD-1濃度降低,T細(xì)胞比率、比值升高T細(xì)胞比率降低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);與膿毒癥組相比,嚴(yán)重膿毒癥及休克組外周血SAA濃度更高,PD-1濃度更低,細(xì)胞比率、比值更高,CD8+T細(xì)胞比率更低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論外周血SAA、PD-1及T細(xì)胞可作為腹腔感染致膿毒癥患者病情的監(jiān)測指標(biāo),且病情越重?cái)?shù)值變化越大。
腹腔感染;膿毒癥;血清淀粉樣蛋白A;程序性細(xì)胞死亡因子-1
膿毒癥是指由感染導(dǎo)致的宿主全身炎性反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS),免疫功能障礙是引起膿毒癥患者病死的主要原因[1]。血清淀粉樣蛋白A(serum amyloid A protein,SAA)是反映早期炎性反應(yīng)的敏感指標(biāo),研究表明,SAA是一個(gè)新的具有診斷及鑒別診斷意義的炎性反應(yīng)和膿毒癥指標(biāo)[2]。程序性細(xì)胞死亡因子-1(programmed cell death-1,PD-1)是一種共刺激分子,參與機(jī)體免疫應(yīng)答。近幾年,基于PD-1的免疫療法成為腫瘤治療研究領(lǐng)域中最為活躍的部分,但PD-1在膿毒癥中的研究較少,有研究顯示,PD-1可加劇膿毒癥免疫反應(yīng)[3]。本研究旨在探討腹腔感染致膿毒癥患者外周血SAA、PD-1及T細(xì)胞的表達(dá),以期在臨床上找到膿毒癥病情新的監(jiān)測指標(biāo),指導(dǎo)臨床治療。
1.1對象 選擇2014-01至2015-12 連云港市某人民醫(yī)院重癥監(jiān)護(hù)病房(intensive care unit, ICU)收治的腹腔感染致膿毒癥患者37 例作為研究對象,依據(jù)病情分為膿毒癥組(20例)和嚴(yán)重膿毒癥休克組(17例),其中男21例,女16例,年齡20~81歲,平均(55.76±13.87)歲;病因:消化道穿孔致腹腔感染11例,外傷致腹腔感染14例,術(shù)后腸瘺12例;另選18例健康者作為健康對照組,其中男8例,女10例,年齡22~76歲,平均(52.76±11.09)歲。
1.2納入與排除標(biāo)準(zhǔn) 納入標(biāo)準(zhǔn):膿毒癥診斷標(biāo)準(zhǔn)參照2001年危重病醫(yī)學(xué)會、歐州危重病醫(yī)學(xué)會、美國胸科醫(yī)師協(xié)會、美國胸科學(xué)會、外科感染學(xué)會關(guān)于全身性感染定義國際會議所制定的膿毒癥診斷標(biāo)準(zhǔn)(ACCP/ SCCM2001)進(jìn)行確診。排除標(biāo)準(zhǔn):(1)年齡<18歲;(2)患有自身免疫性疾病者;(3)免疫缺陷性疾病者;(4)腫瘤患者;(5)近期接受免疫抑制藥治療者;(6)終末期疾病患者;(7)血液凈化者。
1.3檢測指標(biāo) 健康對照組隨機(jī)抽取外周血2管,入組患者在起病入科時(shí)抽取外周血2管,各2 ml,用乙二胺四乙酸(ethylene diamine tetraacetic acid,EDTA)抗凝,一管3500 r/min離心10 min,取血清采用酶聯(lián)免疫吸附法(enzyme-linked immunoassay,ELISA)檢測SAA、PD-1濃度,人SAA、PD-1 ELISA試劑盒(DY1086)購自美國R&D公司;另一管采用流式細(xì)胞儀(美國Beckman-Coulter公司)檢測CD4+、CD8+、CD4+/CD8+T細(xì)胞的表達(dá)。
T細(xì)胞亞群CD4-FITC/CD8-PE/CD3-PE-CYS試劑(貨號:Z6410001)購自美國Beckman-Coulter公司。
1.4統(tǒng)計(jì)學(xué)處理 采用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)處理。計(jì)量資料采用表示,多組間比較采用oneway ANOVA,兩兩比較采用SNK-q檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1外周血SAA表達(dá)量 3組外周血SAA的濃度差異有統(tǒng)計(jì)學(xué)意義(F=575.654,P<0.05)。進(jìn)一步兩兩比較結(jié)果顯示,與健康對照組相比,膿毒癥組、嚴(yán)重膿毒癥休克組外周血SAA濃度顯著升高(P<0.05);與膿毒癥組相比,嚴(yán)重膿毒癥休克組外周血SAA濃度更高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,表1)。
2.2外周血PD-1表達(dá)量 三組外周血PD-1的表達(dá)量差異有統(tǒng)計(jì)學(xué)意義(F=985.896,P<0.05)。進(jìn)一步兩兩比較結(jié)果顯示,與健康對照組相比,膿毒癥組、嚴(yán)重膿毒癥休克組外周血PD-1濃度顯著降低(P<0.05);與膿毒癥組相比,嚴(yán)重膿毒癥休克組外周血PD-1濃度更低,差異有統(tǒng)計(jì)學(xué)意義(P<0.05,表1)。
2.3外周血細(xì)胞比率、細(xì)胞比率、比值 三組外周血CD4
+T細(xì)胞比率(F=123.804,P<0.05)、CD8+T細(xì) 胞 比 率(F=231.246,P<0.05)、CD4+/CD8+比值(F=337.701,P<0.05)的比較,差異均有統(tǒng)計(jì)學(xué)意義。進(jìn)一步兩兩比較結(jié)果顯示,與健康對照組相比,膿毒癥組、嚴(yán)重膿毒癥及休克組外周血清CD4+T細(xì)胞比率、CD4+/CD8+比值顯著升高,CD8+T細(xì)胞比率顯著降低(P<0.05);與膿毒癥組相比,嚴(yán)重膿毒癥休克組外周血清CD4+T細(xì)胞比率、CD4+/CD8+比值更高,CD8+T細(xì)胞比率更低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05,表1)。
膿毒癥患者機(jī)體促炎與抗炎機(jī)制的紊亂最終導(dǎo)致免疫失衡,進(jìn)而造成其免疫功能低下。過度激活的炎性反應(yīng)及伴隨的免疫功能抑制均會造成心血管系統(tǒng)、呼吸系統(tǒng)、泌尿系統(tǒng)等多器官組織的嚴(yán)重功能損傷進(jìn)而導(dǎo)致患者死亡[1]。
SAA是一種急性時(shí)相反應(yīng)蛋白,有4種亞型,其中SAA1和SAA2參與急性炎性反應(yīng)。在急性時(shí)相反應(yīng)中,SAA在肝臟中由被激活的巨噬細(xì)胞和纖維母細(xì)胞合成,合成過程主要受白介素-1(interleukin-1,IL-1)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)調(diào)節(jié),單獨(dú)的白介素-6(interleukin- 6,IL-6)對于SAA合成影響不大[4],但是IL-6與IL-1、TNF-α協(xié)同刺激時(shí),SAA則大量表達(dá),可升高到最初濃度的100~1000倍[5]。Arnon等[6]發(fā)現(xiàn)SAA在膿毒癥發(fā)生時(shí)即可升高,8 h后達(dá)峰值,陰性預(yù)測值達(dá)100%;文獻(xiàn)[2]報(bào)道SAA是一個(gè)新的具有診斷及鑒別診斷意義的炎性反應(yīng)和膿毒癥指標(biāo),meta分析揭示,SAA用于診斷新生兒膿毒癥的準(zhǔn)確度適中,可作為新生兒膿毒癥的診斷指標(biāo)[7]。本研究發(fā)現(xiàn),與健康對照組比,膿毒癥組、嚴(yán)重膿毒癥休克組外周血SAA濃度升高,且嚴(yán)重膿毒癥休克組較膿毒癥組濃度更高,提示對于腹腔感染致膿毒癥患者SAA可作為早期診斷指標(biāo)。
表1 健康對照組與兩組腹腔感染致膿毒癥患者外周血清SAA、PD-1表達(dá)量及T細(xì)胞比率、T細(xì)胞比率、比值的比較 (x±s)
表1 健康對照組與兩組腹腔感染致膿毒癥患者外周血清SAA、PD-1表達(dá)量及T細(xì)胞比率、T細(xì)胞比率、比值的比較 (x±s)
注:SAA,血清淀粉樣蛋白A ;PD-1,程序性細(xì)胞死亡因子-1;與健康對照組相比,①P<0.05;與膿毒癥組相比,②P<0.05
組別 SAA表達(dá)量(mg/L) PD-1表達(dá)量(ng/ml) CD4+T細(xì)胞(%) CD8+T細(xì)胞(%) CD4+/CD8+健康對照組(n=18) 5.47±2.72 90.52±3.12 42.32±1.85 26.64±1.23 1.59±0.11膿毒癥組(n=20) 25.07±11.35① 73.85±2.66① 46.51±1.08① 21.98±0.82① 2.12±0.08①膿毒癥休克組(n=17) 37.76±13.30①② 52.85±1.32①② 49.23±0.74①② 18.54±1.30①② 2.67±0.16①②
PD-1屬于CD28/CTLA-4家庭,存在兩個(gè)配體,即程序性細(xì)胞死亡因子配體1和2(programmed cell death ligand 1 and 2, PD-L1 and PD-L2)。PD-L1廣泛表達(dá)于T細(xì)胞、B細(xì)胞等淋巴細(xì)胞及非淋巴細(xì)胞,如心臟內(nèi)皮細(xì)胞、胰腺細(xì)胞等,PD-1與PD- L1結(jié)合后通過抑制T、B細(xì)胞活性來維持正常機(jī)體免疫功能,防止自身性免疫疾病的發(fā)生;PD-L2主要參與調(diào)控自然環(huán)境抗原引起的免疫反應(yīng),通過募集激活蛋白酪氨酸磷酸酶,對T細(xì)胞免疫起到負(fù)性調(diào)節(jié)作用[8]。因此,在調(diào)節(jié)免疫方面PD-1/PD-L1發(fā)揮主要作用。T細(xì)胞免疫在人體免疫系統(tǒng)中居重要地位[9],CD4+T細(xì)胞在細(xì)胞免疫反應(yīng)階段可產(chǎn)生多種細(xì)胞因子,促進(jìn)炎性反應(yīng),CD8+T細(xì)胞可直接殺死細(xì)胞或相應(yīng)靶細(xì)胞的特異性抗原,清除毒性物質(zhì),CD4
+/CD8
+比值是反應(yīng)機(jī)體免疫功能的重要指標(biāo)[10],該比值降低表示細(xì)胞免疫功能受到抑制。
近幾年,基于PD-1的藥物和技術(shù)研究中最為活躍的是腫瘤治療領(lǐng)域,多項(xiàng)研究顯示,應(yīng)用抗PD-1抗體對多位癌癥患者進(jìn)行治療,發(fā)現(xiàn)封鎖PD-1/PD-L1途徑可以增強(qiáng)免疫反應(yīng),進(jìn)而導(dǎo)致腫瘤細(xì)胞死亡[11-13]。然而,目前PD-1在膿毒癥中的研究較少,動物研究發(fā)現(xiàn)抗PD-Ll抗體可阻斷PD-1/PD-L1信號途徑,降低caspase -8和caspase-9在T細(xì)胞活性[14,15]。Gao等[3]研究發(fā)現(xiàn),PD-1在膿毒癥患者中促進(jìn)T細(xì)胞耗盡,加劇免疫紊亂。而目前國內(nèi)外對于腹腔感染所致膿毒癥目前尚無研究,因此,阻斷PD-1/PD-L1傳導(dǎo)途徑可能成為腹腔感染致膿毒癥患者臨床治療中的一個(gè)突破。
本研究顯示,相對于健康對照組,膿毒癥組、嚴(yán)重膿毒癥休克組在發(fā)病時(shí),PD-1濃度均明顯降低,而且嚴(yán)重膿毒癥休克組較膿毒癥組更低,提示膿毒癥早期,PD-1與受體結(jié)合后通過抑制T、B細(xì)胞活性,造成機(jī)體免疫失衡,而且病情越重,免疫失衡越重。另外,與健康對照組相比,膿毒癥組、嚴(yán)重膿毒癥休克組在發(fā)病時(shí)CD4+比例上升,CD8+比例下降,CD4+/ CD8+比值升高,且嚴(yán)重膿毒癥休克組較膿毒癥組比例變化更大,提示膿毒癥早期CD4+T細(xì)胞增多,進(jìn)而可以產(chǎn)生多種細(xì)胞因子,加重炎性反應(yīng),相反CD8+T細(xì)胞下降,造成機(jī)體清除毒性物質(zhì)能力下降,加之PD-1抑制T、B細(xì)胞活性,最終導(dǎo)致炎性反應(yīng)與免疫失衡。
總之,外周血SAA、PD-1及CD4+、CD8
+T細(xì)胞可作為腹腔感染致膿毒癥患者病情的監(jiān)測指標(biāo),且病情越重?cái)?shù)值變化越大,這可能對腹腔感染所致膿毒癥患者診治提供一定指導(dǎo)。本課題樣本量小,原發(fā)病不一致,嚴(yán)重膿毒癥休克組部分患者發(fā)病初期并發(fā)其他臟器損傷,均可影響試驗(yàn)結(jié)果,而且目前對腹腔感染致膿毒癥患者外周血PD-1的表達(dá)研究還很少,相關(guān)研究需進(jìn)一步深入。
[1]Dellinger R P, Levy M M, Rhodes A,et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012 [J]. Intensive Care Med, 2013, 39(2): 165-228.
[2]Fendler W M, Piotrowski A J. Procalcitonin in the early diagnosis of nosocomial sepsis in preterm neonates [J]. J Paediatr Child Health, 2008, 44(3): 114-118.
[3]Gao D N, Yang Z X, Qi Q H. Roles of PD-1, Tim-3 and CTLA-4 in immunoregulation in regulatory T cells among patients with sepsis [J]. Int J Clin Exp Med, 2015, 8(10): 18998-19005.
[4]Christoffersen M, Baagoe C D, Jacobsen S,et al. Evaluation of the systemic acute phase response and endometrial gene expression of serum amyloid A and pro-and antiinflammatory cytokines in mares with experimentally induced endometritis [J]. Vet Immunol Immunopathol, 2010, 138(1-2): 95-105.
[5]Christensen M B, Langhorn R, Goddard A,et al. Comparison of serum amyloid A and C-reactive protein as diagnostic markers of systemic inflammation in dogs [J]. Can Vet J, 2014, 55(2): 161-168.
[6]Arnon S, Litmanovitz I, Regevr R,et al. Serum amyloid A protein is a useful inflammatory marker during late-onset sepsis in preterm infants [J]. Biol Neonate, 2005, 87(2): 105-110.
[7]Yuan H, Huang J, Lv B,et al. Diagnosis value of the serum amyloid A test in neonatal sepsis: a meta-analysis [J/OL]. Biomed Res Int, 2013[2016-10-28]. https://www.hindawi. com/journals/bmri/2013/520294/. [published online ahead of print Aug 5, 2015].
[8]Fife B T, Pauken K E. The role of the PD-1 pathway in autoimmunity and peripheral tolerance [J]. Ann N Y Acad Sci, 2011, 1217(1217): 45-59.
[9]Winter H, van den Engel N K, Rüttinger D,et al. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines [J]. J Transl Med, 2007, 59(11): 56-70.
[10]Miller A C, Rashid R M, Elamin E M. The“ T” in trauma: the helper T-cell response and the role of immunomodulationin trauma and burn patients [J]. J Trauma, 2007, 63(6): 1407-1417.
[11]Taube J M, Klein A, Brahmer J R,et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy [J]. Clin Cancer Res, 2014, 20(19): 5064-5074.
[12]Ngiow S F, Young A, Jacquelot N,et al. A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1 [J]. Cancer Res, 2015, 75(18): 3800-3811.
[13]Huang R Y, Eppolito C, Lele S,et al. LAG3 and PD1coinhibitory molecules collaborate to limit CD8+ T cellsignaling and dampen antitumor immunity in a murine ovarian cancer model [J]. Oncotarget, 2015, 6(29): 27359-27377.
[14]Zhang Y, Zhou Y, Lou J,et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction [J]. Crit Care, 2010, 14(6): R220.
[15]Chang K C, Burnham C A, Compton S M,et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondaryfungal sepsis [J]. Crit Care, 2013, 17(3): R85.
(2016-11-04收稿2016-11-28修回)
(責(zé)任編輯 付 輝)
Expression of SAA, PD-1, CD4+and CD8+T cells in peripheral blood of patients with sepsis caused by abdominal infections
KANG Xiuwen, SHI Yuanfeng, XIE Yongpeng, CHEN Xiaobing, and LI Xiaomin. Intensive Care Unit, The First People's Hospital of Lianyungang City Affiliated to Xuzhou Medical University, Lianyungang 222002, China
Corresponding author: LI Xiaomin, E-mail: lyglxm1@163.com
ObjectiveThe aim of this study is to investigate the expression of serum amyloid A protein (SAA), programmed cell death-1 (PD-1), CD4+and CD8+T cells in peripheral blood of patients with sepsis caused by abdominal infections.MethodsA total of 37 sepsis patients caused by abdominal infections in the intensive care unit (ICU) of a people's hospital of Lianyungang city from January 2014 to December 2015 were selected as research subjects, and divided into sepsis groups (20 cases) and severe sepsis or shock group (17 cases) according to severity of the condition. Another 18 healthy persons were selected as control group. Peripheral blood of patients were sampled when admitted into hospital. Enzyme-linked immunosorbent assay (ELISA) method was used to detect the concentration of SAA and PD-1. Flow cytometry instrument was used to detect the expression oandT cells.ResultsCompared with the control group, in sepsis group and severe sepsis or shock group, concentration of SAA were increased, concentration of PD-1 were decreased, proportion of CD+4were increased, proportion ofwas decreased, the ratio ofwere increased, the differences were statistically significant (P<0.05); Compared with the sepsis group, in severe sepsis or shock group, concentration of SAA was higher, concentration of PD-1 was lower, proportion ofwas higher, proportion ofwas lower, ratio ofwas higher, the differences were statistically significant (P<0.05).ConclusionsThe expression of SAA and PD-1, andT cells in peripheral blood can be used as the monitoring indexes of sepsis patients caused by abdominal infections. The severer the condition, the bigger the changes.
abdominal infections; sepsis; serum amyloid A protein; programmed cell death-1
R631
10.13919/j.issn.2095-6274.2016.12.004
康秀文,碩士,主治醫(yī)師,E-mail:mafei8922@163.com
222002,徐州醫(yī)科大學(xué)附屬連云港市第一人民醫(yī)院ICU
李小民,E-mail:lyglxm1@163.com