李興江, 陳秀, 何蘊(yùn)藉, 祝靈平, 唐金海
乳腺癌是女性尤其是年齡<45歲的女性群體中最常見的腫瘤疾病[1],且是女性死亡的主要原因之一[2]。最新數(shù)據(jù)顯示,全球范圍內(nèi)乳腺癌的新發(fā)病例約為170萬/年,死亡人數(shù)約為52萬/年[3]。由于早期檢測方法和治療手段的不斷發(fā)展,近30年來乳腺癌的死亡率明顯下降[4]。但對于失去腫瘤切除機(jī)會的晚期乳腺癌患者,全身化療不失為一種選擇。順鉑作為非特異性細(xì)胞周期藥物和細(xì)胞毒性藥物已廣泛用于治療乳腺癌,它作用于相鄰的N-7位鳥嘌呤,形成1、2位鏈內(nèi)交聯(lián),或DNA與蛋白質(zhì)交聯(lián)[5-6]。然而,約50%的乳腺癌患者會發(fā)生原發(fā)性耐藥或產(chǎn)生獲得性耐藥[7]。獲得性耐藥是一個(gè)多因素的過程,耐藥性的產(chǎn)生在一定程度上減弱了治療效果。miRNA是一類非編碼小RNA,它們通過降解mRNA或抑制mRNA的翻譯能力而負(fù)向調(diào)控靶基因的表達(dá)[8-11]。現(xiàn)從細(xì)胞生存、DNA損傷反應(yīng)、藥物排泄、DNA甲基化、染色質(zhì)修飾及生物合成幾個(gè)方面闡述miRNA與乳腺癌對順鉑耐藥性產(chǎn)生之間的作用關(guān)系。
Let-7i是一個(gè)抑癌miRNA[12-13],它與乳腺癌細(xì)胞對順鉑的藥物敏感性呈正相關(guān)[14]。Let-7i可以直接作用于多個(gè)致癌蛋白如K-ras、H-ras、HMGA2[12,15-19],并作用多個(gè)細(xì)胞周期相關(guān)基因如CDC25A、CDK6、cyclin D1、cyclin D2和 cyclin D3[20-21]。沉默的K-ras可以抑制NF-κB p65的核轉(zhuǎn)位,促使TPA反應(yīng)元件(TRE)定位在NRF2基因的外顯子1的調(diào)控區(qū),進(jìn)而抑制NRF2基因的轉(zhuǎn)錄,最終減弱細(xì)胞對順鉑的耐藥性[22-23]。NF-κB的活化逆轉(zhuǎn)參與了細(xì)胞周期和細(xì)胞凋亡的調(diào)控[24]。高遷移性蛋白A2(HMGA2)屬于結(jié)構(gòu)轉(zhuǎn)錄因子HMGA家族,當(dāng)順鉑引起DNA雙鏈斷裂時(shí),HMGA2可以使細(xì)胞停滯在sub-G1和G2-M期,引起染色體重構(gòu)[25],改變順鉑藥效。在MCF-7細(xì)胞中[26],細(xì)胞周期相關(guān)基因cdk2的激活和細(xì)胞分裂進(jìn)入S期的過程需要CDC25A蛋白的過表達(dá)[27-28]。CDC25A是G1特異細(xì)胞周期調(diào)節(jié)因子[29],能激發(fā)p21脫離細(xì)胞周期蛋白cyclin E-Cdk2復(fù)合物,從而激活cyclin E-Cdk2[30]。cyclin D1蛋白的下調(diào)導(dǎo)致細(xì)胞停滯在G1期。總的來說,Let-7i通過誘導(dǎo)細(xì)胞周期停滯相關(guān)mRNA的翻譯抑制細(xì)胞增殖,促使細(xì)胞對順鉑敏感[31]。
體內(nèi)外研究發(fā)現(xiàn),miR-569可以通過NF-κB信號通路下調(diào)TP53INP1的表達(dá)增加乳腺癌細(xì)胞對順鉑的耐受能力[32-33]。Liang等[34]證實(shí),某些化療藥物可能增強(qiáng)腫瘤細(xì)胞的侵襲和轉(zhuǎn)移能力。miR-200b和miR-200c在MCF-7/CDDP耐藥細(xì)胞中的表達(dá)明顯低于親本MCF-7敏感細(xì)胞,而miR-200b和miR-200c能夠抑制ZEB1/deltaEF1、SIP1/ZEB2。ZEB1和SIP1是抑制E-鈣黏連蛋白和上皮間質(zhì)轉(zhuǎn)化(EMT)的轉(zhuǎn)錄因子[35-36]。上皮間質(zhì)轉(zhuǎn)化是公認(rèn)的腫瘤侵襲轉(zhuǎn)移機(jī)制之一。推測,miR-200b和miR-200c的表達(dá)下調(diào)可以誘導(dǎo)腫瘤細(xì)胞發(fā)生侵襲、轉(zhuǎn)移和順鉑耐藥。Schwarzenbach等[37]報(bào)道,miR-214可作為鑒別乳腺癌與健康正常對照的診斷分子,也可作為乳腺癌淋巴結(jié)轉(zhuǎn)移的分子標(biāo)志物。MiR-214還可通過靶向抑制PTEN/Akt信號通路誘導(dǎo)細(xì)胞產(chǎn)生順鉑耐藥性和增加細(xì)胞的生存率[38]??傊?,let-7i、miR-569、miR-200、miR-214主要通過調(diào)節(jié)細(xì)胞的存活能力來調(diào)節(jié)細(xì)胞對順鉑的耐藥性。
大多數(shù)腫瘤可以通過調(diào)節(jié)DNA損傷反應(yīng)克服腫瘤初期的藥物作用,并建立獲得性耐藥性,從而產(chǎn)生了假設(shè):參與DNA損傷反應(yīng)過程的多個(gè)miRNA與腫瘤化療耐藥性相關(guān)[39]。DNA損傷反應(yīng)包括DNA修復(fù)、細(xì)胞凋亡和細(xì)胞沉默等過程[40]?,F(xiàn)已證明,miR-296-5p和miR-382通過引發(fā)細(xì)胞沉默過程介導(dǎo)腫瘤細(xì)胞的耐藥性。miR-21通過減少53BP1(雙鏈DNA斷裂修復(fù)的分子標(biāo)志物)位點(diǎn)的數(shù)量,增強(qiáng)DNA損傷耐受、改善DNA修復(fù)和藥物清除過程。無獨(dú)有偶,miR-200b和miR-200c能夠通過抑制ZEB1/deltaEF1和SIP1/ZEB2的表達(dá)決定細(xì)胞的上皮表型[35],而細(xì)胞來源或腫瘤類型是miRNA對DNA損傷產(chǎn)生何種應(yīng)答的內(nèi)在關(guān)鍵因素[41]。上述結(jié)果表明,miRNA家族可以逆轉(zhuǎn)腫瘤細(xì)胞的藥物敏感性。順鉑類抗腫瘤藥物通過激活A(yù)TR和p53基因,減少磷酸化Chk1,引起細(xì)胞凋亡[42],而在MCF-7細(xì)胞中敲除表達(dá)miR-203的基因能夠逆轉(zhuǎn)對SOCS3的直接抑制,激活p53、p21(WAF1/CIP1)和Bax等基因,誘發(fā)細(xì)胞生長抑制和細(xì)胞凋亡,抑制耐藥[43]。除了miR-203的抗凋亡作用,miR-21也證實(shí)可以調(diào)節(jié)p21的表達(dá),抑制細(xì)胞凋亡,改變細(xì)胞對順鉑的敏感性[44]。
STAT B屬于轉(zhuǎn)錄因子STAT家族的一員。有研究發(fā)現(xiàn),miR-134能靶向結(jié)合STAT5B mRNA的3’UTR端[45],而STAT5B可以誘導(dǎo)HSP90的轉(zhuǎn)錄[46],使得包括Bcl-2在內(nèi)的致癌蛋白穩(wěn)定表達(dá)[47],克服腫瘤細(xì)胞的凋亡[48]。推測miR-134可通過STAT5B-Hsp90-Bcl-2的相互作用逆轉(zhuǎn)細(xì)胞對順鉑的耐藥作用。O’Brien等[45]比較乳腺癌組織和癌旁正常組織的miRNA的表達(dá)水平,證實(shí)了miR-134在藥物敏感性中所起的積極作用。
BRCA1作為一種腫瘤抑制蛋白,在DNA損傷修復(fù)和細(xì)胞周期中不同蛋白質(zhì)復(fù)合體的相互作用中起核心作用[49]。MCF-7細(xì)胞中,miR-218和miR-200可在轉(zhuǎn)錄水平上調(diào)節(jié)BRCA1表達(dá)[50],MDA-MB-231細(xì)胞中,miR-638靶向作用于BRCA1的3’-UTR端[51]。由于順鉑耐藥性很大程度上歸因于BRCA1介導(dǎo)的DNA損傷[52],所以在體外研究中利用miRNA下調(diào)BRCA1的表達(dá)能夠減弱DNA修復(fù)的有效性,從而增加乳腺癌細(xì)胞對順鉑治療的敏感性。綜上所述,miR-296-5p、miR-382、miR-21、miR-200、miR-203和miR-134通過影響DDR(如細(xì)胞沉默,DNA修復(fù)和細(xì)胞凋亡),miR-218、miR-200和miR-638通過作用于BRCA1來調(diào)節(jié)細(xì)胞對順鉑的效應(yīng)。
多藥耐藥相關(guān)蛋白(MRP)家族屬于ATP結(jié)合(ABC)轉(zhuǎn)運(yùn)蛋白, MRP1和MRP2通過轉(zhuǎn)運(yùn)順鉑-S-谷胱甘肽連接復(fù)合物至細(xì)胞外來提高乳腺癌細(xì)胞對順鉑的耐藥性[53-54]。Negoro等[55]證實(shí),MRP1和MRP2在耐藥性產(chǎn)生的機(jī)制中發(fā)揮著重大作用,MRP1和MRP2的表達(dá)水平在順鉑耐藥的細(xì)胞株中明顯上調(diào)。Pogribny等[56]提出,miR-345和miR-7可以靶向結(jié)合人類MRP1(Abcc1)基因的3’-UTR端,miR-489在MCF-7/CDDP耐藥細(xì)胞中可能靶向結(jié)合MRP2基因。miR-345、miR-7和miR-489主要通過抑制MRP1和MRP2參與到順鉑耐藥性產(chǎn)生的過程中。
DNA甲基轉(zhuǎn)移酶(DNMT)-3A和DNMT-3B是形成DNA甲基化的兩個(gè)關(guān)鍵酶,它們在肺癌細(xì)胞中表達(dá)上調(diào)并與肺癌的預(yù)后負(fù)相關(guān)。Fabbri等[57]發(fā)現(xiàn),miR-29家族(miR-29a、miR-29b和miR-29c)能靶向結(jié)合DNMT-3A和DNMT-3B的3’-UTRs端,恢復(fù)FHIT和WWOX等甲基化沉默抑制基因的功能。FHIT基因是一個(gè)抑癌基因,其缺失會誘發(fā)乳腺癌的發(fā)生。Su等[58]用薈萃分析法預(yù)測出侵襲性乳腺癌的甲基化FHIT基因增加,表明該甲基化基因可以作為診斷分子標(biāo)志物和腫瘤治療的藥物靶點(diǎn)。WWOX基因包含了染色體脆性位點(diǎn)FRA16D,沉默WWOX的表達(dá)最終將影響ErbB4、AP-2γ、SMAD3、WBP2等轉(zhuǎn)錄因子的活性,并導(dǎo)致乳腺癌的發(fā)生、發(fā)展和耐藥性產(chǎn)生[59]。因此,miR-29家族的高表達(dá)能維持正常的DNA甲基化水平,并同時(shí)在體內(nèi)外條件下抑制腫瘤的發(fā)生。此外,miR-132直接抑制甲基化CpG結(jié)合蛋白2(MeCP2)的表達(dá)。MeCP2屬于甲基化CpG結(jié)合蛋白(MBD)家族,具有選擇性地識別甲基化DNA和重塑染色質(zhì)的功能[60]。在細(xì)胞中阻斷miR-132的抑制作用后,MeCP2的表達(dá)水平顯著增加[61]。Pogribny等[56]的研究佐證了前期的研究結(jié)果:MCF-7/CDDP耐藥細(xì)胞中的DNMT3A以及MeCP2的表達(dá)均受到明顯的抑制。因此,miR-29s和miR-132對鉑類藥物化療療效的作用受到DNA甲基化水平的影響。
線粒體凋亡作為細(xì)胞凋亡的重要途徑廣泛應(yīng)用于腫瘤的治療中,線粒體凋亡受Bcl-2家族蛋白的調(diào)控,包括促凋亡成員(Bak,Bax,Bim,BNIP3等)和抗凋亡成員(Bcl-2,Mcl-1,Bcl- XL,Bcl-w等)[62]。在體外實(shí)驗(yàn)中,抑制miR-221的表達(dá)會增加順鉑對乳腺癌細(xì)胞的細(xì)胞毒性,研究發(fā)現(xiàn)敲除了miR-221后,Bim、Bax及Bak表達(dá)上調(diào),推測miR-221通過靶向抑制Bim-Bax/Bak軸誘導(dǎo)細(xì)胞產(chǎn)生順鉑耐藥[63]。MiR-944通過抑制BNIP3的表達(dá)導(dǎo)致順鉑耐藥,用順鉑處理抑制了miR-944的MCF-7細(xì)胞,BNIP3高表達(dá),線粒體膜電位降低,細(xì)胞中caspase-3被激活,從而逆轉(zhuǎn)耐藥[64]。Kohno等[65]發(fā)現(xiàn),在特定的腫瘤細(xì)胞中,線粒體轉(zhuǎn)錄因子A(mtTFA)的表達(dá)水平取決于線粒體基因組的特點(diǎn)和順鉑藥物的使用。MtTFA被發(fā)現(xiàn)與腫瘤細(xì)胞的存活、凋亡、增殖密切相關(guān)。在乳腺癌細(xì)胞中,miR-200a的高表達(dá)抑制mtTFA的轉(zhuǎn)錄和翻譯,并能減少線粒體DNA的拷貝數(shù),從而減弱細(xì)胞增殖和抑制順鉑耐藥性的產(chǎn)生[62]。而miR-199a-3p通過下調(diào)線粒體轉(zhuǎn)錄因子A的表達(dá)可促進(jìn)乳腺癌細(xì)胞對順鉑的敏感性[62]。
已證實(shí)miRNA能夠在耐藥機(jī)制中發(fā)揮重要的調(diào)控作用。因此,中斷部分miRNA的生物合成途徑勢必會引起細(xì)胞耐藥性的變化。Dicer酶是雙核酸酶RNaseⅢ家族的一個(gè)成員,在miRNA成熟過程的第2階段起調(diào)節(jié)作用[63]。miRNA自身對miRNA的生物合成途徑具有負(fù)反饋的作用,使得不同功能的miRNA之間相互制約、相互作用。Chan等[64]經(jīng)過研究證實(shí),miR-31能夠靶向結(jié)合Dicer酶,抑制miRNA的生物合成過程,在一定程度上增強(qiáng)細(xì)胞對藥物的敏感性。Martello等[66]發(fā)現(xiàn),miR-103和miR-107可以在乳腺癌細(xì)胞中通過靶向結(jié)合Dicer酶而抑制miRNA的生物合成,參與乳腺癌細(xì)胞的耐藥相關(guān)機(jī)制。雖然Dicer酶的調(diào)節(jié)機(jī)制很復(fù)雜,但是通過miRNA的生物合成途徑調(diào)節(jié)耐藥性這一機(jī)制已經(jīng)得到充分的證實(shí)。
鉑類藥物是廣泛用于乳腺癌治療的二線方案, miRNA家族可作用于一系列編碼基因,調(diào)節(jié)細(xì)胞的分化、增殖、凋亡、侵襲、遷移、上皮間質(zhì)轉(zhuǎn)化(EMT)過程和增強(qiáng)絲裂原活化蛋白激酶(MAPK)信號通路,來改變mRNA的表達(dá),逆轉(zhuǎn)對順鉑的耐藥性。這一現(xiàn)象指明了乳腺癌治療可能新方向。然而,miRNA誘導(dǎo)耐藥形成的相關(guān)微環(huán)境變化的研究只有少量報(bào)道,miRNA的相互作用是否存在其他途徑仍未知,將miRNA的靶向治療應(yīng)用于乳腺癌的治療策略中具有一定的挑戰(zhàn)性。
[1] Anastasiadi Z, Lianos GD, Ignatiadou E, et al. Breast cancer in young women: an overview[J]. Updates Surg, 2017,DOI: 10.1007/s13304-017-0424-1.
[2] Torre LA, Islami F, Siegel RL, et al. Global Cancer in Women: Burden and Trends[J]. Cancer Epidemiol Biomarkers Prev, 2017,26(4):444-457.
[3] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5):E359-386.
[4] DeSantis CE, Fedewa SA, Goding SA, et al. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women[J]. CA Cancer J Clin, 2016,66(1):31-42.
[5] Poklar N, Pilch DS, Lippard SJ, et al. Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex[J]. Proc Natl Acad Sci U S A, 1996,93(15):7606-7611.
[6] Rudd GN, Hartley JA, Souhami RL. Persistence of cisplatin-induced DNA interstrand crosslinking in peripheral blood mononuclear cells from elderly and young individuals[J]. Cancer Chemother Pharmacol, 1995,35(4):323-326.
[7] O’Driscoll L, Clynes M. Biomarkers and multiple drug resistance in breast cancer[J]. Curr Cancer Drug Targets, 2006,6(5):365-384.
[8] Ma J, Dong C, Ji C. MicroRNA and drug resistance[J]. Cancer Gene Ther, 2010,17(8):523-531.
[9] Kutanzi KR, Yurchenko OV, Beland FA, et al. MicroRNA-mediated drug resistance in breast cancer[J]. Clin Epigenetics, 2011,2(2):171-185.
[10] Yokoi T, Nakajima M. microRNAs as mediators of drug toxicity[J]. Annu Rev Pharmacol Toxicol, 2013,53:377-400.
[11] Yu DD, Lv MM, Chen WX, et al. Role of miR-155 in drug resistance of breast cancer[J]. Tumour Biol, 2015,36(3):1395-1401.
[12] Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell, 2005,120(5):635-647.
[13] Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J]. Cancer Res, 2004,64(11):3753-3756.
[14] Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer[J]. Cancer Res, 2008,68(24):10307-10314.
[15] Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family[J]. Proc Natl Acad Sci U S A, 2008,105(10):3903-3908.
[16] Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells[J]. Cell, 2007,131(6):1109-1123.
[17] Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene[J]. Genes Dev, 2007,21(9):1025-1030.
[18] Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma[J]. Mol Cancer Res, 2008,6(4):663-673.
[19] Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation[J].Science, 2007,315(5818):1576-1579.
[20] Johnson CD, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells[J]. Cancer Res, 2007,67(16):7713-7722.
[21] Schultz J, Lorenz P, Gross G, et al. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth[J]. Cell Res, 2008,18(5):549-557.
[22] Yang L, Zhou Y, Li Y, et al. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells[J].Cancer Lett,2015,357(2):520-526.
[23] Tao S, Wang S, Moghaddam SJ, et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2[J]. Cancer Res, 2014,74(24):7430-7441.
[24] Yan X, Shen H, Jiang H, et al. External Qi of Yan Xin Qigong inhibits activation of Akt, Erk1/2 and NF-κB and induces cell cycle arrest and apoptosis in colorectal cancer cells[J].Cell Physiol Biochem,2013,31(1):113-122.
[25] Boo LM, Lin HH, Chung V, et al. High mobility group A2 potentiates genotoxic stress in part through the modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation[J]. Cancer Res, 2005,65(15):6622-6630.
[26] Cangi MG, Cukor B, Soung P, et al. Role of the Cdc25A phosphatase in human breast cancer[J]. J Clin Invest, 2000,106(6):753-761.
[27] Hoffmann I, Draetta G, Karsenti E. Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition[J]. EMBO J, 1994,13(18):4302-4310.
[28] Jinno S, Suto K, Nagata A, et al. Cdc25A is a novel phosphatase functioning early in the cell cycle[J]. EMBO J, 1994,13(7):1549-1556.
[29] Louis M, Rosato RR, Brault L, et al. The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress[J]. Int J Oncol, 2004,25(6):1701-1711.
[30] Saha P, Eichbaum Q, Silberman ED, et al. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclin-dependent kinases[J]. Mol Cell Biol, 1997,17(8):4338-4345.
[31] Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation[J]. Science, 2007,318(5858):1931-1934.
[32] Hernández-Vargas H, Rodríguez-Pinilla SM, Julián-Tendero M, et al. Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance[J]. Breast Cancer Res Treat, 2007,102(2):157-172.
[33] Chaluvally-Raghavan P, Zhang F, Pradeep S, et al. Copy number gain of hsa-miR-569 at 3q26.2 leads to loss of TP53INP1 and aggressiveness of epithelial cancers[J]. Cancer Cell, 2014,26(6):863-879.
[34] Liang Y, McDonnell S, Clynes M. Examining the relationship between cancer invasion/metastasis and drug resistance[J]. Curr Cancer Drug Targets, 2002,2(3):257-277.
[35] Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol, 2008,10(5):593-601.
[36] Agiostratidou G, Hulit J, Phillips GR, et al. Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression[J]. J Mammary Gland Biol Neoplasia, 2007,12(2-3):127-133.
[37] Schwarzenbach H, Milde-Langosch K, Steinbach B, et al. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients[J]. Breast Cancer Res Treat, 2012,134(3):933-941.
[38] Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN[J]. Cancer Res, 2008,68(2):425-433.
[39] van Jaarsveld MT, Wouters MD, Boersma AW, et al. DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity[J]. Mol Oncol, 2014,8(3):458-468.
[40] Hoeijmakers JH. DNA damage, aging, and cancer[J]. N Engl J Med, 2009,361(15):1475-1485.
[41] Port M, Glaesener S, Ruf C, et al. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines[J]. Mol Cancer, 2011,10:52.
[42] Sangster-Guity N, Conrad BH, Papadopoulos N, et al. ATR mediates cisplatin resistance in a p53 genotype-specific manner[J]. Oncogene, 2011,30(22):2526-2533.
[43] Ru P, Steele R, Hsueh EC, et al. Anti-miR-203 Upregulates SOCS3 Expression in Breast Cancer Cells and Enhances Cisplatin Chemosensitivity[J]. Genes Cancer, 2011,2(7):720-727.
[44] Qin LF, Ng IO. Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells[J]. Cancer Lett, 2001,172(1):7-15.
[45] O’Brien K, Lowry MC, Corcoran C, et al. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity[J]. Oncotarget, 2015,6(32):32774-32789.
[46] Perotti C, Liu R, Parusel CT, et al. Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation[J]. Breast Cancer Res, 2008,10(6):R94.
[47] Workman P, Burrows F, Neckers L, et al. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress[J]. Ann N Y Acad Sci, 2007,1113:202-216.
[48] Gallerne C, Prola A, Lemaire C. Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2[J]. Biochim Biophys Acta, 2013,1833(6):1356-1366.
[49] Jiang Q, Greenberg RA. Deciphering the BRCA1 Tumor Suppressor Network[J]. J Biol Chem, 2015,290(29):17724-17732.
[50] He X, Xiao X, Dong L, et al. MiR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1[J]. Tumour Biol, 2015,36(3):2065-2075.
[51] Tan X, Peng J, Fu Y, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer[J]. Breast Cancer Res, 2014,16(5):435.
[52] Stordal B, Davey R. A systematic review of genes involved in the inverse resistance relationship between cisplatin and paclitaxel chemotherapy: role of BRCA1[J]. Curr Cancer Drug Targets, 2009,9(3):354-365.
[53] Siddik ZH. Biochemical and molecular mechanisms of cisplatin resistance[J]. Cancer Treat Res, 2002,112:263-284.
[54] Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance[J]. Oncogene, 2003,22(47):7265-7279.
[55] Negoro K, Yamano Y, Fushimi K, et al. Establishment and characterization of a cisplatin-resistant cell line, KB-R, derived from oral carcinoma cell line, KB[J]. Int J Oncol, 2007,30(6):1325-1332.
[56] Pogribny IP, Filkowski JN, Tryndyak VP, et al. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin[J]. Int J Cancer, 2010,127(8):1785-1794.
[57] Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proc Natl Acad Sci U S A, 2007,104(40):15805-15810.
[58] Su Y, Wang X, Li J, et al. The clinicopathological significance and drug target potential of FHIT in breast cancer, a meta-analysis and literature review[J]. Drug Des Devel Ther, 2015,9:5439-5445.
[59] Li J, Liu J, Ren Y, et al. Roles of the WWOX in pathogenesis and endocrine therapy of breast cancer[J]. Exp Biol Med (Maywood), 2015,240(3):324-328.
[60] Koturbash I, Boyko A, Rodriguez-Juarez R, et al. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo[J]. Carcinogenesis, 2007,28(8):1831-1838.
[61] Klein ME, Lioy DT, Ma L, et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA[J]. Nat Neurosci, 2007,10(12):1513-1514.
[62] Yao J, Zhou E, Wang Y, et al. microRNA-200a inhibits cell proliferation by targeting mitochondrial transcription factor A in breast cancer[J]. DNA Cell Biol, 2014,33(5):291-300.
[63] Lee Y,Ahn C,Han J, et al.The nuclear RNase III Drosha initiates microRNA processing[J].Nature,2003,425(6956):415-419.
[64] Chan YT, Lin YC, Lin RJ, et al. Concordant and discordant regulation of target genes by miR-31 and its isoforms[J]. PLoS One, 2013,8(3):e58169.
[65] Kohno K, Wang KY, Takahashi M, et al. Mitochondrial Transcription Factor A and Mitochondrial Genome as Molecular Targets for Cisplatin-Based Cancer Chemotherapy[J]. Int J Mol Sci, 2015,16(8):19836-19850.
[66] Martello G, Rosato A, Ferrari F, et al. A MicroRNA targeting dicer for metastasis control[J]. Cell, 2010,141(7):1195-1207.