張 潔,陳金安,孫新娟,王 雷,胡志為,王愛萍
(解放軍第四五四醫(yī)院,江蘇南京210002)
MicroRNAs在糖尿病及其并發(fā)癥中的作用
張 潔,陳金安,孫新娟,王 雷,胡志為,王愛萍
(解放軍第四五四醫(yī)院,江蘇南京210002)
糖尿病作為世界流行性疾病已嚴(yán)重影響人類健康,了解其可能的分子機(jī)制可以為臨床治療糖尿病及其并發(fā)癥提供方案.常見的慢性糖尿病并發(fā)癥有心血管病變、腎臟病變、視網(wǎng)膜病變、神經(jīng)病變和糖尿病足部潰瘍.microRNAs(miRNAs)是一類高度保守的非編碼小RNA,主要通過抑制靶基因的翻譯對(duì)其表達(dá)進(jìn)行轉(zhuǎn)錄后調(diào)控,在許多的生物進(jìn)程和內(nèi)源性疾病都發(fā)揮重要作用.他們被證實(shí)可以作為疾病治療的靶標(biāo)和具有潛在的確診疾病的生物靶標(biāo).本文旨在介紹miRNAs在糖尿病及其并發(fā)癥的重要作用.
microRNA;糖尿病;并發(fā)癥
糖尿病是一種慢性代謝性疾病,在世界廣泛流行,影響著3.47億人群的健康和生活,有研究表明至2030年,糖尿病患者將超過6億人群[1].糖尿病的并發(fā)癥有100多種,其中最常見的是糖尿病腎病、糖尿病視網(wǎng)膜病變、糖尿病心臟病變和糖尿病足部潰瘍等.這幾種并發(fā)癥是導(dǎo)致糖尿病患者死亡的重要原因.糖尿病的并發(fā)癥很嚴(yán)重,然而引起并發(fā)癥的原因一直尚未明確.microRNAs(miRNAs)是一類長(zhǎng)約20~24 nt的非編碼單鏈RNA分子,它們通過抑制mRNA翻譯或者促進(jìn)mRNA降解對(duì)靶基因進(jìn)行轉(zhuǎn)錄后水平的調(diào)控[2].因其在結(jié)構(gòu)上高度保守,已作為多種疾病的診斷和預(yù)防的生物靶標(biāo).至今已報(bào)道多項(xiàng)miRNAs與腫瘤關(guān)系的研究,為miRNAs作為分子標(biāo)記應(yīng)用于腫瘤的早期診斷和預(yù)后提供了研究基礎(chǔ).很多研究[2-3]表明,miRNAs在糖尿病及其并發(fā)癥的病因?qū)W和發(fā)病機(jī)制上起著重要作用.
Ⅰ型和Ⅱ型糖尿病是糖尿病的兩個(gè)主要形式.Ⅰ型糖尿病患者胰島β細(xì)胞破壞,引起胰島素絕對(duì)缺乏.研究表明miR-15a通過靶向UCP-2蛋白來調(diào)節(jié)胰島素生物合成.miR-15a能夠抑制內(nèi)源性UCP-2蛋白水平,并導(dǎo)致氧消耗增加和ATP產(chǎn)生減少,它被認(rèn)為是胰島素分泌的針對(duì)β細(xì)胞疾病和糖尿病的預(yù)防或治療劑的重要靶標(biāo)分子[4].Takahashi等[5]檢測(cè)了11例Ⅰ型糖尿病外周血單核細(xì)胞總RNA,結(jié)果顯示,與正常對(duì)照組相比,檢測(cè)的與Ⅰ型糖尿病相關(guān)的44個(gè) miRNAs,9個(gè) miRNAs下調(diào)基因表達(dá),35個(gè)miRNAs上調(diào)基因表達(dá),這揭示了miRNAs可能作為Ⅰ型糖尿病的潛在生物標(biāo)志物,并為這種疾病的分子機(jī)制提供了新的見解.miR-21和miR-210在Ⅰ型兒童糖尿病患者血漿和尿液中的表達(dá)顯著上調(diào),miR-126在患者尿液中的表達(dá)下降,并且和糖化血紅蛋白成負(fù)相關(guān),這些結(jié)果表明miRNAs可能參與了Ⅰ型糖尿病相關(guān)疾病的早期發(fā)病階段,為臨床早期診斷Ⅰ型糖尿病提供依據(jù)[6].Ⅱ型糖尿病以胰島素抵抗為主伴胰島素分泌不足,近年來關(guān)于其與miRNAs關(guān)系的研究也有很多.通過軟件預(yù)測(cè)到miR-125a是糖和脂質(zhì)代謝的潛在靶基因,上調(diào)miR-125a可能導(dǎo)致基因表達(dá)反常而使胰島素抵抗[7].miR-144是胰島素的信號(hào)通路與Ⅱ型糖尿病相關(guān)的一個(gè)miRNAs.有研究[8]顯示,miR-144通過抑制2型糖尿病的IRS-1的表達(dá)削弱胰島素信號(hào).miR-126參與了很多疾病的免疫反應(yīng),有研究[9]表明miR-126表達(dá)上調(diào)可以促進(jìn)慢性炎癥反應(yīng)和自身免疫,并在VEGF信號(hào)通路起重要作用,VEGFR-2能刺激內(nèi)皮細(xì)胞的增殖,在腫瘤的發(fā)生中,阻斷VEGF信號(hào)通路被認(rèn)為是一種保護(hù)性因素.Liu等[10]報(bào)道了miR-126可以作為一種新的篩選糖尿病前期的生物標(biāo)志物和診斷2型糖尿病新方法.與妊娠糖尿病相關(guān)的miRNAs目前報(bào)道較少,有研究[11]顯示miR-143的過表達(dá)可以降低有氧糖酵解并挽救滋養(yǎng)層細(xì)胞中的線粒體復(fù)合物使其接近BMI匹配的對(duì)照組水平.
糖尿病常見慢性并發(fā)癥有心血管病變、腎臟病變、神經(jīng)病變、視網(wǎng)膜病變和糖尿病足部潰瘍.
2.1 糖尿病心血管病變與miRNAs 糖尿病合并心血管并發(fā)癥是發(fā)病最高、危害最大的慢性并發(fā)癥,至少65%的患者死于心臟病變[12].與糖尿病心血管病變相關(guān)的miRNAs近年來已有許多被研究者發(fā)現(xiàn).Xiao等[13]發(fā)現(xiàn)在兔糖尿病模型中,miR-133表達(dá)上調(diào)可以降低離子通道K+表達(dá).K+變化有利于QT延長(zhǎng),這直接與心律失常相關(guān).此外,miR-1、miR-16、miR-26a和 miR-133a可能作為急性心肌梗死的ST段鑒別的生物靶標(biāo)[14].miR-30d在糖尿病大鼠模型表達(dá)上調(diào),促進(jìn)caspase-1和促炎細(xì)胞因子IL-1β以及IL-18表達(dá)增加.miR-30d可以用于糖尿病性心肌病的潛在治療靶標(biāo)[3].miR-21已被鑒定可以通過缺血-再灌注和缺氧-再灌注誘導(dǎo)心肌細(xì)胞凋亡而起到保護(hù)作用,依賴于磷酸酶和張力蛋白同源基因(phosphatase and tensin homolog,PTEN)以及絲氨酸/蘇氨酸特異性蛋白激酶AKT/PKB途徑起作用[15].
2.2 糖尿病腎臟病變與miRNAs Ⅱ型糖尿病的50%患者可發(fā)展為糖尿病腎病,最終發(fā)展為腎臟疾病和器官的衰竭[16].高血壓和高血糖增加患糖尿病腎病的危險(xiǎn).許多研究工作試圖探討miRNAs在腎臟疾病中如何發(fā)揮調(diào)控作用[17].miRNAs在糖尿病腎病的作用大多通過炎癥細(xì)胞來調(diào)節(jié).如:TGF-β信號(hào)通路的miR-192、miR-21、miR-377表達(dá)上調(diào),miR-200和miR-29表達(dá)下調(diào),這對(duì)腎纖維化發(fā)展起著重要作用[17].miR-195可能調(diào)控糖尿病腎病的足細(xì)胞凋亡,通過轉(zhuǎn)染miR-195模擬物而使B淋巴細(xì)胞的caspase-3蛋白水平增加[17].糖尿病大鼠的腎臟和加入高糖的系膜細(xì)胞miR-25水平顯著降低,而其靶細(xì)胞NOX4的mRNA表達(dá)水平增加.然而,加入miR-25的抑制物后,NOX4的mRNA表達(dá)水平也是增加的.這項(xiàng)研究結(jié)果提示,miR-25可能通過抑制NOX4而作為糖尿病腎病的一個(gè)保護(hù)分子[18].
2.3 糖尿病視網(wǎng)膜病變與miRNAs 糖尿病視網(wǎng)膜病變是導(dǎo)致發(fā)展中國(guó)家成年人視覺殘疾和失明的主要原因[19].一系列miRNAs在糖尿病視網(wǎng)膜病變的研究也在進(jìn)行中.miR-146a和miR-424在糖尿病角膜的傷口愈合過程存在潛在影響[20],可以改變p38和EGFR信號(hào)通路,直接或間接抑制角膜表皮細(xì)胞傷口愈合.鏈脲霉素糖尿病大鼠研究表明miR-29b對(duì)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞和視網(wǎng)膜內(nèi)核層的細(xì)胞凋亡起保護(hù)作用[21-22].miR-146a/b已被證明與纖維變性反應(yīng)有關(guān)[23],miR-146a可以調(diào)節(jié)視網(wǎng)膜細(xì)胞的纖維鏈接蛋白[24-25].miR-126玻璃體內(nèi)注射OIR小鼠,可以降低視網(wǎng)膜NV,通過下調(diào)p38和ERK信號(hào)分子而高表達(dá)的VEGF,IGF-2和HIF-1α分子,表明miR-126通過調(diào)節(jié)血管生長(zhǎng)因子抑制缺血誘導(dǎo)的視網(wǎng)膜新生血管形成[26].
2.4 糖尿病神經(jīng)病變與miRNAs 糖尿病神經(jīng)病變?cè)陂L(zhǎng)期糖尿病患者中患病率大于50%[27],慢性高血糖合并代謝缺陷會(huì)導(dǎo)致神經(jīng)纖維的損傷[28].miRNAs在糖尿病神經(jīng)病變的作用關(guān)注的較少.最近有研究報(bào)道,miR-128a和miR-146a對(duì)糖尿病多發(fā)性神經(jīng)病變易感[29].目前的研究[30]表明,利用糖尿病周圍神經(jīng)病變的小鼠模型和其培養(yǎng)的背根神經(jīng)節(jié)(dorsal root ganglion,DRG)神經(jīng)元,高血糖下調(diào)DRG神經(jīng)元的miR-146a的表達(dá)和升高白細(xì)胞介素1(IL-1)受體活化的激酶(interleukin-1 receptor activated kinase,IRAK1)和腫瘤壞死因子受體相關(guān)因子6(tumor necrosis factor receptor-associated factor 6,TRAF6)的水平.但此類研究還較缺乏,可能與神經(jīng)結(jié)構(gòu)的復(fù)雜程度有關(guān).但此類研究還較缺乏,可能與神經(jīng)結(jié)構(gòu)的復(fù)雜程度有關(guān).
與Ⅰ型糖尿病和Ⅱ型糖尿病相關(guān)的miRNAs已有很多[31-32],對(duì)于引起糖尿病足部潰瘍損傷的特定miRNAs還很少,目前只能根據(jù)已知的一些文獻(xiàn)數(shù)據(jù)預(yù)測(cè)可能的候選靶基因.miR-21在糖尿病足部潰瘍愈合階段能夠檢出[31],miR-21的表達(dá)降低能顯著延遲創(chuàng)傷上皮的重新形成[31].因此,miR-21可以作為糖尿病足部潰瘍生物標(biāo)記的有力候選基因.還有一些研究著力于糖尿病足部潰瘍的治療,miR-155敲基因小鼠對(duì)表皮修復(fù)有很好的效果,雖然對(duì)糖尿病患者效果不明顯,但對(duì)炎癥反應(yīng)有作用,因此可以作為糖尿病足部潰瘍減輕炎癥反應(yīng)的候選靶標(biāo)[33].本實(shí)驗(yàn)室前期做了糖尿病miR-126的研究,初步結(jié)果顯示,與普通糖尿病相比,糖尿病足部潰瘍患者的miR-126表達(dá)顯著下調(diào).miR-126在調(diào)節(jié)糖尿病足創(chuàng)面的愈合中發(fā)揮調(diào)節(jié)作用,可能是糖尿病足愈合的指示分子[34].本研究為糖尿病足的臨床診斷和靶標(biāo)預(yù)測(cè)提供了新思路 .
糖尿病的高患病率以及其并發(fā)癥的難治性使得尋找關(guān)鍵發(fā)病病因及分子機(jī)制至關(guān)重要.MicroRNAs在糖尿病相關(guān)研究中,可以通過上調(diào)或下調(diào)某些基因的表達(dá)實(shí)現(xiàn)調(diào)控作用.MicroRNAs可以在糖尿病及并發(fā)癥早期診斷和治療中作為有效的生物靶標(biāo),為臨床工作奠定基礎(chǔ).
[1]Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
[2]Chen H,Lan HY,Roukos DH,et al.Application of microRNAs in diabetes mellitus[J].J Endocrinol,2014,222(1):R1-R10.
[3]Li X,Du N,Zhang Q,et al.MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy[J].Cell Death Dis,2014,5:e1479.
[4]Sun LL,Jiang BG,Li WT,et al.MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression[J].Diabetes Res Clin Pract,2011,91(1):94-100.
[5]Takahashi P,Xavier DJ,Evangelista AF,et al.MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus[J].Gene,2014,539(2):213-223.
[6]Osipova J,F(xiàn)ischer DC,Dangwal S,et al.Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus:a cross-sectional cohort study[J].J Clin Endocrinol Metab,2014,99(9):E1661-E1665.
[7]Honardoost M,Sarookhani MR,Arefian E,et al.Insulin resistance associated genes and miRNAs[J].Appl Biochem Biotechnol,2014,174(1):63-80.
[8]Karolina DS,Armugam A,Tavintharan S,et al.MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulinreceptor substrate 1 in type 2 diabetes mellitus[J].PLoS One,2011,6(8): e22839.
[9]Ferretti C,La Cava A.miR-126,a new modulator of innate immunity[J].Cell Mol Immunol,2014,11(3):215-217.
[10]Liu Y,Gao G,Yang C,et al.The role of circulating microRNA-126 (miR-126):a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus[J].Int J Mol Sci,2014,15(6): 10567-10577.
[11]Muralimanoharan S,Maloyan A,Myatt L.Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus:role of miR-143[J].Clin Sci(Lond),2016,130(11): 931-941.
[12]Schramm TK,Gislason GH,K ber L,et al.Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk:a population study of 3.3 million people[J].Circulation,2008,117(15):1945-1954.
[13]Xiao J,Luo X,Lin H,et al.MicroRNA miR-133 represses HERG K+channel expression contributing to QT prolongation in diabetic hearts[J].J Biol Chem,2007,282(17):12363-12367.
[14]Jaguszewski M,Osipova J,Ghadri JR,et al.A signature of circulating microRNAs differentiatestakotsubo cardiomyopathy from acute myocardial infarction[J].Eur Heart J,2014,35(15):999-1006.
[15]Yang Q,Yang K,Li A.microRNA-21 protects against ischemiareperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism[J].Mol Med Rep,2014,9(6):2213-2220.
[16]Gohda T,Mima A,Moon JY,et al.Combat diabetic nephropathy: from pathogenesis to treatment[J].J Diabetes Res,2014,2014: 207140.
[17]McClelland A,Hagiwara S,Kantharidis P.Where are we in diabetic nephropathy:microRNAs and biomarkers[J].Curr Opin Nephrol Hypertens,2014,23(1):80-86.
[18]McClelland AD,Kantharidis P.microRNA in the development of diabetic complications[J].Clin Sci,2014,126(2):95-110.
[19]Lan HY.Transforming growth factor-β/Smad signalling in diabetic nephropathy[J].Clin Exp Pharmacol Physiol,2012,39(8):731-738.
[20]Wang Q,Wang Y,Minto AW,et al.MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy[J].FASEB J,2008,22(12):4126-4135.
[21]Chen YQ,Wang XX,Yao XM,et al.MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency[J].Am J Nephrol,2011,34(6):549-559.
[22]Silva VA,Polesskaya A,Sousa TA,et al.Expression and cellular localization of microRNA-29b and RAX,an activator of the RNA-dependent protein kinase(PKR),in the retina of streptozotocin-induced diabetic rats[J].Mol Vis,2011,17:2228-2240.
[23]Ziyadeh FN,Sharma K.Overview:combating diabetic nephropathy[J].J Am Soc Nephrol,2003,14(5):1355-1357.
[24]Mastropasqua R,Toto L,Cipollone F,et al.Role of microRNAs in the modulation of diabetic retinopathy[J].Prog Retin Eye Res,2014,43:92-107.
[25]Wang Q,Bozack SN,Yan Y,et al.Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina[J].Invest Ophthalmol Vis Sci,2014,55(6):3986-3994.
[26]Bai Y,Bai X,Wang Z,et al.MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors[J].Exp Mol Pathol,2011,91(1):471-477.
[27]Kostev K,Jockwig A,Hallwachs A,et al.Prevalence and risk factors of neuropathy in newly diagnosed type 2 diabetes in primary are practices:a retrospective database analysis in Germany and U.K.[J].Prim Care Diabetes,2014,8(3):250-255.
[28]Tellechea A,Kafanas A,Leal EC,et al.Increased skin inflammation and blood vessel density in human and experimental diabetes[J].Int J Low Extrem Wounds,2013,12(1):4-11.
[29]Malik RA,Veves A,Tesfaye S,et al.Small fibre neuropathy:role in the diagnosis of diabetic sensorimotor polyneuropathy[J].Diabetes Metab Res Rev,2011,27(7):678-684.
[30]Ciccacci C,Morganti R,Di Fusco D,et al.Common polymorphisms in MIR146a,MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes[J].Acta Diabetol,2014,51(4): 663-671.
[31]Salas-Pérez F,Codner E,Valencia E,et al.MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells(PBMCs)from patients with type 1 diabetes[J].Immunobiology,2013,218(5):733-737.
[32]Wang L,Chopp M,Szalad A,et al.The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy[J].Neuroscience,2014,259:155-163.
[33]van Solingen C,Araldi E,Chamorro-Jorganes A,et al.Improved repair of dermal wounds in mice lacking microRNA-155[J].J Cell Mol Med,2014,18(6):1104-1112.
[34]Zhang J,Sun XJ,Chen J,et al.Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy[J].J Diabetes Complicat,2017,31(1):241-244.
R587.1
A
2095-6894(2017)08-86-03
2017-01-02;接受日期:2017-01-20
2014軍區(qū)重大課題(10Z14)
張 潔.碩士.研究方向:內(nèi)分泌.E-mail:27966509@qq.com
王愛萍.博士.E-mail:27966509@qq.com