王文湛,雙衛(wèi)兵 (山西醫(yī)科大學(xué)第一醫(yī)院,山西太原030001)
樹(shù)突細(xì)胞在腫瘤免疫治療中的研究進(jìn)展
王文湛,雙衛(wèi)兵 (山西醫(yī)科大學(xué)第一醫(yī)院,山西太原030001)
隨著基因技術(shù)、分子生物學(xué)以及免疫學(xué)的快速發(fā)展,抗腫瘤免疫療法也逐漸被視為是一種有效的腫瘤治療方法.在抗腫瘤免疫過(guò)程中,樹(shù)突狀細(xì)胞(DC)是最具潛力的抗原提呈細(xì)胞,在介導(dǎo)抗腫瘤免疫的過(guò)程中發(fā)揮著關(guān)鍵作用,其抗腫瘤免疫治療的重要性也日益受到關(guān)注,有關(guān)研究也取得了較大的進(jìn)展,在臨床上也顯示出了良好的應(yīng)用前景.本文對(duì)以DC為基礎(chǔ)的惡性腫瘤免疫治療的現(xiàn)狀及研究進(jìn)展作了總結(jié).
樹(shù)突狀細(xì)胞;惡性腫瘤;免疫治療
惡性腫瘤是威脅人類健康的重大疾患之一.其發(fā)病率現(xiàn)已高居我國(guó)居民病死原因首位[1].隨著人口老齡化加速以及環(huán)境和生活方式的變化,在未來(lái)幾十年內(nèi),預(yù)計(jì)惡性腫瘤在我國(guó)的發(fā)病率和死亡人數(shù)仍將不斷上升.手術(shù)治療、放療和化療等是當(dāng)前針對(duì)惡性腫瘤普遍采用的方法,但存在腫瘤的種植和轉(zhuǎn)移,以及放化療不良反應(yīng)等問(wèn)題.由于免疫學(xué)和腫瘤生物學(xué)研究的飛速發(fā)展,免疫治療成為了暨經(jīng)典的三大腫瘤治療方式之后的又一新方式,并有望成為高效治療惡性腫瘤的突破口[2].樹(shù)突細(xì)胞(dendritic cell,DC)獨(dú)特的抗原遞呈作用,以及激活先天性和獲得性免疫反應(yīng)的特性,使得以DC為基礎(chǔ)的免疫治療方法較其他免疫治療策略更優(yōu).因此,目前運(yùn)用的大多數(shù)免疫治療體系都通過(guò)DC來(lái)實(shí)現(xiàn)[3].本文將以DC為基礎(chǔ)的針對(duì)惡性腫瘤免疫治療的現(xiàn)狀及研究進(jìn)展作如下綜述.
Steiman和Cohn于1973年通過(guò)處理小鼠的脾臟組織獲得了DC[4],因其成熟細(xì)胞具有樹(shù)突樣的偽足故被命名為樹(shù)突細(xì)胞.DC細(xì)胞起源于多能造血干細(xì)胞,骨髓前體細(xì)胞分化來(lái)的DC通過(guò)血液進(jìn)入多種實(shí)體器官和非淋巴的上皮組織,稱之為未成熟DC(immature DC).未成熟DC的含量不足人外周血單核細(xì)胞的1%[5].人體絕大多數(shù)的DC是以不成熟的狀態(tài)存在的,未成熟DC從脾臟、心臟、皮膚、胃腸道等外周組織攝取、加工抗原后,由淋巴管引流遷移至次級(jí)淋巴器官轉(zhuǎn)變?yōu)槌墒斓腄C.DC攝取、加工抗原后,在細(xì)胞膜上以抗原肽?MHCⅡ類分子復(fù)合物的形式表達(dá),并呈遞給CD4+T細(xì)胞;還有的是以抗原肽?MHCⅠ類分子復(fù)合物的形式將抗原肽提呈給CD8+T細(xì)胞.
位于成熟DC表面的抗原肽?MHCⅡ類分子復(fù)合物和抗原肽?MHCⅠ類分子復(fù)合物被CD4+、CD8+T細(xì)胞表面的TCR(T細(xì)胞抗原受體)分別識(shí)別,最終形成TCR?抗原肽?MHC分子三聯(lián)體.ICAM?1等黏附分子、共刺激分子(CD80、CD86、CD40)在成熟DC為高表達(dá)[6],這些分子為T細(xì)胞充分活化提供了第二信號(hào),促使抗原呈遞功能明顯增強(qiáng),同時(shí)還分泌白介素?12(interleukin?12,IL?12)、腫瘤壞死因子?α(tumor necro?sis factor?α,TNF?α)等一些重要的細(xì)胞因子,這些細(xì)胞因子進(jìn)一步誘導(dǎo)T細(xì)胞增殖和分化,促進(jìn)細(xì)胞毒T細(xì)胞(cytotoxic T lymphocyte,CTL)和輔助性T細(xì)胞(helper T cells,Th)生成,進(jìn)而免疫應(yīng)答.在機(jī)體的免疫應(yīng)答中,DC不僅僅是啟動(dòng)者,也參與其中[7].DC還是人體內(nèi)功能最強(qiáng)大、唯一能激活靜息期T細(xì)胞的抗原遞呈細(xì)胞[8].非特異性免疫應(yīng)答過(guò)程中,經(jīng)典DC(conven?tional DC,cDC)具有很強(qiáng)的攝取、提呈、加工抗原的能力.TLR7和TLR9在漿細(xì)胞樣DC(plasmacytoid DC,pDC)高表達(dá),能夠有效識(shí)別病毒核酸產(chǎn)生的大量Ⅰ型干擾素,在抗病毒免疫過(guò)程中發(fā)揮著重要作用.
DC抗腫瘤的可能途徑:①誘導(dǎo)大批量效應(yīng)T細(xì)胞(effector T cell)的生成;②通過(guò)分泌各種細(xì)胞因子趨化效應(yīng)T細(xì)胞,使之遷移至腫瘤所在部位;③在腫瘤存在部位保持效應(yīng)T細(xì)胞的長(zhǎng)期存留;④通過(guò)產(chǎn)生多種細(xì)胞因子,如IL?12、IL?1β、粒細(xì)胞?單核細(xì)胞集落刺激因子、TNF?α等發(fā)揮抗腫瘤作用;⑤調(diào)節(jié)機(jī)體的免疫平衡,參與腫瘤免疫過(guò)程.⑥對(duì)腫瘤血管的生成起到抑制作用[9].
腫瘤細(xì)胞生長(zhǎng)過(guò)程中也會(huì)分泌不同的細(xì)胞因子(包括神經(jīng)節(jié)苷脂、神經(jīng)肽、NO和其他分子等),這些細(xì)胞因子可干擾DC正常分化的進(jìn)程,以致DC不能夠正常成熟,甚至誘導(dǎo)其凋亡,進(jìn)而造成DC功能缺陷和數(shù)量減少[10-11].Gigante等[12]發(fā)現(xiàn)存在于腫瘤浸潤(rùn)部分的DC不僅更易于凋亡,而且抗原遞呈能力低下.研究[13]發(fā)現(xiàn),高分化的實(shí)體腫瘤中存在較多的腫瘤浸潤(rùn)性DC,提示腫瘤浸潤(rùn)性DC的密度與腫瘤病理分級(jí)和分期呈負(fù)相關(guān),與預(yù)后呈正相關(guān).大多數(shù)腫瘤患者存在DC功能障礙和數(shù)量減少的現(xiàn)象,這啟發(fā)我們,如果能夠在體外誘導(dǎo)出功能強(qiáng)大且數(shù)量足夠的DC,就可能達(dá)到殺滅腫瘤的目的.
DC疫苗的制備多始于前體細(xì)胞的分化,隨后以不同的處理方式誘導(dǎo),使之轉(zhuǎn)化為成熟DC(mature DC,mDC).
3.1 DC細(xì)胞的制備當(dāng)前CD14+單核細(xì)胞是應(yīng)用最多的前體細(xì)胞,也有少數(shù)使用骨髓CD34+單核細(xì)胞[14].最常用的誘導(dǎo)前體細(xì)胞產(chǎn)生不成熟DC的細(xì)胞因子為粒細(xì)胞?巨噬細(xì)胞集落刺激因子(GM?CSF)和白細(xì)胞介素4(IL?4).細(xì)胞因子(IL?1β、IL?6、TNF?α、PGE2)是目前激活DC的最佳組合,其中前列腺素E2(prostaglandin E2,PGE2)既可上調(diào)CC型趨化因子受體2(CC chemokines receptor2,CCR2)表達(dá),又能促進(jìn)DC遷移至發(fā)揮抗腫瘤免疫效應(yīng)的淋巴結(jié)[15].多聚次黃嘌呤胞嘧啶核苷酸[polyriboinosinic polyri?bocytidylic,poly(I∶C)]和細(xì)胞因子的組合,可刺激DC產(chǎn)生大量IL?12,進(jìn)而誘導(dǎo)生成反應(yīng)性更強(qiáng)的抗原特異性CTL[16].臨床上從患者或健康志愿者的外周血獲取單核細(xì)胞最常用的方法是Ficoll?Hypaque密度梯度離心法,培養(yǎng)第6天加入TNF?α、PGE2等外源性刺激劑可促進(jìn)DC成熟[14].研究[17]發(fā)現(xiàn),骨髓來(lái)源的DC產(chǎn)量比外周血來(lái)源的DC要高出7~25倍,并能夠更有效地刺激機(jī)體T淋巴細(xì)胞的增殖.
氧水平和培養(yǎng)介質(zhì)對(duì)DC的產(chǎn)生與成熟有一定影響.高氧條件可產(chǎn)生出功能更強(qiáng)的DC,而低氧條件下產(chǎn)生的DC無(wú)論在T細(xì)胞激活還是Th2反應(yīng)均極差.培養(yǎng)介質(zhì)方面,添加血清的培養(yǎng)介質(zhì)較不添加血清的培養(yǎng)介質(zhì)更易于誘導(dǎo)出成熟的DC.接種數(shù)量與培養(yǎng)出的DC細(xì)胞也有很大關(guān)系,接種充足的DC可以使得T細(xì)胞被激活的量大大增加,更有益于其在臨床中的應(yīng)用.現(xiàn)行的獲得DC疫苗的方案依然存在許多不足,因此,仍需不斷優(yōu)化和探索更加高效的DC制備方法[18].
3.2 DC亞型篩選DC是一個(gè)具有高度多樣性的細(xì)胞群,但并非所有DC都可以誘導(dǎo)發(fā)生免疫反應(yīng).目前在臨床試驗(yàn)中應(yīng)用的主要是cDC和特定條件下分化產(chǎn)生的非傳統(tǒng)DC,后者又包括pDC和單核細(xì)胞來(lái)源的DC(monocyte?derived DC,moDC).
cDC于外周淋巴組織中攝取,識(shí)別抗原后遷移至局部的淋巴結(jié)選擇性激活初始T細(xì)胞,并誘導(dǎo)更強(qiáng)的CTL反應(yīng)[19].DC產(chǎn)生的干擾素可誘導(dǎo)自然殺傷細(xì)胞(nature killer cell,NK)的TNF相關(guān)凋亡誘導(dǎo)配體,發(fā)揮免疫監(jiān)視及腫瘤細(xì)胞清除功能.DC疫苗的設(shè)計(jì)研發(fā)中已應(yīng)用到了moDC,CD11c+moDC較pDC具有更強(qiáng)的攝取功能,可有效進(jìn)行抗原的攝取,誘導(dǎo)Th1型反應(yīng),并能夠更加高效地抗擊腫瘤[20].盡管不同DC亞型[包括moDC、pDC、朗格汗斯(Langhans)巨細(xì)胞]的各自效能已經(jīng)在體外試驗(yàn)及動(dòng)物試驗(yàn)中進(jìn)行了深入的研究,但臨床試驗(yàn)很少,尚需更多地開(kāi)展臨床研究以驗(yàn)證療效.
淋巴結(jié)(Lymphonode,LN)是DC誘導(dǎo)抗腫瘤免疫反應(yīng)的核心?抗原特異性CD8+毒性T細(xì)胞產(chǎn)生的場(chǎng)所,因此劑型的設(shè)計(jì)中應(yīng)用能夠使得DC疫苗靶向LN的疫苗載體很關(guān)鍵,這對(duì)于保證DC疫苗抗腫瘤免疫治療的療效十分必要.隨著材料領(lǐng)域日新月異的研究進(jìn)展,納米技術(shù)相關(guān)的材料已被逐漸應(yīng)用于DC疫苗載體設(shè)計(jì)當(dāng)中,這種新技術(shù)下的“納米疫苗”具有能夠順利通過(guò)淋巴管至引流LN的低于50 nm的超小尺寸以及如脂質(zhì)體一般的生物相容性等優(yōu)點(diǎn).多節(jié)點(diǎn)的增加了疫苗的利用率和抗腫瘤免疫治療的有效性.
4.1 脂質(zhì)體將納米技術(shù)應(yīng)用于載體設(shè)計(jì)中所制備出的“納米疫苗”體積極小,生物相容性高.有報(bào)道將基于表面甘露糖基化的固體脂質(zhì)納米粒作為載體,不僅能夠遞送抗原,還可以使得DC活化,經(jīng)皮下注射后引發(fā)更強(qiáng)的抗腫瘤免疫治療效應(yīng)[21].利用納米技術(shù)制備的脂質(zhì)體可將腫瘤相關(guān)抗原遞送給DC,在婦科惡性腫瘤起始細(xì)胞靶向免疫治療中發(fā)揮了良好的作用[22].腫瘤細(xì)胞來(lái)源的熱休克蛋白肽復(fù)合物(tumor?derived heat shock proteins peptide complex,HSP.PC?Tu)一直以來(lái)被認(rèn)為是充滿希望的抗腫瘤藥物.但其較低的免疫疫原性和生物利用度限制了其在腫瘤免疫治療領(lǐng)域的發(fā)展,將通過(guò)純化DC?腫瘤融合細(xì)胞獲得的改進(jìn)版HSP.PC?Tu疫苗包被于納米脂質(zhì)體,同時(shí)提高了免疫原性和生物利用率,增強(qiáng)了腫瘤免疫治療的療效[23].
4.2 納米凝膠有研究[24]構(gòu)建了一種兩性的pH?敏感型半乳糖基葡聚糖視黃醛(galactosyl dextran?reti?nal,GDR)納米微凝膠作為DC疫苗運(yùn)載工具,該載體具有自佐劑能力,不僅通過(guò)激活維甲酸受體信號(hào)通路促進(jìn)DC成熟,而且以識(shí)別半乳糖基的方式輔助DC靶向遞呈抗原.在腫瘤疫苗免疫治療中具有很大前景.
5.1 DC疫苗DC誘導(dǎo)的特異性免疫治療已成為惡性腫瘤生物治療研究領(lǐng)域的熱點(diǎn)課題.目前應(yīng)用于臨床的DC疫苗可分為三大類:負(fù)載腫瘤相關(guān)抗原(tumor associated antigen,TAA)的DC疫苗、負(fù)載腫瘤全細(xì)胞抗原的DC疫苗、轉(zhuǎn)入腫瘤抗原基因的DC疫苗.
5.1.1 負(fù)載TAA的DC疫苗 共培養(yǎng)DC與TAA,使DC與腫瘤抗原肽相結(jié)合,誘導(dǎo)具有腫瘤抗原特異性的免疫應(yīng)答.研究[25]顯示,與腫瘤細(xì)胞源性的熱休克蛋白70(tumor?derived heat shock protein70?peptide complexes,HSP70.PC?Tu)相比,DC?腫瘤融合細(xì)胞源性的熱休克蛋白70(HSP70.PC?Fc)具有更強(qiáng)的免疫源性,能夠顯著增強(qiáng)T細(xì)胞活化及CTL反應(yīng)等抗腫瘤免疫.負(fù)載HSP70.PC?Tu的DC較單純DC對(duì)肺腺癌細(xì)胞具有更強(qiáng)的殺傷力[26].給腦膠質(zhì)瘤患者應(yīng)用破傷風(fēng)?白喉毒素(tetanus/diphtheria toxoid,TD)處理的DC細(xì)胞,提高了DC遷移能力以及膠質(zhì)瘤患者的預(yù)后[27].
5.1.2 負(fù)載腫瘤全細(xì)胞抗原的DC疫苗 腫瘤細(xì)胞、腫瘤細(xì)胞裂解物等能夠使得DC同時(shí)負(fù)載多種TAA,從而誘導(dǎo)出各型抗原特異性CTL,使其表達(dá)多種抗原表位,有效避免了由于應(yīng)用單一腫瘤抗原呈遞所引起的腫瘤免疫逃避.相比抗原肽,負(fù)載凋亡或壞死腫瘤細(xì)胞的DC細(xì)胞能誘導(dǎo)更加有效的抗腫瘤免疫反應(yīng)[28].Verma等[29]的研究表明,與基于腫瘤特異表位E6/E7肽的疫苗相比,總?cè)芰霎a(chǎn)物誘導(dǎo)下DC表面CD40、CD80分子表達(dá)水平更高,γ型干擾素(interfer?on?γ,IFN?γ)的表達(dá)增加,抗腫瘤免疫治療效應(yīng)增強(qiáng).5.1.3 轉(zhuǎn)入腫瘤抗原基因的DC疫苗 利用腺病毒等(adenovirus,Ad)轉(zhuǎn)運(yùn)工具攜帶腫瘤抗原基因轉(zhuǎn)染DC后,抗原特異性CTL反應(yīng)增強(qiáng).與應(yīng)用甲胎蛋白(α?fetoprotein,AFP)肽段直接刺激相比,轉(zhuǎn)入了AFP基因的DC療效更佳[30].
5.2 DC與腫瘤細(xì)胞/腫瘤干細(xì)胞融合疫苗
5.2.1 DC/腫瘤細(xì)胞融合疫苗 DC/腫瘤融合疫苗是將腫瘤細(xì)胞直接作為抗原,并通過(guò)雜交瘤技術(shù)將其與DC融合,產(chǎn)生的融合細(xì)胞既表達(dá)TAAs,也表達(dá)DC細(xì)胞膜表面的MHCⅠ和MHCⅡ類分子、協(xié)同共刺激分子等.在腫瘤特異性抗原和TAAs未知的情況下,這無(wú)疑是一種簡(jiǎn)便可靠的抗原呈遞方法.
5.2.2 DC/腫瘤干細(xì)胞融合疫苗 化療后殘余的少量腫瘤干細(xì)胞(cancer stem cells,CSCs)仍是使腫瘤組織“死灰復(fù)燃”的火種.因此,能否誘導(dǎo)良好的CSCs免疫反應(yīng)是治療惡性腫瘤成敗的關(guān)鍵[31].多重CSCs特異性抗原內(nèi)源性處理的腫瘤干細(xì)胞與DC融合形成的細(xì)胞,可以將CSCs特異性抗原呈遞給MHCⅠ和MHCⅡ類分子,進(jìn)而誘導(dǎo)出針對(duì)CSCs的高效的特異性T淋巴細(xì)胞毒效應(yīng)[32].
5.3 DC/CIK細(xì)胞CIK(cytokine?induced killer)細(xì)胞是在體外多種細(xì)胞因子(如IFN?γ,IL?2,抗CD3單抗)與外周血單核細(xì)胞(peripheral blood mononucle?ar cell,PBMC)共同培育而獲得的以CD3+、CD56+細(xì)胞為主要效應(yīng)細(xì)胞的細(xì)胞群,CD3+、CD56+細(xì)胞也稱為NK細(xì)胞樣T淋巴細(xì)胞[33].DC/CIK是指在體外與DC進(jìn)行共培養(yǎng)的CIK細(xì)胞,由于DC可能通過(guò)分泌大量的IL?16等機(jī)制解除CIK細(xì)胞中存在的少量Treg細(xì)胞對(duì)CIK細(xì)胞功能的抑制,增強(qiáng)了CIK細(xì)胞作用的靶向性及免疫療效[34].
5.4 聯(lián)合治療研究[35-38]發(fā)現(xiàn),基于DC的免疫治療與其他腫瘤治療方式聯(lián)合應(yīng)用能夠得到更好的結(jié)果.有研究[35]表明,免疫治療與放化療聯(lián)合應(yīng)用可以在一定程度上抑制導(dǎo)致腫瘤復(fù)發(fā)的腫瘤干細(xì)胞.結(jié)腸癌治療中,DC免疫治療與放療聯(lián)合應(yīng)用其療效也得到了明顯增強(qiáng)[36].應(yīng)用針對(duì)細(xì)胞毒T淋巴細(xì)胞相關(guān)抗原4(cytoxic T?lymphocyte antigen 4,CTLA?4),細(xì)胞程序性死亡受體?1(programmed cell death1,PD?1)及細(xì)胞程序性死亡?配體1(PD?1 ligand 1,PD?L1)等的特異性單克隆抗體的免疫檢查點(diǎn)阻斷法與免疫療法聯(lián)合,能夠提高腫瘤疫苗的效力,增強(qiáng)抗腫瘤免疫治療的療效[37-38].
DC在臨床腫瘤免疫治療領(lǐng)域具有很高的潛在價(jià)值.但距其實(shí)際應(yīng)用于臨床腫瘤患者還需要做大量的工作,DC自身與免疫系統(tǒng)之間的復(fù)雜機(jī)制,DC及免疫系統(tǒng)與腫瘤發(fā)生發(fā)展的關(guān)系,以及DC免疫治療相關(guān)藥物療效的提高等.此外,腫瘤復(fù)雜的免疫環(huán)境中,DC可能會(huì)被誘導(dǎo)為具有免疫耐受或免疫抑制的類型.雖然具有免疫原性和免疫耐受性的DC亞群相對(duì)好區(qū)分,但是DC疫苗的應(yīng)用是否會(huì)影響腫瘤微環(huán)境中不同亞群的相互作用、壽命以及歸巢行為等依然是值得思考和進(jìn)一步研究的問(wèn)題.
[1] 國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì).2013中國(guó)衛(wèi)生和計(jì)劃生育統(tǒng)計(jì)提要[M].北京:中國(guó)協(xié)和醫(yī)科大學(xué)出版社,2013.
[2] Apetoh L,Locher C,Ghiringhelli F,et al.Harnessing dendritic cells in cancer[J].Semin Immunol,2011,23(1):42-49.
[3] 孟冉冉,張 寧,張躍偉,等.樹(shù)突狀細(xì)胞免疫治療惡性腫瘤的研究現(xiàn)狀[J].醫(yī)學(xué)綜述,2013,19(7):1214-1216.
[4] 陳 虎,唐曉義,張 斌.樹(shù)突狀細(xì)胞腫瘤疫苗:全球臨床試驗(yàn)巡禮[J].中國(guó)腫瘤生物治療雜志,2012,19(1):1-10.
[5] 朱傳東,鄭 勤,張全安.樹(shù)突狀細(xì)胞在腫瘤免疫治療中的應(yīng)用與進(jìn)展[J].實(shí)用癌癥雜志,2011,26(1):108-110.
[6] Hu W,Jain A,Gao Y,et al.Differential outcome of TRIF?mediated signaling in TLR4 and TLR3 induced DC maturation[J].Proc Natl Acad Sci USA,2015,112(45):13994-13999.
[7] 劉文婷,姜廣水.樹(shù)突狀細(xì)胞對(duì)調(diào)節(jié)性T細(xì)胞的調(diào)控作用[J].國(guó)際免疫學(xué)雜志,2012,35(3):172-175.
[8] Reis e Sousa C.Dendritic cells as sensors of infection[J].Immunity,2001,14(5):495-498.
[9] Gabrilovich D.Mechanisms and functional significance of tumor?in?duced dendritic cell defects[J].Nat Rev Immunol,2004,4(12):941-952.
[10] Chung TW,Kim SJ,Choi HJ,et al.Ganglioside GM3 inhibits VEGF/VEGFR?2?mediated angiogenesis:Direct interaction of GM3 with VEGFR?2[J].Glycobiology,2009,19(3):229-239.
[11] Zong J,Keskinov AA,Shurin GV,et al.Tumor?derived factors mod?ulating dendritic cell function[J].Cancer Immunol Immunother,2016,65(7):821-833.
[12] Gigante M,Blasi A,Loverre A,et al.Dysfunctional DC subsets in RCC patients:ex vivo correction to yield an effective anti?cancer vaccine[J].Mol Immunol,2009,46(5):893-901.
[13] Ma Y,Shurin GV,Peiyuan Z,et al.Dendritic cells in the cancer microenvironment[J].J Cancer,2013,4(1):36-44.
[14] 李寧波,孫德俊,馬國(guó)強(qiáng).DC/腫瘤融合疫苗的制備及在腫瘤治療中的進(jìn)展[J].世界最新醫(yī)學(xué)信息文摘,2016,16(44):30-31.
[15] Trepiakas R,Pedersen AE,Met O,et al.Addition of interferon?al?pha to a standard maturation cocktail induces CD38 up?regulation and increases dendritic cell function[J].Vaccine,2009,27(16):2213-2219.
[16] Navabi H,Jasani B,Reece A,et al.A clinical grade polyⅠ:C?analogue(Ampligen?)promotes optimal DC maturation and Th1?type T cell responses of healthy donors and cancer patients in vitro[J].Vaccine,2009,27(1):107-115.
[17] Dey M,Chang AL,Miska J,et al.Dendritic cell based vaccines that utilize myeloid rather than plasmacytoid cells offer a superior survival advantage in malignant glioma[J].J Immunol,2015,195(1):367-376.
[18] 楊麥責(zé),楊 陽(yáng),岳 波,等.細(xì)胞因子誘導(dǎo)的imDCs鑒定及免疫學(xué)功能研究[J].中華實(shí)用診斷與治療雜志,2011,25(5):466-469.
[19] Erdmann M,D?rrie J,Schaft N,et al.Effective clinical?scale pro?duction of dendritic cell vaccines by monocyte elutriation directly in medium,subsequent culture in bags and final antigen loading using peptides or RNA transfection[J].J Immunother,2007,30(6):663-674.
[20] Radford KJ,Tullett KM,Lahoud MH.Dendritic cells and cancer immunotherapy[J].Curr Opin Immunol,2014,27:26-32.
[21] Yuba E,Yamaguchi A,Yoshizaki Y,et al.Bioactive polysaccha?ride?based Ph?sensitive polymers for cytoplasmic delivery of antigen and activation of antigen?specific immunity[J].Biomaterials,2017,120:32-45.
[22] Bhargava A,Mishra DK,Jain SK,et al.Comparative assessment of lipid based nano?carrier systems for dendritic cells based targeting of tumor re?initiating cell in gynecological cancers[J].Mol Immunol,2016,79:98-112.
[23] Zhang Y,Luo W,Wang Y,et al.Enhanced antitumor immunity of nanoliposome?encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells[J].Oncol Rep,2015,33(6):2695-2702.
[24] Wang C,Li P,Liu L,et al.Self?adjuvanted nanovaccine for cancer immunotherapy:Role of lysosomal rupture?induced ROS in MHC classⅠantigen presentation[J].Biomaterials,2016,79:88-100.
[25] Zhang Y,Zhang Y,Chen J,et al.Dendritic?tumor fusion cells de?rived heat shock protein70?peptide complex has enhanced immunoge?nicity[J].Plos One,2015,10(5):e0126075
[26] Wang Q,Ren XB,Jiang JT.Research progress of cellular immune?therapy and clinic translation on lung cancer[J].Chin J Cancer Biother,2015,22(3):375-380.
[27] Mitchell DA,Batich KA,Gunn MD,et al.Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients[J].Nature,2015,519(7543):366-369.
[28] Guo ZH,Cao XT.The current situation and prospect of immunocyte therapy for tumor[J].China J Cancer Biother,2016,23(2):149-160.
[29] Verma V,Kim Y,Lee MC,et al.Activated dendritic cells delivered in tissue compatible biomatrices induce in?situ anti?tumor CTL responses leading to tumor regression[J].Oncotarget,2016,7(26):39894-39906.
[30] Liu Y,Butterfield LH,F(xiàn)u X,et al.Lentivirally engineered dendritic cells activate AFP?specific T cells which inhibit hepatocellular carcinoma growth in vitro and in vivo[J].Int J Oncol,2011,39(1):245-253.
[31] Wang Z,Li Y,Ahmad A,et al.Pancreatic cancer:understanding and overcoming chemoresistance[J].Nat Rev Gastroenterol Hepatol,2011,8(1):27-33.
[32] Weng D,Song B,Durfee J,et al.Induction of cytotoxic T lymphocytes against ovarian cancer?initiating cells[J].Int J Cancer,2011,129(8):1990-2001.
[33] Kim JS,Chung IS,Lim SH,et al.Preclinical and clinical studies on cytokine?induced killer cells for the treatment of renal cell carcinoma[J].Arch Pharm Res,2014,37(5):559-566.
[34] 王 鳳,田復(fù)明,竇長(zhǎng)武.DC?CIK細(xì)胞抗腫瘤的研究進(jìn)展[J].內(nèi)蒙古醫(yī)學(xué)雜志,2013,45(4):435-509.
[35] Koido S,Homma S,Takahara A,et al.Immunotherapy synergizes with chemotherapy targeting pancreatic cancer[J].Immunotherapy,2012,4(1):5-7.
[36] Chen G,Jian Y,Li C,et al.Advances in vaccines for colorectal cancer[J].Acad J Chin PLA Med Sch,2016,37(5):501-505.
[37] Pathangey LB,Lakshminarayanan V,Suman VJ,et al.Aberrant glycosylation of anchor?optimized MUC1 peptides can enhance antigen binding afinity and reverse tolerance to cytotoxic T lymphocytes[J].Biomolecules,2016,6(3):1-31.
[38] Hirayama M,Nishimura Y.The present status and future prospects of peptide?based cancer vaccines[J].Int Immunol,2016,28(7):319-328.
Research progress of dendritic cell for malignant tumors therapy
WANG Wen-Zhan,SHUANG Wei-Bing
The First Hospital of Shanxi Medical University,Taiyuan 030001,China
With the rapid development of gene technology,molecular biology and immunology,tumor immunotherapy has been gradually accepted as an effective treatment.Dendritic cells(DCs)are the most potential antigen?presenting cells(APCs)playing a critical role in the induction of antitumor immunity.The antitumor immunity role of DCs has been paid more attention in recently.The research of tumor immunotherapy mediated by DCs makes great progress,and the treatment related to DC shows well application prospect in antitumor immunity.This paper reviews the current status and development of dendritic cell for tumor immunotherapy in recent years.
dendritic cell;malignant tumors;immunotherapy
R730.51
A
2017-09-04;接受日期:2017-09-22
山西省高校2014年度131領(lǐng)軍人才項(xiàng)目(晉教財(cái)【2015】41號(hào)165
王文湛.碩士生.E?mail:1306619459@qq.com
雙衛(wèi)兵.博士,主任醫(yī)師,博導(dǎo).E?mail:165305905@qq.com
2095?6894(2017)10?62?04