国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Nlrp3炎癥小體與心血管疾病的研究進(jìn)展

2017-01-13 01:42葉麗風(fēng)吳艷嬌
關(guān)鍵詞:小體內(nèi)皮活化

周 星,葉麗風(fēng),吳艷嬌,黃 怡,陳 揚(yáng)

(1廣州中醫(yī)藥大學(xué)中藥學(xué)院,廣東廣州510006;2暨南大學(xué)附屬第一醫(yī)院口腔醫(yī)療中心,廣東廣州510630)

Nlrp3炎癥小體與心血管疾病的研究進(jìn)展

周 星1,葉麗風(fēng)1,吳艷嬌1,黃 怡2,陳 揚(yáng)1

(1廣州中醫(yī)藥大學(xué)中藥學(xué)院,廣東廣州510006;2暨南大學(xué)附屬第一醫(yī)院口腔醫(yī)療中心,廣東廣州510630)

炎癥小體(inflammasome)是一種蛋白復(fù)合物,能對(duì)多種相關(guān)炎癥因子起到活化作用,其中最重要的應(yīng)屬含半胱氨酸的天冬氨酸蛋白水解酶?1(caspase?1)對(duì)炎癥因子(IL?1β、IL?18)的激活.在各種炎癥小體中,Nlrp3炎癥小體最具代表性,研究認(rèn)為Nlrp3炎癥小體的活化與人類自身免疫系統(tǒng)相關(guān)疾病及慢性系統(tǒng)性疾病密切相關(guān).同時(shí)研究發(fā)現(xiàn),Nlrp3炎癥小體通過經(jīng)典或非典型炎癥通路激活一系列的信號(hào)通路,從而誘導(dǎo)細(xì)胞膜通透性破壞、細(xì)胞的代謝紊亂以及細(xì)胞凋亡、焦亡等細(xì)胞免疫反應(yīng).近年來Nlrp3炎癥小體被認(rèn)為極有可能是慢性疾病的中心致病環(huán)節(jié),而心血管疾病又是慢性疾病中最為主要的疾病類型.因此,在研究心血管疾病的過程中,對(duì)Nlrp3炎癥小體的研究就顯得尤為關(guān)鍵.本綜述簡(jiǎn)要闡述了近年來Nlrp3炎癥小體與心血管疾病之間的研究進(jìn)展.

心血管疾病;炎癥因子;Nlrp3

1 背景知識(shí)介紹

炎癥是先天免疫系統(tǒng)對(duì)有害刺激的一種防御性反應(yīng)[1-2],因此在機(jī)體遭受到外源性感染和內(nèi)源性細(xì)胞組織損傷的情況下會(huì)導(dǎo)致炎癥的發(fā)生,炎性細(xì)胞的活化也與機(jī)體生理平衡參數(shù)的紊亂有關(guān)[3-4].事實(shí)上,機(jī)體內(nèi)平衡中任何生理平衡參數(shù)發(fā)生變動(dòng)都會(huì)導(dǎo)致局部或全身性炎癥反應(yīng)[5].組織損傷和穩(wěn)態(tài)參數(shù)的改變能誘導(dǎo)先天免疫細(xì)胞激活并釋放出危險(xiǎn)信號(hào),釋放出的危險(xiǎn)信號(hào)即為危險(xiǎn)相關(guān)分子模式(danger?associated molecular patterns,DAMPs),機(jī)體的防御系統(tǒng)須通過模式識(shí)別受體(pattern recognition receptors,PRRs)識(shí)別出DAMPs后才會(huì)被啟動(dòng),然后再進(jìn)一步激活炎癥通路引發(fā)炎癥,而炎癥小體即是其中的一種PRRs[7].現(xiàn)已知的PRRs包括:C型凝集素受體(C?type lectin receptors,CLRs),Toll樣受體(Toll?like receptors,TLRs),視黃誘導(dǎo)型基因?Ⅰ(retinoic inducible gene?Ⅰ,RIG?Ⅰ),造血干擾素誘導(dǎo)型核抗原?200(hemopoetic inter?feron?inducible nuclear antigen with 200,HIN?200),Nlrp3炎癥小體則是PRRs中的最后一種識(shí)別受體——NOD樣受體(nucleotide?binging oligomerzation domain like receptors,NLRs)[8].NLR家族的PPR能通過將IL?1β或IL?18的前體蛋白水解切割成其活性形式來激活炎癥細(xì)胞,是一種有效的細(xì)胞內(nèi)炎癥機(jī)制.一些研究者[3-4]認(rèn)為,這種炎癥性活化可能是許多慢性退行性疾病的根源.在心血管疾病的研究中,Nlrp3炎癥小體的形成和激活不僅發(fā)生在免疫細(xì)胞如巨噬細(xì)胞中,還發(fā)生在其他血管細(xì)胞如內(nèi)皮細(xì)胞、纖維細(xì)胞中,這表明在心血管的疾病發(fā)生發(fā)展過程中,無論早期、中期還是晚期,Nlrp3炎癥小體均由參與.

1.1 Nlrp3炎癥小體在人類的基因庫(kù)中,已知有23個(gè)NLR基因能夠組成含有熱蛋白結(jié)構(gòu)域(pyrin domain,PYD)的NLRP家族和含有胱天蛋白酶募集結(jié)構(gòu)域(caspase recruitment domain,CARD)的NLRC家族[8],Nlrp3炎癥小體的活化就與這兩個(gè)結(jié)構(gòu)域息息相關(guān).Nlrp3炎癥小體是由NOD樣受體蛋白3(Nucle?otide?binding domain(NOD)?like receptor protein 3,Nlrp3)、凋亡相關(guān)斑點(diǎn)樣蛋白(apoptosis?associated speck?like protein,ASC)以及天冬氨酸蛋白水解酶?1(cysteinyl aspartate?specific proteases?1,Caspase?1)蛋白共同組成的蛋白復(fù)合物,在遇到外源病原毒素侵襲或內(nèi)源危險(xiǎn)信號(hào)刺激時(shí),它們就會(huì)活化并募集在一起,然后通過對(duì)相應(yīng)炎癥因子的剪切激活,最終引發(fā)炎癥反應(yīng)[9].Nlrp3炎癥小體被認(rèn)為是激活半胱天冬酶?1所必需的關(guān)鍵參與者,除了介導(dǎo)IL?1β或IL?18等炎癥因子的成熟外,還能誘導(dǎo)一種被稱為焦亡(pyroptosis)的細(xì)胞程序性死亡.焦亡是一種高炎癥形勢(shì)的細(xì)胞死亡,細(xì)胞發(fā)生焦亡后會(huì)釋放出更多的Nlrp3炎癥小體,進(jìn)一步加深機(jī)體的炎癥程度,且研究證明焦亡依賴于Caspase?1的活性[9].

1.2 Nlrp3炎癥小體的激活機(jī)制有研究[12]證明,炎癥反應(yīng)通常都是由先天免疫引起的,Nlrp3炎癥小體的激活與各種自身炎癥、自身免疫慢性炎癥和代謝疾病的發(fā)病機(jī)制相關(guān).目前研究普遍認(rèn)為Nlrp3炎癥小體激活需要兩個(gè)信號(hào):第一個(gè)信號(hào)是通過核因子?κB(nuclear factor?κB,NF?κB)等轉(zhuǎn)錄因子的激活(主要被認(rèn)為是一種Toll樣受體依賴性途徑)來啟動(dòng)編碼炎癥小體形成的基因的表達(dá)增加或脫輔基酶(deu?biquitinating enzyme)BRCC3激活來增強(qiáng)Nlrp3炎癥小體的去泛素化以達(dá)到上調(diào)Nlrp3的目的[13];第二個(gè)信號(hào)是Nlrp3激活及相應(yīng)炎癥因子的募集,這直接導(dǎo)致Nlrp3炎性復(fù)合體的形成[14].首先,Nlrp3炎癥小體被病原毒素或危險(xiǎn)信號(hào)刺激后,其PYD結(jié)構(gòu)域暴露,并與ASC的PYD結(jié)構(gòu)域相結(jié)合,從而激活A(yù)SC使其磷酸化,并暴露其CARD結(jié)構(gòu)域,然后與同樣擁有CARD結(jié)構(gòu)域的無活性的Caspase?1酶原形式(pro?Caspase?1)相結(jié)合,活化Caspase?1,最終形成Nl?rp3炎性復(fù)合體.還有許多機(jī)制被認(rèn)為與Nlrp3炎癥小體的活化有關(guān),例如K+的外排修飾、內(nèi)質(zhì)網(wǎng)(endo?plasmic reticulum,ER)應(yīng)激、溶酶體滲漏致組織蛋白酶B(cathepsins B,CB)的激活、線粒體功能障礙、Ca2+信號(hào)傳導(dǎo)以及活性氧(reactive oxygen species,ROS)釋放的增加[15]等,這些機(jī)制不僅可以提供第二信號(hào),也能激活NF?κB并參與BRCC3對(duì)Nlrp3的去泛素化[16].對(duì)于內(nèi)源性危險(xiǎn)信號(hào)引起的炎癥小體活化研究[17-18]中,研究者發(fā)現(xiàn)在生理正常平衡條件下,核苷酸酶能維持細(xì)胞外ATP處于低濃度水平,但一旦平衡被打破,細(xì)胞處于應(yīng)激狀態(tài)時(shí),細(xì)胞外的ATP就會(huì)處于高濃度狀態(tài),這時(shí),P2X7受體就會(huì)被高濃度的ATP激活,活化的P2X7就會(huì)刺激細(xì)胞內(nèi)K+外流,導(dǎo)致細(xì)胞內(nèi)處于一種低K+環(huán)境,此時(shí),銜接P2X7受體的Pannexin?1膜孔就會(huì)開放,Nlrp3激動(dòng)劑進(jìn)入細(xì)胞,從而激動(dòng)Nlrp3受體.對(duì)于外源性的刺激研究[19]顯示,當(dāng)一些特定的晶體顆粒?固醇晶體或者顆粒狀的硅被細(xì)胞吞噬后會(huì)破壞溶酶體而被迫喪失溶酶功能,這時(shí),細(xì)胞內(nèi)的內(nèi)質(zhì)網(wǎng)或高爾基體就會(huì)分泌出一些組織蛋白,如CB,這些組織蛋白能激活硫氧還蛋白相互作用蛋白(thioredoxin?interacting protein,TX?NIP),TXNIP能直接激活Caspase?1,然后有活性的Caspase?1對(duì)pro?IL?1β和pro?IL?18進(jìn)行剪切加工,細(xì)胞釋放出有生理活性的IL?1β和IL?18,最終產(chǎn)生炎癥反應(yīng).兩個(gè)研究,充分體現(xiàn)了內(nèi)源性和外源性刺激物均可引起Nlrp3炎癥小體的活化,而Nlrp3炎癥小體的活化最終會(huì)誘發(fā)炎癥的生成.我們知道,任何炎癥通路的激活最終都會(huì)導(dǎo)致促炎因子的釋放,而IL?1β、IL?18就是j較為經(jīng)典的一對(duì)促炎因子,它們能啟動(dòng)其它免疫反應(yīng),促進(jìn)免疫細(xì)胞如嗜中性粒細(xì)胞的活化、T細(xì)胞的活化和其它一些細(xì)胞因子的產(chǎn)生,在正常情況下,炎癥的發(fā)生是機(jī)體對(duì)自身的一種保護(hù),但在炎癥過度強(qiáng)烈的情況下,IL?1β和IL?18的釋放就是機(jī)體自我損傷的一種表現(xiàn).

2 Nlrp3炎癥小體與心血管疾病的關(guān)系

2.1 Nlrp3炎癥小體與血管相關(guān)細(xì)胞心血管疾病的發(fā)生發(fā)展主要由各種危險(xiǎn)因子長(zhǎng)期刺激所致.現(xiàn)今公認(rèn)心血管炎癥是一種無菌炎癥,也是一種慢性炎癥.研究證明,血管炎癥與損傷的發(fā)生或加劇與細(xì)胞因子和炎性細(xì)胞介導(dǎo)的炎癥反應(yīng)有關(guān),如再進(jìn)一步惡化就導(dǎo)致了心血管疾病如動(dòng)脈粥樣硬化等的發(fā)生[21],而炎癥小體的活化也能被一些免疫系統(tǒng)非特異性作用誘導(dǎo),例如細(xì)菌死亡釋放的內(nèi)毒素、特定形式的細(xì)胞死亡、細(xì)胞骨架結(jié)構(gòu)的干擾、脂質(zhì)雜環(huán)或功能蛋白的合成、代謝或分泌的直接調(diào)節(jié)等[22].許多內(nèi)源性危險(xiǎn)刺激物都是心血管疾病發(fā)生的誘因,且均能激活炎癥通路,起到引發(fā)炎癥的作用.研究[23]證明心血管疾病最先發(fā)生病變的地方是血管壁.血管壁生理功能的改變,是心血管疾病發(fā)生的重要標(biāo)志.血管壁由內(nèi)皮細(xì)胞,血管平滑肌細(xì)胞和結(jié)締組織組成.除此之外,血管血液中還有免疫細(xì)胞巨噬細(xì)胞存在,其主要作用是清除血液內(nèi)的危險(xiǎn)物質(zhì).當(dāng)血液中有致炎因子存在時(shí),首先由“清道夫”巨噬細(xì)胞進(jìn)行清除,并釋放出Nlrp3等炎癥小體誘發(fā)炎癥,以期通過自身免疫來消除危險(xiǎn)因子,而當(dāng)巨噬細(xì)胞對(duì)致炎因子的清除超過了其清理能力,且自身釋放的炎癥小體過強(qiáng)后,就會(huì)對(duì)機(jī)體自身造成進(jìn)一步的傷害.此時(shí)巨噬細(xì)胞無法保護(hù)血管細(xì)胞,危險(xiǎn)因子和巨噬細(xì)胞產(chǎn)生的過多的炎癥小體就會(huì)對(duì)血管其他細(xì)胞如內(nèi)皮細(xì)胞造成傷害,使內(nèi)皮細(xì)胞生理功能的改變,內(nèi)皮細(xì)胞受到傷害,當(dāng)致炎因子對(duì)內(nèi)皮傷害加重時(shí),內(nèi)皮細(xì)胞膜的通透性就會(huì)改變,內(nèi)皮層就會(huì)有所破損導(dǎo)致內(nèi)皮細(xì)胞發(fā)生病變,致炎因子就會(huì)浸潤(rùn)進(jìn)管壁,血管壁的其他細(xì)胞就會(huì)暴露在致炎因子環(huán)境中,血管壁將遭受進(jìn)一步的損傷,血管細(xì)胞炎癥的全面性爆發(fā),活化的Caspase?1誘導(dǎo)血管細(xì)胞焦亡、激活的IL?1β和IL?18促進(jìn)各種炎癥機(jī)制的活化加重血管損傷等,最后導(dǎo)致血管壁的徹底病變,在血管內(nèi)形成各種病變區(qū)域,誘發(fā)早期血管疾病的發(fā)生和發(fā)展,最終導(dǎo)致心血管疾病的出現(xiàn).

2.1.1 Nlrp3與巨噬細(xì)胞 炎癥的產(chǎn)生是機(jī)體的先天免疫系統(tǒng)自我保護(hù)的一種方式,而免疫細(xì)胞—中性粒細(xì)胞和巨噬細(xì)胞—的活化就是這道保護(hù)機(jī)制采取的措施.在遇到機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)發(fā)生變化時(shí),巨噬細(xì)胞會(huì)通過表型極化來適應(yīng)改變了的環(huán)境,并促進(jìn)具有相反活性的促炎細(xì)胞M1或抗炎細(xì)胞M2的表型極化,M1細(xì)胞能促進(jìn)炎癥的發(fā)展,而M2細(xì)胞對(duì)炎癥的抑制至關(guān)重要[24].有研究表明,巨噬細(xì)胞的極化能影響Nlrp3炎癥小體的基因表達(dá)[25],在對(duì)IFN?γ(M1表型)的極化的研究中發(fā)現(xiàn),IFN?γ存在的條件下,NLR的誘導(dǎo)能增加NOD2的表達(dá),而在巨噬細(xì)胞的mRNA和蛋白質(zhì)水平上對(duì)IL?3和IL?13(M2表型)的研究中發(fā)現(xiàn),IL?3和IL?13存在的條件下,Nlrp3的表達(dá)會(huì)被抑制,在M1和M2極化細(xì)胞中測(cè)試的基因在兩種類型的細(xì)胞中均有表達(dá),只是在特定的刺激(例如病原體)條件下,通常會(huì)上調(diào)M2細(xì)胞中的抗炎基因,這些基因被用來降低炎癥,而在M1細(xì)胞中,同一組基因?qū)?huì)下降[26],這也是機(jī)體進(jìn)行自我保護(hù)的一種措施,因此我們可以說,M1表型的巨噬細(xì)胞在Nlrp3突變相關(guān)的炎性疾病中是占主導(dǎo)地位的,Nlrp3的表達(dá)在巨噬細(xì)胞M2表型內(nèi)受到負(fù)調(diào)節(jié),因此我們假設(shè),是否可以通過對(duì)巨噬細(xì)胞M1/M2表型的調(diào)節(jié)來治療與Nlrp3炎癥小體有關(guān)的心血管炎癥疾病?而在遇到外源性刺激物時(shí),巨噬細(xì)胞就會(huì)吞噬危險(xiǎn)因子,以達(dá)到清除異物的作用,但當(dāng)巨噬細(xì)胞無法吞噬異物或吞噬后無法進(jìn)行消化溶解時(shí),就會(huì)導(dǎo)致巨噬細(xì)胞溶酶體結(jié)構(gòu)的不穩(wěn)定而破裂,從而釋放出CB,最終激活Nlrp3炎癥小體[19].

2.1.2 Nlrp3與內(nèi)皮細(xì)胞 內(nèi)皮細(xì)胞具有調(diào)節(jié)血管平滑肌張力,血管生成和組織液止血的重要功能[27].內(nèi)皮形成的界面是一個(gè)被用來控制血液和間質(zhì)間大分子及流體通過的半滲透屏障,內(nèi)皮細(xì)胞通透性的增強(qiáng)是內(nèi)皮功能障礙的最初的病理過程之一[28].內(nèi)皮細(xì)胞連接完整性的喪失與內(nèi)皮功能障礙的發(fā)生都是內(nèi)皮損傷的后果,且均與內(nèi)皮炎癥小體的活化有關(guān)[29].因此,可以說內(nèi)皮功能障礙已發(fā)展成為心血管疾病與各種相關(guān)疾病發(fā)生的危險(xiǎn)因素之一.內(nèi)皮功能障礙被定義為是由不平衡松弛因子(unbalanced relaxation factor)和內(nèi)皮細(xì)胞產(chǎn)生的收縮因子(con?traction factor)受損所引發(fā)的一氧化氮依賴性舒張功能障礙[30].NO在正常的內(nèi)皮功能中起著血管擴(kuò)張劑和維持血管穩(wěn)態(tài)的作用,然而氧化應(yīng)激和Nlrp3炎癥小體可影響NO的生成,從而導(dǎo)致內(nèi)皮功能障礙的發(fā)生[31].內(nèi)皮炎性細(xì)胞活化可以啟動(dòng)內(nèi)皮屏障功能障礙,導(dǎo)致血管高滲透性,炎性細(xì)胞浸潤(rùn),從而進(jìn)一步誘發(fā)血管炎癥及血管損傷.氧化和抗氧化系統(tǒng)之間的不平衡會(huì)導(dǎo)致細(xì)胞氧化應(yīng)激的發(fā)生,ROS不僅是代謝的副產(chǎn)物,而且還是一個(gè)能激活Nlrp3炎癥小體以進(jìn)一步阻礙內(nèi)皮功能的激動(dòng)劑[32].在正常情況下,TXNIP與硫氧還蛋白結(jié)合,抑制其降解能力.在氧化應(yīng)激的狀態(tài)下,硫氧還蛋白會(huì)與TXNIP分離以清除ROS[33].另一方面,游離的TXNIP將會(huì)與Nlrp3炎癥小體結(jié)合并導(dǎo)致Nlrp3炎癥細(xì)胞的活化[1].ROS還可以通過蛋白激酶B信號(hào)通路改變腦內(nèi)皮緊密連接動(dòng)力學(xué)和血腦屏障完整性[34],內(nèi)皮層完整性的破壞,將會(huì)進(jìn)一步惡化血管病變的程度.除此之外,也有證據(jù)表明,高遷移率族蛋白B1(high mobility group box 1,HMGB1)作為一種DAMPs可以結(jié)合多個(gè)PRRs而引發(fā)炎癥,也可以促進(jìn)人類細(xì)胞免疫抑制,加劇細(xì)胞的一般損傷[35],HMGB1的釋放依賴Casepase?1而受到Nlrp3炎癥小體的調(diào)節(jié)[36-37],且有證據(jù)顯示,ROS信號(hào)通路介導(dǎo)的Nlrp3炎癥小體的聚集與活化能誘導(dǎo)HMGB1的合成.有研究者發(fā)現(xiàn),通過使用ROS抑制劑來阻斷Nlrp3炎性細(xì)胞活化或抑制炎癥小體來源可以抑制HMGB1活性從而阻止糖尿病中的內(nèi)皮層超滲透性來改善內(nèi)皮功能[38],也就是說,內(nèi)皮細(xì)胞炎癥的發(fā)生與Nlrp3炎癥小體的活化有著密不可分的關(guān)聯(lián)的.

2.1.3 Nlrp3與血管平滑肌細(xì)胞 磷酸鈣沉積(calci?um phosphate deposition,CPD)是血管鈣化(vascular calcification,VC)的標(biāo)志,可以發(fā)生在心臟瓣膜,心肌和血管中.內(nèi)膜鈣化是引起動(dòng)脈粥樣硬化病變的鈣化;內(nèi)側(cè)鈣化,又稱為M?nckeberg’s sclerosis,是發(fā)生在動(dòng)脈的彈性區(qū)域的CPD,且內(nèi)側(cè)鈣化的發(fā)生與血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)密切相關(guān)[39].VSMC通過增加遷移,增殖,基質(zhì)組分分泌,成骨分化和相關(guān)鈣化等因素促進(jìn)動(dòng)脈粥樣硬化病變的發(fā)展[40].在此過程中,分化的VSMC經(jīng)歷去分化,隨后發(fā)生導(dǎo)致血管鈣化的成骨轉(zhuǎn)換[41].研究證明,氧化應(yīng)激和幾種細(xì)胞因子與血管鈣化有關(guān)[42].以前的報(bào)告顯示,磷酸鈣晶體誘導(dǎo)人主動(dòng)脈血管平滑肌細(xì)胞的細(xì)胞死亡,其效力取決于晶體的大小和組成,直徑在1μm以下的磷酸鈣晶體能引起細(xì)胞內(nèi)鈣濃度的快速上升[43],從而誘導(dǎo)炎癥的進(jìn)一步發(fā)生.Nlrp3炎癥小體能感測(cè)到血管鈣化過程中產(chǎn)生的未消化的礦物質(zhì)沉積物,并將其視為危險(xiǎn)信號(hào)從而活化,引發(fā)一系列促炎細(xì)胞因子釋放和隨后的細(xì)胞死亡.Nlrp3信號(hào)在鈣化的VSMCs中被激活,并且Nlrp3信號(hào)傳導(dǎo)的抑制能顯著的抑制血管的鈣化[44].研究表明,細(xì)胞內(nèi)中等水平的外源磷酸鹽可以刺激Nlrp3表達(dá)細(xì)胞的鈣化,當(dāng)使用短發(fā)夾RNA抑制Nlrp3的表達(dá)后能阻斷VSMC鈣化,這表明活化的Nlrp3炎癥小體是血管鈣化所必需的[45].

2.2 Nlrp3炎癥小體與心血管疾病

2.2.1 Nlrp3炎癥小體和高血脂 高脂血癥(hyper?lipidemia)的產(chǎn)生目前公認(rèn)是由于極低密度(前?β)脂蛋白(very low density lipoprotein,VLDL)產(chǎn)生過多或機(jī)體清除機(jī)制障礙及由VLDL轉(zhuǎn)變成的低密度(β?)脂蛋白(low density lipoprotein,LDL)過多所致,它是動(dòng)脈粥樣硬化、腦卒中、冠心病、心肌梗死、心臟猝死等心血管疾病發(fā)生的重要危險(xiǎn)因素.人體內(nèi)環(huán)境長(zhǎng)期處在高血脂狀態(tài)下,會(huì)使得多余脂質(zhì)在血管內(nèi)皮沉積,阻礙血液的流通,長(zhǎng)期積累使得血管發(fā)生病變,最終導(dǎo)致心血管疾病的發(fā)生.機(jī)體內(nèi)脂質(zhì)代謝平衡性的失調(diào)是導(dǎo)致高脂血癥產(chǎn)生的重要原因之一,機(jī)體內(nèi)脂質(zhì)代謝平衡性的失調(diào)會(huì)引起游離脂肪酸(free fatty acid,F(xiàn)FA)、飽和脂肪酸(saturated fatty acid,SFA)和LDL的增多,而這些脂質(zhì)的增多又會(huì)誘導(dǎo)ROS釋放的增加,進(jìn)而激活Nlrp3炎癥小體[46-48],使疾病進(jìn)一步惡化.有研究[42]報(bào)道,細(xì)胞內(nèi)Nlrp3炎癥小體誘導(dǎo)IL?1β成熟的反應(yīng),不僅與結(jié)晶性尿酸和結(jié)晶焦磷酸鹽有關(guān)聯(lián),而且與細(xì)胞內(nèi)的結(jié)晶膽固醇也有關(guān)聯(lián),研究者指出,最低限度修飾的低密度脂蛋白膽固醇(low-density lipoprotein cholesterol,LDL-C)可以作為引發(fā)IL?1β產(chǎn)生的“內(nèi)源性危險(xiǎn)信號(hào)”,說明LDL可以直接誘導(dǎo)促炎反應(yīng)的發(fā)生.除此之外,還證明了LDL膽固醇和Nlrp3炎癥小體之間的關(guān)聯(lián)性,還指出Nlrp3炎癥小體可以作為預(yù)測(cè)高血脂的一個(gè)早期指標(biāo),因?yàn)樗T導(dǎo)釋放的IL?1β自身就是一個(gè)急性期反應(yīng)的啟動(dòng)標(biāo)志.

2.2.2 Nlrp3炎癥小體和高血壓 高血壓(hyperten?sion)是一種常見的慢性心血管疾病,通常伴有其它心腦血管疾病一起產(chǎn)生,是心腦血管疾病惡化的主要危險(xiǎn)因素.近來一些研究證明,高血壓的發(fā)生與氧化應(yīng)激和炎癥因子的活化有著密切的聯(lián)系.Dalekos等[50]發(fā)現(xiàn),在高血壓患者的血液中IL?1β和IL?18的表達(dá)量比普通人的有所增加,這說明炎癥因子的高水平的表達(dá)與高血壓的產(chǎn)生是有一定關(guān)聯(lián)的.有研究表明,IL?18可直接促進(jìn)血管平滑肌細(xì)胞增生,最終導(dǎo)致血壓升高[51].腎素?血管緊張素?醛固酮系統(tǒng)過度活躍也是高血壓疾病發(fā)生的重要誘因之一,血管緊張素Ⅱ、醛固酮、內(nèi)皮素?1等均可以增強(qiáng)NOX酶家族的表達(dá),促進(jìn)其活化,而NOX酶的活化可以產(chǎn)生大量的ROS[53],ROS釋放的增加會(huì)進(jìn)一步誘導(dǎo)Nlrp3炎癥小體的組裝,成熟的炎癥小體招募并活化Caspase?1,進(jìn)而切割pro?IL?1β和pro?IL?18得到成熟的IL?1β和IL?18,最終誘導(dǎo)高血壓的形成[54].P2X7受體與Nlrp3炎癥小體活化密切相關(guān),已有研究[55]表明,P2X7依賴的炎癥小體活化可能包含成孔蛋白、泛連接蛋白?1的招募,進(jìn)而允許損傷相關(guān)分子,如ROS和微晶進(jìn)入細(xì)胞,從而激活炎癥小體,并在小鼠高血壓模型中發(fā)現(xiàn),高血壓模型的成功是伴隨有P2X7受體表達(dá)量的升高.研究者[56]用Nlrp3抑制劑作用于高血壓大鼠,得出的結(jié)論是Nlrp3抑制劑能顯著降低動(dòng)物體內(nèi)氧化應(yīng)激反應(yīng)與各種炎癥因子的釋放,這從側(cè)面反映出了Nlrp3炎癥體與高血壓的關(guān)聯(lián).

2.2.3 Nlrp3炎癥小體與冠狀動(dòng)脈粥樣硬化 冠心病全名為冠狀動(dòng)脈粥樣硬化性心臟?。╟oronary atherosclerotic heart disease,CAHD),這是一類由動(dòng)脈粥樣硬化發(fā)展而來的,因冠狀動(dòng)脈狹窄、供血不足而引起的心肌機(jī)能障礙和/或器質(zhì)性病變,故又稱缺血性心臟病(IHD).臨床上與實(shí)驗(yàn)室內(nèi)的許多研究都證明了IL?1β和IL?18是IHD發(fā)生發(fā)展過程中至關(guān)重要的一類炎性因子,被稱為促動(dòng)脈粥樣硬化因子.臨床上有研究人員通過抽血采集冠心病患者的血液并測(cè)定其血清中Nlrp3炎癥小體的含量,再與正常人血清中的含量相比,發(fā)現(xiàn)Nlrp3炎癥小體在冠狀動(dòng)脈粥樣硬化患者中過表達(dá)[57],且冠狀動(dòng)脈疾病患者中的Nlrp3明顯升高,其嚴(yán)重程度與疾病的發(fā)生發(fā)展呈正相關(guān)的[58].冠狀動(dòng)脈造影是臨床上對(duì)冠狀動(dòng)脈疾病評(píng)估的標(biāo)準(zhǔn)手段之一,研究人員運(yùn)用造影技術(shù)對(duì)冠心病人進(jìn)行關(guān)于血管總數(shù),病變總數(shù),分叉存在,血栓和鈣化的進(jìn)行造影,發(fā)現(xiàn)其病變程度與Nlrp3炎癥小體的釋放也是呈正相關(guān)的[59].在最新的研究[20]中,有人通過轉(zhuǎn)基因老鼠Nlrp3?/?、ASC?/?、IL?1β?/?與正常老鼠相比較,發(fā)現(xiàn)缺少這些炎癥因子的老鼠患上動(dòng)脈粥樣硬化的幾率遠(yuǎn)小于正常組.

2.2.4 Nlrp3炎癥小體與心肌梗死 心肌梗死(myo?cardial infarction,MI),又稱心肌梗塞,是指在冠狀動(dòng)脈粥樣硬化的基礎(chǔ)上,由于冠狀動(dòng)脈內(nèi)粥樣斑塊不穩(wěn)定或者破裂而造成血管內(nèi)血栓形成并阻塞冠狀動(dòng)脈,從而急性缺血缺氧導(dǎo)致心肌壞死,最終導(dǎo)致心臟功能障礙[60].盡管理論上是可以通過快速重新引入氧氣和營(yíng)養(yǎng)物質(zhì)到缺血性環(huán)境的冠狀動(dòng)脈中而使得血流得以恢復(fù),從而降低由于缺血缺氧導(dǎo)致的心肌壞死,但仍有很大的機(jī)率因?yàn)樵俟嘧⑦^程而導(dǎo)致心肌的二次傷害[61],從而誘發(fā)內(nèi)源性炎癥的發(fā)生,而它能在一定程度造成缺血組織梗死面積的進(jìn)一步擴(kuò)大.在動(dòng)物模型中有足夠的證據(jù)證明在心肌損傷后細(xì)胞內(nèi)Nl?rp3炎癥小體的激活[62-63],并且產(chǎn)生的IL?1β和IL?18與心臟功能相關(guān)的損傷是由一定關(guān)聯(lián)的[64].NO對(duì)Nlrp3炎癥小體的活化是有抑制作用的,有研究通過增強(qiáng)eNOS激活和誘導(dǎo)型NOS的上調(diào)來研究MI[65],發(fā)現(xiàn)在NO依賴性機(jī)制中能抑制氧化應(yīng)激和嗜中性粒細(xì)胞活化從而減輕了缺血再灌注(ischemia/reperfusion,I/R)后的功能性損傷,并且有研究[66]報(bào)道NO能夠抑制小鼠腹腔刺激的腹膜巨噬細(xì)胞的caspase?1,IL?1β和IL?18的釋放.在用ASC缺陷老鼠做動(dòng)物模型時(shí)發(fā)現(xiàn),ASC和半胱天冬酶?1的缺乏能減少I/R后的炎癥反應(yīng),如炎性細(xì)胞浸潤(rùn)和細(xì)胞因子的釋放等,且發(fā)現(xiàn)心肌細(xì)胞中的炎癥小體活化在心肌I/R的炎癥反應(yīng)和隨后的損傷中起著非常重要的作用,且炎癥小體的激活與鉀離子外排和ROS釋放增多有關(guān)[67],潛在表明炎癥小體是心肌I/R損傷的潛在的新型治療靶標(biāo).有研究人員[49]指出炎癥的標(biāo)志物可以作為心血管風(fēng)險(xiǎn)的檢測(cè)指標(biāo),并對(duì)此作了相關(guān)研究.首先對(duì)照組由109名35歲以上男性,無心血管疾病史組成,然后與150例曾患心臟病的男性患者進(jìn)行了比較,通過不同檢測(cè)方式,最終得出:Nlrp3炎癥小體和相關(guān)的IL?1β、IL?18的釋放具有作為心血管危險(xiǎn)因素(cardiovascular risk,CVRF)生物標(biāo)志物的潛力.也就是說,臨床上通過檢測(cè)Nlrp3炎癥小體或其相關(guān)的炎性因子IL?1β和IL?18,于之相比于正常人的水平來預(yù)測(cè)是否患有心血管疾病是可行的.

3 展望

心血管疾病的發(fā)生與發(fā)展的過程中都有Nlrp3炎性小體的參與.然而心血管疾病發(fā)病機(jī)制十分的復(fù)雜,目前雖然仍不是很清楚,但是有越來越多的證據(jù)表明Nlrp3炎癥小體與心血管疾病之間的關(guān)系,所以嚴(yán)格調(diào)節(jié)Nlrp3炎癥小體的活化,防止不必要的宿主損傷和過度炎癥是預(yù)防心血管疾病的新思路.在最新的研究中,就有研究人員將Nlrp3炎癥小體和相關(guān)的IL?1β、IL?18炎癥因子作為預(yù)測(cè)心血管疾病的一個(gè)生理指標(biāo)而起到一個(gè)預(yù)警提醒的作用.從Nlrp3炎癥小體的活化到炎癥因子IL?1β、IL?18的釋放,是經(jīng)歷了一個(gè)病變過程的,也就是說不同的檢測(cè)指標(biāo)代表著不同的心血管疾病的病情程度.那么在以后進(jìn)行心血管疾病治療的過程中,可以有目的性的檢測(cè)血液中炎癥因子IL?1β、IL?18的含量作為疾病是否好轉(zhuǎn)的標(biāo)志,檢測(cè)血液中Nlrp3炎癥小體的含量作為疾病是否痊愈的標(biāo)志,以Nlrp3炎癥小體作為治療靶點(diǎn),以IL?1β和IL?18作為檢測(cè)指標(biāo),相輔相成、共同作用,這將是今后攻克心血管疾病的一條新的途徑.

[1] Medzhitov R.Origin and physiological roles of inflammation[J].Nature,2008,454(7203):428-435.

[2] Medzhitov R.Inflammation 2010:new adventures of an old flame[J].Cell,2010,140(6):771-776.

[3] Compan V,Baroja?Mazo A,López?Castejón G,et al.Cell volume reg?ulation modulates NLRP3 inflammasome activation[J].Immunity,2012,37(3):487-500.

[4] Ip WK,Medzhitov R.Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflam?masome activation[J].Nat Commun,2015,6:6931.

[5] de Torre?Minguela C,Mesa Del Castillo P,Pelegrin P.The NLRP3 and pyrin inflammasomes:implications in the pathophysiology of autoinflammatory diseases[J].Front Immunol,2017,8:43.

[6] Schroder K,Zhou R,Tschopp J.The NLRP3 inflammasome:a sensor for metabolic danger?[J].Science,2010,327(5963):296-300.

[7] Fenini G,Contassot E,F(xiàn)rench L E.Potential of IL?1,IL?18 and inflammasome inhibition for the treatment of inflammatory skin diseases[J].Front Pharmacol,2017,8:278.

[8]Conley SM,Abais JM,Boini KM,et al.inflammasome activation in chronic glomerular diseases[J].Curr Drug Targets,2017,18(9):1019-1029.

[9] Kayagaki N,Stowe IB,Lee BL,et al.Caspase?11 cleaves gasdermin D for non?canonical inflammasome signalling[J].Nature,2015,526(7575):666-671.

[10] Gonzalez?Pacheco H,Vargas?Alarcon G,Angeles?Martinez J,et al.The NLRP3 and CASP1 gene polymorphisms are associated with developing of acute coronary syndrome:a case?control study[J].Immunol Res,2017,65(4):862-868.

[11] Masters SL,Dunne A,Subramanian SL,et al.Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mech?anism for enhanced IL?1β in type 2 diabetes[J].Nat Immunol,2010,11(10):897-904.

[12] Jo EK,Kim JK,Shin DM,et al.Molecular mechanisms regulating NLRP3 inflammasome activation[J].Cell Mol Immunol,2016,13(2):148-159.

[13] Luo B,Li B,Wang W,et al.NLRP3 gene silencing ameliorates dia?betic cardiomyopathy in a type 2 diabetes rat model[J].PLoS One,2014,9(8):e104771.

[14] Hoyt LR,Randall MJ,Ather JL,et al.Mitochondrial ROS induced by chronic ethanol exposure promote hyper?activation of the NLRP3 inflammasome[J].Redox Biol,2017,12:883-896.

[15] Hoseini Z,Sepahvand F,Rashidi B,et al.NLRP3 inflammasome:its regulation and involvement in atherosclerosis[J].J Cell Physiol,2017.

[16] Py BF,Kim MS,Vakifahmetoglu?Norberg H,et al.Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity[J].Mol Cell,2013,49(2):331-338.

[17] Wu LY,Ye ZN,Zhou CH,et al.Roles of pannexin?1 channels in inflammatory response through the TLRs/NF?kappa B signaling pathway following experimental subarachnoid hemorrhage in rats[J].Front Mol Neurosci,2017,10:175.

[18] Petrilli V,Papin S,Dostert C,et al.Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentra?tion[J].Cell Death Differ,2007,14(9):1583-1589.

[19] Chen W,Zhao M,Zhao S,et al.Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic reti?nopathy:a novel inhibitory effect of minocycline[J].Inflamm Res,2017,66(2):157-166.

[20] Karasawa T,Takahashi M.Role of NLRP3 Inflammasomes in Ather?osclerosis[J].J Atheroscler Thromb,2017,24(5):443-451.

[21] Wen H,Ting JP,O’Neill LA.A role for the NLRP3 inflammasome in metabolic diseases??did Warburg miss inflammation?[J].Nat Immunol,2012,13(4):352-357.

[22] Kwak A,Lee Y,Kim H,et al.Intracellular interleukin(IL)?1 fam?ily cytokine processing enzyme[J].Arch Pharm Res,2016,39(11):1556-1564.

[23] Siddiqui NA,Sophie Z,Zafar F,et al.Predictors for the develop?ment of post?thrombotic syndrome in patients with primary lower limb deep venous thrombosis:A case?control study[J].Vascular,2017,25(1):10-18.

[24] Mantovani A,Sica A,Sozzani S,et al.The chemokine system in diverse forms of macrophage activation and polarization[J].Trends Immunol,2004,25(12):677-686.

[25] Awad F,Assrawi E,Jumeau C,et al.Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflam?masome activation[J].PLoS One,2017,12(4):e175336.

[26] Qiao Y,Wang P,Qi J,et al.TLR?induced NF?kappaB activation regulates NLRP3 expression in murine macrophages[J].FEBS Lett,2012,586(7):1022-1026.

[27] Zhu D,Wang H,Zhang J,et al.Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses[J].J Mol Cell Cardiol,2015,87:138-147.

[28] Komarova Y,Kruse KJ,Mehta D,et al.Response by Komarova et al to letter regarding article,“protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability”[J].Circ Res,2017,120(5):e28.

[29] Dejana E,Orsenigo F.Endothelial adherens junctions at a glance[J].J Cell Sci,2013,126(Pt 12):2545-2549.

[30] Younis WH,Al?Rawi NH,Mohamed MA,et al.Molecular events on tooth socket healing in diabetic rabbits[J].Br J Oral Maxillofac Surg,2013,51(8):932-936.

[31] Wang W,Wu QH,Sui Y,et al.Rutin protects endothelial dysfunction by disturbing Nox4 and ROS?sensitive NLRP3 inflammasome[J].Biomed Pharmacother,2017,86:32-40.

[32] Wen H,Gris D,Lei Y,et al.Fatty acid?induced NLRP3?ASC inflammasome activation interferes with insulin signaling[J].Nat Immunol,2011,12(5):408-415.

[33] Lee S,Kim SM,Lee RT.Thioredoxin and thioredoxin target pro?teins:from molecular mechanisms to functional significance[J].Antioxid Redox Signal,2013,18(10):1165-1207.

[34] Martinon F,Burns K,Tschopp J.The inflammasome:a molecular platform triggering activation of inflammatory caspases and process?ing of proIL?β[J].Mol Cell,2002,10(2):417-426.

[35] Gu YT,Xue YX,Wang YF,et al.Role of ROS/RhoA/PI3K/PKB signaling in NS1619?mediated blood?tumor barrier permeability increase[J].J Mol Neurosci,2012,48(1):302-312.

[36] Keyel PA.How is inflammation initiated?Individual influences of IL?1,IL?18 and HMGB1[J].Cytokine,2014,69(1):136-145.

[36] Keyel PA.How is inflammation initiated?Individual influences of IL?1,IL?18 and HMGB1[J].Cytokine,2014,69(1):136-145.

[37] Wang Z,Liang Q,Zhang Y,et al.An optimized HMGB1 expressed by recombinant rabies virus enhances immunogenicity through acti?vation of dendritic cells in mice[J].Oncotarget,2017.

[38] Chen Y,Wang L,Pitzer AL,et al.Contribution of redox?dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia?in?duced endothelial dysfunction[J].J Mol Med(Berl),2016,94(12):1335-1347.

[39] Ter Braake AD,Shanahan CM,de Baaij J.Magnesium counteracts vascular calcification:passive interference or active modulation?[J].Arterioscler Thromb Vasc Biol,2017.

[40] Nakajima S,Ito H,Mitsuhashi T,et al.Clinical application of effec?tive atomic number for classifying non?calcified coronary plaques by dual?energy computed tomography[J].Atherosclerosis,2017,261:138-143.

[41]Neves PO,Andrade J,Moncao H.Coronary artery calcium score:current status[J].Radiol Bras,2017,50(3):182?189.

[42] Ridker PM.Hyperlipidemia as an instigator of inflammation:inaugu?rating new approaches to vascular prevention[J].J Am Heart As?soc,2012,1(1):3-5.

[43] Ewence AE,Bootman M,Roderick HL,et al.Calcium phosphate crystals induce cell death in human vascular smooth muscle cells:a potential mechanism in atherosclerotic plaque destabilization[J].Circ Res,2008,103(5):e28-e34.

[44] Wen C,Yang X,Yan Z,et al.Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification[J].Int J Car?diol,2013,168(3):2242-2247.

[45] Ewence AE,Bootman M,Roderick HL,et al.Calcium phosphate crystals induce cell death in human vascular smooth muscle cells:a potential mechanism in atherosclerotic plaque destabilization[J].Circ Res,2008,103(5):e28-e34.

[46] Masters SL,Latz E,O’Neill LA.The inflammasome in atherosclero?sis and type 2 diabetes[J].Sci Transl Med,2011,3(81):81ps17.[47]Yang HY,Bian YF,Zhang HP,et al.LOX1 is implicated in oxi?dized low density lipoprotein induced oxidative stress of macrophages in atherosclerosis[J].Mol Med Rep,2015,12(4):5335-5341.

[48] Kajihara N,Kukidome D,Sada K,et al.Low glucose induces mito?chondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells[J].J Diabetes Investig,2017.

[49] Bullon P,Cano?Garcia FJ,Alcocer?Gomez E,et al.Could NLRP3?inflammasome be a cardiovascular risk biomarker in acute myocardi?al infarction patients?[J].Antioxid Redox Signal,2017.

[50] Dalekos GN,Elisaf M,Bairaktari E,et al.Increased serum levels of interleukin?1beta in the systemic circulation of patients with essen?tial hypertension:additional risk factor for atherogenesis in hyper?tensive patients?[J].J Lab Clin Med,1997,129(3):300-308.

[51] Chandrasekar B,Mummidi S,Mahimainathan L,et al.Interleukin?18?induced human coronary artery smooth muscle cell migration is dependent on NF?kappaB?and AP?1?mediated matrix metalloprotei?nase?9 expression and is inhibited by atorvastatin[J].J Biol Chem,2006,281(22):15099-15109.

[52] Weir MR,Dzau VJ.The renin?angiotensin?aldosterone system:a specific target for hypertension management[J].Am J Hypertens,1999,12(12 Pt 3):205S-213S.

[53] Touyz RM,Briones AM.Reactive oxygen species and vascular biolo?gy:implications in human hypertension[J].Hypertens Res,2011,34(1):5-14.

[54] Tschopp J,Schroder K.NLRP3 inflammasome activation:The con?vergence of multiple signalling pathways on ROS production?[J].Nat Rev Immunol,2010,10(3):210-215.

[55] Vonend O,Turner CM,Chan CM,et al.Glomerular expression of the ATP?sensitive P2X receptor in diabetic and hypertensive rat models[J].Kidney Int,2004,66(1):157-166.

[56] Tang B,Chen GX,Liang MY,et al.Ellagic acid prevents monocro?taline?induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats[J].Int J Cardiol,2015,180:134-141.

[57] Afrasyab A,Qu P,Zhao Y,et al.Correlation of NLRP3 with severi?ty and prognosis of coronary atherosclerosis in acute coronary syn?drome patients[J].Heart Vessels,2016,31(8):1218-1229.

[58] Wen C,Yang X,Yan Z,et al.Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification[J].Int J Car?diol,2013,168(3):2242-2247.

[59] Zhao X,Gu C,Yan C,et al.NALP3?inflammasome?related gene polymorphisms in patients with prehypertension and coronary athero?sclerosis[J].Biomed Res Int,2016,2016:7395627.

[60] Fujisue K,Sugamura K,Kurokawa H,et al.Colchicine improves survival,left ventricular remodeling,and chronic cardiac function after acute myocardial infarction[J].Circ J,2017.

[61] Zheng F,Xing S,Gong Z,et al.NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis[J].Heart Lung Circ,2013,22(9):746-750.

[62] Wang Y,Wei S,Wang YL,et al.Protective effects of circulating microvesicles derived from myocardial ischemic rats on apoptosis of cardiomyocytes in myocardial ischemia/reperfusion injury[J].Oncotarget,2017.

[63] Das A,Samidurai A,Hoke NN,et al.Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG?Ialpha[J].Basic Res Cardiol,2015,110(4):42.

[64] Mezzaroma E,Toldo S,F(xiàn)arkas D,et al.The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse[J].Proc Natl Acad Sci U S A,2011,108(49):19725-19730.

[65] Toldo S,Mezzaroma E,O’Brien L,et al.Interleukin?18 mediates interleukin?1?induced cardiac dysfunction[J].Am J Physiol Heart Circ Physiol,2014,306(7):H1025-H1031.

[66] Kim YM,Talanian RV,Li J,et al.Nitric oxide prevents IL?1beta and IFN?gamma?inducing factor(IL?18)release from macrophages by inhibiting caspase?1(IL?1beta?converting enzyme)[J].J Immu?nol,1998,161(8):4122-4128.

[67] Kawaguchi M,Takahashi M,Hata T,et al.Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury[J].Circulation,2011,123(6):594-604.

Research progress of association between Nlrp3 inflammasome activation and cardiovascular disease

ZHOU Xing1,YE Li-Feng1,WU Yan-Jiao1,HUANG Yi2,CHEN Yang11School of Chinese Meteria Medica,Guangzhou University of Chi?nese Medicine,Guangzhou 510006,China;2Department of Oral Medicine,F(xiàn)irst Affiliated Hospital of Jinan University,Guang?zhou 510630,China

Inflammasomes are multiprotein oligomer that play an important role in cleavage and activation of a variety of inflamma?tory factors,such as IL?1β,IL?18,HMGB1.Recently,the Nlrp3(nucleotide?binding domain and leucine?rich repeat pyrin domain containing 3)inflammasome plays a critical role in the develop?ment of vascular disease.It has been known that the Nlrp3 inflam?masome usually consists of three main components including Nlrp3,ASC and pro?caspase?1.In addition,Nlrp3 inflammasome could activate a series of inflammatory pathways by the classic or non?classic pathway,such as induction of apoptosis,pyroptosis,and plasma membrane permeability damage and cell dysfunction.Therefore,the research of Nlrp3 inflammasome is particularly critical in the study of cardiovascular disease.The association between the activation of Nlrp3 inflammasome and the mechanism of cardiovascular disease is briefly described in this review.

cardiovascular disease;inflammasome;Nlrp3

R392【文獻(xiàn)識(shí)別碼】A

2017-06-15;接受日期:2017-07-04

國(guó)家自然科學(xué)基金青年項(xiàng)目(81603587,81603668);廣東省

中醫(yī)藥管理局(20161076);“青年英才培養(yǎng)”工程基金項(xiàng)目(QNYC20170105);大學(xué)生科技創(chuàng)新培育專項(xiàng)資金(pdjh2017a0114);全國(guó)大學(xué)生創(chuàng)新創(chuàng)業(yè)大賽(201710572264);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201710572165);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201610572156);廣東省科技計(jì)劃項(xiàng)目(2017A020211016)

周 星.碩士.研究方向:中藥藥理.E?mail:825815023@qq.com

陳 揚(yáng).博士,正研究員.研究方向:心腦血管藥理.E?mail:ychen8@gzucm.edu.cn

2095?6894(2017)10?81?07

猜你喜歡
小體內(nèi)皮活化
炎性小體與缺血性腦卒中發(fā)病及中醫(yī)相關(guān)機(jī)制的研究進(jìn)展
NLRP3炎性小體在中樞神經(jīng)系統(tǒng)疾病中的作用研究進(jìn)展
無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
異常早幼粒細(xì)胞Auer小體發(fā)生率的影響因素分析
病毒感染與NLRP3炎性小體
不同濃度鎂離子干預(yù)對(duì)妊娠糖尿病婦女內(nèi)皮祖細(xì)胞的影響
論非物質(zhì)文化遺產(chǎn)“活化”傳承
血管內(nèi)皮生長(zhǎng)因子在肺動(dòng)脈高壓發(fā)病機(jī)制的研究進(jìn)展
小學(xué)生活化寫作教學(xué)思考
如何積累小學(xué)生活化作文素材
梨树县| 攀枝花市| 盱眙县| 平阴县| 云阳县| 上林县| 绥滨县| 普定县| 宜黄县| 马公市| 淄博市| 洱源县| 富锦市| 滨州市| 施秉县| 富民县| 榆中县| 馆陶县| 肇州县| 中阳县| 临漳县| 鲜城| 江城| 左贡县| 思南县| 镇远县| 丹棱县| 建始县| 依安县| 蓝田县| 保靖县| 萝北县| 刚察县| 莱芜市| 永寿县| 海宁市| 巴中市| 永年县| 彭泽县| 横峰县| 永新县|