黃 蕊,華學(xué)思,張 蘭
·綜述·
影像學(xué)技術(shù)應(yīng)用于阿爾茨海默病早期診斷的研究進(jìn)展①
黃 蕊,華學(xué)思,張 蘭
對(duì)阿爾茨海默病(AD)的臨床診斷主要根據(jù)臨床病史,但敏感性和準(zhǔn)確性有限。正電子發(fā)射計(jì)算機(jī)斷層顯像技術(shù)可通過(guò)葡萄糖代謝成像以及生物標(biāo)記物成像較為準(zhǔn)確地早期診斷AD;磁共振成像技術(shù)則通過(guò)結(jié)構(gòu)成像以及功能成像,為AD的早期診斷和鑒別診斷提供基礎(chǔ)。近年來(lái),多模態(tài)成像技術(shù)將放射學(xué)與核醫(yī)學(xué)緊密結(jié)合,可更為準(zhǔn)確地診斷AD。
阿爾茨海默??;正電子發(fā)射型計(jì)算機(jī)斷層顯像技術(shù);磁共振成像;示蹤劑;綜述
老年癡呆(senile dementia)是老年人發(fā)生的所有類(lèi)型癡呆的統(tǒng)稱(chēng),包括阿爾茨海默病(Alzheimer's disease,AD)、血管性癡呆(vascular dementia,VD)、混合性癡呆(AD與VD的病理變化同時(shí)存在)以及其他原因所致的癡呆。其中AD的患病率占老年癡呆的60%~70%[1],是繼心血管疾病、癌癥和腦卒中之后引起老年人死亡的第四大病因。AD作為神經(jīng)變性病,起病隱匿,其發(fā)病機(jī)制目前尚未明確[2],其特征性病理變化為大腦皮層萎縮,并伴有β-淀粉樣蛋白(β-amyloid,Aβ)沉積、神經(jīng)元纖維纏結(jié)(neurofibrillary tangles,NFT)以及大量神經(jīng)元數(shù)目減少[3-5]。輕度認(rèn)知障礙(mild cognitive impairment,MCI)是老年人出現(xiàn)輕度記憶或認(rèn)知障礙,介于正常老化和早期癡呆之間,但不符合癡呆的診斷標(biāo)準(zhǔn)。MCI患者可呈現(xiàn)穩(wěn)定的非進(jìn)行性癥狀,但也可以觀察到疾病的進(jìn)展(通常漸變),發(fā)展到癡呆[6]。流行病學(xué)調(diào)查,MCI總發(fā)病率為20.8%[7],每年約有10%~15%MCI老年人進(jìn)展為AD[8-9]。目前AD發(fā)現(xiàn)時(shí)多為中、晚期,缺乏有效的治療方法[10]。如能準(zhǔn)確預(yù)測(cè)MCI是否會(huì)進(jìn)一步轉(zhuǎn)化為AD,對(duì)疾病的認(rèn)識(shí)和早期干預(yù)均有重要意義。
PET是一種向生物體內(nèi)部注入正電子同位素標(biāo)記的化合物,體外測(cè)量它們的空間分布和時(shí)間特性的三維成像技術(shù),它是目前核醫(yī)學(xué)成像的最新發(fā)展[11]。
1.1 葡萄糖代謝成像
PET可通過(guò)腦內(nèi)放射性標(biāo)記物18F-脫氧葡萄糖(18F-fluorodeoxyglucose,18F-FDG)的代謝來(lái)評(píng)價(jià)神經(jīng)元功能障礙情況。AD早期能量代謝的降低其實(shí)是一種主動(dòng)的保護(hù)性策略,而不是神經(jīng)元損傷的被動(dòng)后果[12],通過(guò)檢測(cè)患者早期腦內(nèi)能量代謝情況,可以很好地診斷AD。PET能夠在突觸水平檢測(cè)葡萄糖的消耗情況[13],較為可靠地診斷癡呆;也可預(yù)測(cè)臨床前期癡呆,主要表現(xiàn)為特異性的葡萄糖代謝異常,提示神經(jīng)元功能障礙[14]。對(duì)AD患者,尤其是早期患者,行18F-FDG-PET掃描30 min,能很好顯示代謝降低[15]。與年齡匹配的正常對(duì)照者相比,AD患者全腦葡萄糖代謝率降低30%~70%,且多呈雙側(cè)性[16],也有報(bào)道顳葉內(nèi)側(cè)葡萄糖代謝率降低呈單側(cè)性[17]。
正常老化的PET表現(xiàn)為隨著年齡增長(zhǎng),大腦葡萄糖代謝和額葉皮質(zhì)血流量略有下降。在18F-FDG-PET研究中,AD早期可見(jiàn)以雙側(cè)顳葉、頂葉代謝低下為特征的代謝異?,F(xiàn)象,可使大腦基底節(jié)、下丘腦、小腦和皮質(zhì)代謝異常,從而導(dǎo)致人體感知和運(yùn)動(dòng)功能障礙。PET能夠借助放射性掃描成像獲取細(xì)胞活動(dòng)或代謝的信息[18-19]。
1.2 生物標(biāo)記物成像
通過(guò)生物標(biāo)記物成像獲得的信息在早期癡呆患者的診斷和監(jiān)測(cè)中發(fā)揮著越來(lái)越重要的作用[20]。老年斑(senile plaques,SP)和NFT是AD的特征性病理改變。以Aβ和NFT的核心成分tau蛋白為生物標(biāo)記物的特異性分子探針,在AD早期診斷、病變程度分級(jí)以及藥物療效評(píng)估等方面具有較大優(yōu)勢(shì)[21]。
目前,Aβ特異性分子探針的研究迅速發(fā)展,已有3種新藥被美國(guó)食品藥品管理局批準(zhǔn)上市,用于AD的早期檢查和特異性治療,其中研究較多的Aβ特異性分子探針主要有11C-PIB(又稱(chēng)匹茨堡化合物)[22]、18F-AV系列、11C-BF系列等。
11C-PIB是目前臨床應(yīng)用最多的一種Aβ顯像劑[23],屬于硫酸素衍生物。它可與Aβ特異性結(jié)合,在活體反映腦內(nèi)Aβ沉積的部位和數(shù)量[24]。11C-PIB在正常人體中結(jié)合力較低,在AD患者中結(jié)合力較高[25]。11C-PIB具有較好的顱內(nèi)清除率,能很快從健康腦組織中洗脫[26],因此成為一種很有研究前景的特異性分子探針[27]。
18F-AV系列較11C-PIB半衰期長(zhǎng),因此顯像更穩(wěn)定,與Aβ結(jié)合的特異性更好。有研究表明,18F-AV45作為顯像劑,可有效區(qū)分AD、MCI患者以及正常老年人,顯示出較高敏感性和特異性[28]。
以Aβ作為生物標(biāo)記物進(jìn)行PET成像存在一些限制性缺點(diǎn),其中之一就是正常老年人淀粉樣蛋白檢出陽(yáng)性率也很高[29]。有研究顯示,經(jīng)PET測(cè)量,76%AD患者、38%MCI患者和14%認(rèn)知正常受試者淀粉樣蛋白呈陽(yáng)性[30]。
tau蛋白是一種低相對(duì)分子質(zhì)量的微管相關(guān)蛋白,主要分布于中樞神經(jīng)系統(tǒng)的神經(jīng)元中。尸檢中根據(jù)tau蛋白在腦中的分布,將AD分為具有不同臨床特征的病理亞型[31-32]。其特異性分子探針有18F-FDDNP,、11C-PBB3、18F-T807、18F-T808、THK系列等[33]。研究顯示[34],18F-FDDNP能同時(shí)標(biāo)記Aβ和tau蛋白,特異性差。臨床研究顯示[35-36],隨著AD病情進(jìn)展,18F-T807、18F-T808在腦內(nèi)的濃度逐步增高,與tau蛋白結(jié)合力強(qiáng)。
tau蛋白作為PET的靶蛋白也存在諸多問(wèn)題:tau蛋白位于細(xì)胞內(nèi),要求示蹤劑必須透過(guò)血腦屏障和細(xì)胞膜;且tau蛋白在腦內(nèi)的含量約為Aβ的5%~20%,成像時(shí)易受Aβ干擾。目前針對(duì)tau蛋白的正電子示蹤劑及PET成像研究尚處于起步階段,臨床報(bào)道不多,仍需更多基礎(chǔ)與臨床研究進(jìn)一步證實(shí)其在AD診斷與治療中的價(jià)值。
MRI是利用原子核在磁場(chǎng)內(nèi)共振所產(chǎn)生的信號(hào),經(jīng)重建后成像的技術(shù)。最廣泛應(yīng)用的MRI容積測(cè)量技術(shù)是半自動(dòng)閾值跟蹤技術(shù)[37]。
MRI可分為結(jié)構(gòu)MRI(structural magnetic resonance imaging,sMRI)和功能MRI(functional magnetic resonance imaging, fMRI)。sMRI主要通過(guò)T1WI成像技術(shù),反映大腦皮層灰質(zhì)的形態(tài)學(xué)改變,可有效檢測(cè)腦萎縮等結(jié)構(gòu)上的變化[38]。也可進(jìn)行腦內(nèi)結(jié)構(gòu)的長(zhǎng)度、面積和體積測(cè)量。
有學(xué)者應(yīng)用MRI根據(jù)所選的大腦體積測(cè)量數(shù)據(jù)對(duì)MCI患者制定6、12以及24個(gè)月隨訪計(jì)劃,結(jié)果顯示,16.8%的MCI患者發(fā)展成AD,體積測(cè)量預(yù)測(cè)MCI發(fā)展為AD的敏感性為64.7%。海馬體積測(cè)量可以幫助醫(yī)生預(yù)測(cè)MCI轉(zhuǎn)化為AD的可能性[39-40]。由于敏感性不高,在臨床上還不能單獨(dú)應(yīng)用,需要與臨床評(píng)估相結(jié)合[41]。
MRI顯示腦白質(zhì)病變較為敏感,在CT尚無(wú)白質(zhì)密度減低時(shí),MRI能顯示白質(zhì)高信號(hào)[42]。通常AD患者無(wú)腦白質(zhì)病變或病變程度較輕,而VD患者腦白質(zhì)病變嚴(yán)重,因此MRI在AD與VD的鑒別診斷方面有一定的輔助作用。
fMRI通過(guò)檢驗(yàn)血流進(jìn)入腦細(xì)胞的磁場(chǎng)變化,實(shí)現(xiàn)腦功能成像,主要檢測(cè)腦功能區(qū)血流量的改變。對(duì)遺忘型輕度認(rèn)知障礙(amnestic mild cognitive impairment,aMCI)患者進(jìn)行fMRI檢測(cè),在與認(rèn)知功能有關(guān)的大腦區(qū)域,如左側(cè)顳葉內(nèi)側(cè),可以看到血流量降低[43]。近年來(lái),fMRI已逐漸成為一種具有較高空間、時(shí)間分辨率的非創(chuàng)傷性神經(jīng)影像檢查手段,檢測(cè)腦神經(jīng)元功能。嗅覺(jué)fMRI可以根據(jù)血氧水平依賴(lài)性(blood oxygen level dependent,BOLD)檢測(cè)AD和VD患者嗅覺(jué)相關(guān)腦區(qū)的神經(jīng)細(xì)胞活動(dòng)水平,從而早期診斷AD并與VD相鑒別[44-45]。
MRI具有軟組織分辨率高、能分辨灰白質(zhì)界限、無(wú)損傷、無(wú)輻射及無(wú)骨偽影、可在任意方向直接斷層,對(duì)腦內(nèi)結(jié)構(gòu)的線性、面積和體積進(jìn)行測(cè)量等優(yōu)點(diǎn)[46],特別是在斜冠狀面顯示顳葉、海馬的萎縮更準(zhǔn)確可靠,目前被認(rèn)為是用于測(cè)量AD患者顳葉和海馬體積的最佳影像學(xué)方法之一。
MRI對(duì)設(shè)備和技術(shù)要求較高,且費(fèi)用較高。MRI對(duì)患者體動(dòng)敏感,易產(chǎn)生偽影,AD患者一般難以配合檢查,常導(dǎo)致檢查失??;MRI對(duì)早期AD患者的診斷價(jià)值尚無(wú)明確定論,因?yàn)閷?duì)MRI圖像的解釋很大程度受個(gè)人主觀影響,缺乏一致性,因此在診斷方面有一定限制。
CT在不破壞物體結(jié)構(gòu)的前提下,根據(jù)物體周邊所獲取的某種物理量(如波速、X線光強(qiáng)等)的投影數(shù)據(jù),重建物體特定層面上的二維或三維圖像[47]。腦的老化是隨年齡增長(zhǎng)而發(fā)生的改變,病理上可見(jiàn)腦萎縮。按照腦萎縮累及部位的不同,可將之分為腦灰質(zhì)萎縮和腦白質(zhì)萎縮[48]。前者表現(xiàn)為腦溝和腦裂增寬、加深,后者以腦室擴(kuò)大為主要表現(xiàn)。
AD患者CT上表現(xiàn)出嚴(yán)重腦老化,早期能見(jiàn)到腦溝增寬,中期和晚期可見(jiàn)到腦室擴(kuò)大,大腦呈彌漫性萎縮[49]。為定量分析腦萎縮,學(xué)者們進(jìn)行了CT的測(cè)量研究,按所用方法不同,將其分為線性測(cè)量、面積測(cè)量和體積測(cè)量[50]。AD患者未鈣化松果體組織的體積顯著小于其他類(lèi)型癡呆,褪黑激素下降更明顯。有學(xué)者研究通過(guò)CT確定松果體鈣化程度,以及未鈣化松果體組織的大小,確定松果體鈣化率,以鑒別AD與其他類(lèi)型癡呆[51]。AD是以腦神經(jīng)細(xì)胞病性為主的癡呆,VD是由血管性病變所致的腦神經(jīng)元變性為主的癡呆,且以多發(fā)梗死、白質(zhì)內(nèi)異常病灶、腦組織血流灌注低為主要特征[52]。AD患者CT掃描可見(jiàn)梗死灶或軟化灶,與VD有重疊。有研究通過(guò)低劑量CT血流灌注成像(CT perfusion imaging,CTPI)檢測(cè),發(fā)現(xiàn)VD患者血流灌注明顯降低,與AD患者無(wú)顯著性差異[53]。這種檢測(cè)技術(shù)在AD的鑒別與診斷上具有一定的限制。
CT組織密度分辨率高,顯示鈣化敏感[51],掃描速度快,檢查方便、安全,是臨床醫(yī)生對(duì)癡呆患者進(jìn)行影像學(xué)檢查的常用手段。頭顱CT能顯示腦解剖結(jié)構(gòu)和形態(tài)改變。但CT的軟組織分辨率有限,區(qū)分腦灰、白質(zhì)不佳。AD主要累及內(nèi)側(cè)顳葉海馬區(qū),但CT難以準(zhǔn)確顯示海馬萎縮的情況,且對(duì)腦白質(zhì)的改變敏感性不高,顱底骨質(zhì)結(jié)構(gòu)偽影干擾大,對(duì)幕下結(jié)構(gòu)顯示不清。顱腦CT主要用于顯示腦組織的解剖結(jié)構(gòu)和形態(tài)改變,難以顯示腦功能情況及腦代謝狀態(tài)。近年來(lái)應(yīng)用CT診斷AD的文獻(xiàn)報(bào)道逐漸減少。
近年來(lái),多模態(tài)成像,如PET/CT、PET/MRI已成為重要的診斷工具。這是將放射學(xué)和核醫(yī)學(xué)相結(jié)合的技術(shù),更加契合精準(zhǔn)醫(yī)療和疾病分子水平診斷的發(fā)展趨勢(shì),有著“醫(yī)療界的GPS”的美譽(yù)。
目前,一體化PET/CT在臨床已常規(guī)應(yīng)用,主要用于腫瘤學(xué)、心臟病學(xué)及神經(jīng)精神醫(yī)學(xué)等領(lǐng)域。PET/CT能從分子水平反映腦細(xì)胞的代謝水平及病變分布區(qū)域[54]。雖然具有很多優(yōu)勢(shì),但仍有局限性,主要還是CT有限的軟組織分辨率。
MRI分辨率高,軟組織對(duì)比度佳,能夠排除非神經(jīng)變性病導(dǎo)致的認(rèn)知功能障礙;PET可以定量測(cè)量血流、細(xì)胞代謝、增殖、受體狀態(tài)、突觸傳遞、轉(zhuǎn)運(yùn)蛋白活性、基因表達(dá)及分子異常(如病理性蛋白沉積、Aβ斑塊),為MRI提供更多的補(bǔ)充信息。PET與MRI的結(jié)合即PET/MRI有著PET/CT無(wú)法超越的優(yōu)勢(shì)[55]。通常PET和MRI檢查時(shí)間均較長(zhǎng),患者的生理活動(dòng)和不同設(shè)備間的運(yùn)動(dòng)會(huì)導(dǎo)致圖像不穩(wěn)定,也會(huì)產(chǎn)生偽影,如金屬偽影、截?cái)鄠斡耙约八p系數(shù)造成的偽影等[56]。
有研究顯示,PET可比臨床診斷方法,包括血液學(xué)檢查、反復(fù)神經(jīng)心理學(xué)測(cè)試、腦電圖和MRI,提前2.5年檢出AD,準(zhǔn)確率在90%以上[57]。PET有助于癡呆的診斷和治療,但決不能替代常規(guī)良好的臨床評(píng)定。目前確診AD的方法仍然只有神經(jīng)病理檢查。
PET、MRI、CT等影像學(xué)技術(shù)在AD的診斷與鑒別診斷方面均有各自特點(diǎn),結(jié)構(gòu)和功能神經(jīng)影像學(xué)的結(jié)合提高了預(yù)測(cè)AD的準(zhǔn)確性[58]。目前為止,對(duì)AD的影像學(xué)診斷尚無(wú)明確的標(biāo)準(zhǔn),以上任何一種影像學(xué)檢查技術(shù)均不能獨(dú)立對(duì)AD進(jìn)行確診。盡管AD的神經(jīng)影像學(xué)研究已經(jīng)取得很大進(jìn)步,但對(duì)于AD個(gè)體化早期診斷仍存在諸多不足。雖然目前臨床上不建議將這些影像學(xué)方法作為認(rèn)知功能下降的初級(jí)常規(guī)檢查,但影像學(xué)的發(fā)展對(duì)于AD的診斷具有良好的應(yīng)用前景,期待在未來(lái)的研究中會(huì)有更大突破。
[1]Sadhu A,Upadhyay P,Agrawal A,et al.Management of cognitive determinants in senile dementia of Alzheimer's type:therapeutic potential of a novel polyherbal drug product[J].Clin DrugInvestig,2014,34(12):857-869.doi:10.1007/ s40261-014-0235-9.
[2]Cuttler JM,Moore ER,Hosfeld VD,et al.Treatment of Alzheimer disease with CT scans:a case report[J].Dose Response,2016,14(2):1559325816640073.doi:10.1177/ 1559325816640073.
[3]Geldmacher DS,Kirson NY,Birnbaum HG,et al.Implications of early treatment among Medicaid patients with Alzheimer's disease[J].Alzheimers Dement,2014,10(2):214-224.doi: 10.1016/j.jalz.2013.01.015.
[4]Vemuri P,Lesnick TG,Przybelski SA,et al.Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly[J].Brain,2015,138(Pt 3):761-771. doi:10.1093/brain/awu393.
[5]Yanagisawa D,Amatsubo T,Morikawa S,et al.In vivo detection of amyloid β deposition using19F magnetic resonance imaging with a19F-containing curcumin derivative in a mouse model of Alzheimer's disease[J].Neuroscience,2011,184: 120-127.doi:10.1016/j.neuroscience.2011.03.071.
[6]Cova I,Clerici F,Rossi A,et al.Weight loss predicts progression of mild cognitive impairment to Alzheimer's disease[J]. PLoS One,2016,11(3):e0151710.doi:10.1371/journal. pone.0151710.
[7]Jia J,Zhou A,Wei C,et al.The prevalence of mild cognitive impairment and its etiological subtypes in elderly Chinese[J]. Alzheimers Dement,2014,10(4):439-47.doi:10.1016/j. jalz.2013.09.008.
[8]Ganguli M,Dodge HH,Shen C,et al.Mild cognitive impairment,amnestic type:an epidemiologic study[J].Neurology, 2004,63(1):115-121.
[9]Ward A,Tardiff S,Dye C,et al.Rate of conversion from prodromal Alzheimer's disease to Alzheimer's dementia:a systematic review of the literature[J].Dement Geriatr Coqn Dis Extra,2013,3(1):320-332.doi:10.1159/000354370.
[10]Shi JM,He X,Lian HJ,et al.Tibetan medicine"RNSP"in treatment of Alzheimer disease[J].Int J Clin Exp Med,2015,8 (11):19874-19880.
[11]Bensaidane MR,Beaureqard JM,Poulin S,et al.Clinical utility of amyloid PET imaging in the differential diagnosis of atypical dementias and its impact on caregivers[J].J Alzheimers Dis,2016,52(4):1251-1262.doi:10.3233/JAD-151180.
[12]Sun J,Feng X,Liang D,et al.Down-regulation of energy metabolism in Alzheimer's disease is a protective response of neurons to the microenvironment[J].J Alzheimers Dis,2012,28 (2):389-402.doi:10.3233/JAD-2011-111313.
[13]Gallivanone F,Della Rosa PA,Castiglioni I.Statistical voxel-based methods and[18F]FDG PET brain imaging:frontiers for the diagnosis of AD[J].Curr Alzheimer Res,2016,13(6): 682-694.
[14]Pardo JV,Lee JT,Kuskowski MA,et al.Fluorodeoxyglucose positron emission tomography of mild cognitive impairment with clinical follow-up at 3 years[J].Alzheimers Dement, 2010,6(4):326-333.doi:10.1016/j.jalz.2009.09.005.
[15]Takahashi R,Ishii K,Senda M,et al.Equal sensitivity of early and late scans after injection of FDG for the detection of Alzheimer pattern:an analysis of 3D PET data from J-ADNI,a multi-center study[J].Ann Nucl Med,2013,27(5):452-459. doi:10.1007/s12149-013-0704-x.
[16]Silverman DH,Small GW,Chang CY.Positron emission tomography in evaluation of dementia:regional brain metabolism and long-term outcome[J].JAMA,2001,286(17): 2120-2127.
[17]Pietrini P,Alexander GE,Furey ML,et al.Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer's disease and healthy volunteers assessed by PET[J].J Nucl Med,2000,41(4):575-583.
[18]Laforce R Jr,Buteau JP,Paquet N,et al.The value of PET in mild cognitive impairment,typical and atypical/unclear dementias:a retrospective memory clinic study[J].Am J Alzheimers Dis Other Demen,2010,25(4):324-332.doi:10.1177/ 1533317510363468.
[19]Tripathi M,Dhawan V,Peng S,et al.Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography[J].Neuroradiology,2013,55(4): 483-492.doi:10.1007/s00234-012-1132-7.
[20]Eisenmenger LB,Huo EJ,Hoffman JM,et al.Advances in PET imaging of degenerative,cerebrovascular,and traumatic causes of dementia[J].Semin Nucl Med,2016,46(1):57-87. doi:10.1053/j.semnuclmed.2015.09.003.
[21]Kung HF,Choi SR,Qu W,et al.18F stilbenes and styrylpyridines for PET imaging of a beta plaques in Alzheimer's disease:a miniperspective[J].J Med Chem,2010,53(3): 933-941.doi:10.1021/jm901039z.
[22]Rodriguez-Vieitez E,Saint-Aubert L,Carter SF,et al.Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease[J].Brain,2016,139(Pt 3):922-936.doi:10.1093/brain/awv404.
[23]LiuE,SchmidtME,MargolinR,etal.Amyloid-β11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials[J].Neurology,2015,85(8): 692-700.doi:10.1212/WNL.0000000000001877.
[24]Farid K,Hong YT,Aigbirhio FI,et al.Early-phase11C-PIB PET in amyloid angiopathy-related symptomatic cerebral hemorrhage:potential diagnostic value?[J].PLoS One,2015,10 (10):e0139926.doi:10.1371/journal.pone.0139926.
[25]Sigurdsson EM,Wadghiri YZ,Blind JA,et al.O3-03-03 In vivo magnetic resonance imaging of amyloid plaques in mice with a non-toxic Aβ derivative[J].Neurobiol Aging,2004,25 (4):S57.
[26]Maetzler W,Reimold M,Liepelt I,et al.[11C]PIB binding in Parkinson's disease dementia[J].Neuroimage,2008,39(3): 1027-1033.
[27]Klunk WE,Engler H,Nordberg A,et al.Imaging brain amyloid in Alzheimer′s disease with Pittsburgh Compound-B[J]. Ann Neurol,2004,55(3):306-319.
[28]Fleisher AS,Chen K,Liu X,et al.Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease[J].Arch Neurol,2011,68(11):1404-1411. doi:10.1001/archneurol.2011.150.
[29]Payoux,P,Delrieu J,Gallini A,et al.Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings[J].Eur J Nucl Med Mol Imaging,2015,42 (9):1459-1468.doi:10.1007/s00259-015-3067-9.
[30]Johnson KA,Sperling RA,Gidicsin CM,et al.Florbetapir (F18-AV-45)PET to assess amyloid burden in Alzheimer's disease dementia,mild cognitive impairment,and normal aging[J].Alzheimers Dement,2013,9(5 Suppl):S72-S83.doi: 10.1016/j.jalz.2012.10.007.
[31]Murray ME,Graff-Radford NR,Ross OA,et al.Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics:a retrospective study[J].Lancet Neurol,2011,10(9):785-796.doi:10.1016/S1474-4422(11) 70156-9.
[32]Braak H,Braak E.Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis[J].Acta Neuropathol,1996,92(2):197-201.
[33]Gao M,Wang M,Zheng QH.Fully automated synthesis of[(18)F]T807,a PET tau tracer for Alzheimer's disease[J]. Bioorg Med Chem Lett,2015,25(15):2953-2957.doi: 10.1016/J.Bmcl.2015.05.035.
[34]Agdeppa ED,Kepe V,Liu J,et al.Binding characteristics ofradiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease[J].J Neurosci, 2001,21(24):RC189.
[35]Chien DT,Szardenings AK,Bahri S,et al.Early clinical PET imagingresultswiththenovelPHF-tauradioligand[F18]-T808[J].J Alzheimers Dis,2014,38(1):171-184. doi:10.3233/JAD-130098.
[36]Kolb H,Attardo G,Mintun M,et al.First case report:image to autopsy correlation for tau imaging with[18F]-T808 (AV-680)[J].Alzheimers Dement,2013,9(4):844-845.
[37]Korolev IO,Symonds LL,Bozoki AC.Predicting progression from mild cognitive impairment to Alzheimer's dementia using clinical,MRI,and plasma biomarkers via probabilistic pattern classification[J].PLoS One,2016,11(2):e0138866.doi: 10.1371/journal.pone.0138866.
[38]Liu L,Fu L,Zhang X,et al.Combination of dynamic(11) C-PIB PET and structural MRI improves diagnosis of Alzheimer's disease[J].Psychiatry Res,2015,233(2):131-140.doi: 10.1016/j.pscychresns.2015.05.014.
[39]Trzepacz PT,Hochstetler H,Yu P,et al.Relationship of hippocampal volume to amyloid burden across diagnostic stages of Alzheimer's disease[J].Dement Geriatr Cogn Disord,2016,41 (1-2):68-79.doi:10.1159/000441351.
[40]Apostolova LG,Dutton RA,Dinov ID,et al.Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps[J].Arch Neurol,2006,63(5): 693-699.
[41]McGuinness B,Barrett SL,McIlvenna J,et al.Predicting conversion to dementia in a memory clinic:A standard clinical approach compared with an empirically defined clustering method(latent profile analysis)for mild cognitive impairment subtyping[J].Alzheimers Dement(Amst),2015,1(4):447-454. doi:10.1016/j.dadm.2015.10.003.
[42]Gorelick PB,Counts SE,Nyenhuis D.Vascular cognitive impairment and dementia[J].Biochim Biophys Acta,2016,1862 (5):860-868.doi:10.1016/j.bbadis.2015.12.015.
[43]Jin M,Pelak VS,Cordes D.Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI[J].Magn Reson Imaging,2012,30 (1):48-61.doi:10.1016/j.mri.2011.07.007.
[44]Li W,Howard JD,Gottfried JA.Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer's disease[J].Brain,2010,133(9):2714-2726.doi: 10.1093/brain/awq209.
[45]Wang J,Eslinger PJ,Doty RL,et al.Olfactory deficit detected by fMRI in early Alzheimer's disease[J].Brain Res,2010, 1357:184-194.doi:10.1016/j.brainres.2010.08.018.
[46]Jin Z,Guan Y,Yu G,et al.Magnetic resonance imaging of postoperative fracture healing process without metal artifact:a preliminary report of a novel animal model[J].Biomed Res Int,2016,2016:1429892.doi:10.1155/2016/1429892.
[47]Illan IA,Gorriz JM,Ramirez J,et al.Bilateral symmetry aspects in computer-aided Alzheimer's disease diagnosis by single-photon emission-computed tomography imaging[J].Artif IntellMed,2012,56(3):191-198.doi:10.1016/j.artmed.2012.09.005.
[48]Faria AV,Ratnanather JT,Tward DJ,et al.Linking white matter and deep gray matter alterations in premanifest Huntington disease[J].Neuroimage Clin,2016,11:450-460.doi:10.1016/ j.nicl.2016.02.014.
[49]Dunham CM,Cook AJ 2nd,Paparodis AM,et al.Practical one-dimensional measurements of age-related brain atrophy are validated by 3-dimensional values and clinical outcomes:a retrospective study[J].BMC Med Imaging,2016,16:32.doi: 10.1186/s12880-016-0136-x.
[50]Sverzellati N,Colombi D,Randi G,et al.Computed tomography measurement of rib cage morphometry in emphysema[J]. PLoSOne,2013,8(7):e68546.doi:10.1371/journal. pone.0068546.
[51]Mahlberg R,Walther S,Kalus P,et al.Pineal calcification in Alzheimer's disease:An in vivo study computed tomography[J].NeurobiolAging,2008,29(2):203-209.
[52]Tang Z,Pi X,Chen F,et al.Fifty percent reduced-dose cerebral CT perfusion imaging of Alzheimer's disease:regional blood flow abnormalities[J].Am J Alzheimers Dis Other Demen,2012,27(4):267-274.doi:10.1177/1533317512447885.
[53]Tang Z,Chen F,Huang J,et al.Low-dose cerebral CT perfusion imaging(CTPI)of senile dementia:diagnostic performance[J].Arch Gerontol Geriatr,2013,56(1):61-67.doi: 10.1016/j.archger.2012.05.009.
[54]Wang L,Zhang Y,He Y,et al.Changes in hippocampal connectivity in the early stages of Alzheimer's disease:evidence from resting state fMRI[J].Neuroimage,2006,31(2):496-504. [55]Glaudemans AW,Quintero AM,Signore A.PET/MRI in infectious and inflammatory diseases:will it be a useful improvement?[J].Eur J Nucl Med Mol Imaging,2012,39(5):745-749. doi:10.1007/s00259-012-2060-9.
[56]Delso G,Martinez-Moller A,Bundschuh RA,et al.The effect of limited MR field of view in MR/PET attenuation correction[J].Med Phys,2010,37(6):2804-2812.
[57]Degenhardt EK,Witte MM,Gase MG,et al.Florbetapir F18 PET amyloid neuroimaging and characteristics in patients with mild and moderate Alzheimer dementia[J].Psychosomatics, 2016,57(2):208-216.doi:10.1016/j.psym.2015.12.002.
[58]Jack CR Jr,Lowe VJ,Senjem ML,et al.11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment[J]. Brain,2008,131(Pt 3):665-680.doi:10.1093/brain/awm336.
Advance in Imaging Techniques for Early Diagnosis ofAlzheimer's Disease(review)
HUANG Rui,HUA Xue-si,ZHANG Lan
Department of Pharmacology,Xuanwu Hospital of Capital Medical University;Beijing Engineering Research Center for Nerve System Drugs;Beijing Institute for Brain Disorders;Key Laboratory for Neurodegenerative Diseases of Ministry of Education,Beijing 100053,China
ZHANG Lan.E-mail:lanizhg@126.com
At present,the clinical diagnosis of Alzheimer's disease(AD)is mainly based on clinical history,however,the sensitivity and accuracy is limited.Positron emission computed tomography can accurately diagnose AD early by glucose metabolism imaging and biomarker imaging.Magnetic resonance imaging provides the basis for early diagnosis and identification of AD by structural imaging and functional imaging.In recent years,the multi-modality imaging technology closely combines radiology and nuclear medicine,which can more accurately diagnoseAD.
Alzheimer's disease;positron emission computed tomography;magnetic resonance imaging;tracer;review
R749.1
A
1006-9771(2017)05-0534-05
2016-09-23
2017-01-16)
10.3969/j.issn.1006-9771.2017.05.009
[本文著錄格式]黃蕊,華學(xué)思,張?zhí)m.影像學(xué)技術(shù)應(yīng)用于阿爾茨海默病早期診斷的研究進(jìn)展[J].中國(guó)康復(fù)理論與實(shí)踐,2017, 23(5):534-538.
CITED AS:Huang R,Hua XS,Zhang L.Advance in imaging techniques for early diagnosis of Alzheimer's disease(review)[J]. Zhongguo Kangfu Lilun Yu Shijian,2017,23(5):534-538.
1.國(guó)家自然科學(xué)基金項(xiàng)目(No.81473373);2.北京市自然科學(xué)基金項(xiàng)目(No.7164315);3.北京市衛(wèi)生系統(tǒng)高層次衛(wèi)生技術(shù)人才項(xiàng)目(No.2014-2-014);4.北京市新世紀(jì)百千萬(wàn)人才工程項(xiàng)目(No.008-0014)。
首都醫(yī)科大學(xué)宣武醫(yī)院藥物研究室,北京市神經(jīng)藥物工程研究中心,北京腦重大疾病研究院,神經(jīng)變性病教育部重點(diǎn)實(shí)驗(yàn)室,北京市100053。作者簡(jiǎn)介:黃蕊(1992-),女,漢族,河北任丘市人,碩士研究生,主要研究方向:神經(jīng)藥理學(xué)。通訊作者:張?zhí)m,女,教授,博士生導(dǎo)師,主要研究方向:神經(jīng)藥理學(xué)。E-mail:lanizhg@126.com。