孫爭宇,顧麗紅,李 林
少突膠質(zhì)細(xì)胞體外培養(yǎng)方法的研究進(jìn)展①
孫爭宇,顧麗紅,李 林
尋求純度高、簡便易行的體外培養(yǎng)少突膠質(zhì)細(xì)胞的方法具有非常重要的應(yīng)用價(jià)值。本文綜述大鼠皮層膠質(zhì)細(xì)胞混合培養(yǎng)、少突膠質(zhì)前體細(xì)胞增殖純化、少突膠質(zhì)細(xì)胞誘導(dǎo)分化及細(xì)胞體系各發(fā)育分化階段細(xì)胞表面抗原的鑒定等體外培養(yǎng)方法。
少突膠質(zhì)細(xì)胞;少突膠質(zhì)前體細(xì)胞;細(xì)胞培養(yǎng);綜述
少突膠質(zhì)細(xì)胞(oligodendrocyte,OL)是中樞神經(jīng)系統(tǒng)的髓鞘形成細(xì)胞,起源于胚胎神經(jīng)管腹側(cè)的神經(jīng)上皮細(xì)胞,在胚胎發(fā)生過程中從運(yùn)動神經(jīng)元前體區(qū)(motor neuron progenitor domain, MNPD)遷移出[1],胚胎發(fā)生末期聚集于邊緣區(qū)并開始分化;隨著中樞神經(jīng)系統(tǒng)的發(fā)育,逐步遷移到白質(zhì),并進(jìn)一步增殖、分化;成熟的OL可包繞神經(jīng)纖維的軸突并形成髓鞘,在促進(jìn)神經(jīng)元功能電位的正確快速傳導(dǎo)和支持軸突存活中發(fā)揮著重要作用[2]。OL在發(fā)育過程中,大致經(jīng)歷了少突膠質(zhì)祖細(xì)胞、少突膠質(zhì)前體細(xì)胞(oligodendrocyte precursor cells,OPC)、未成熟OL和成熟OL幾個(gè)階段[3],其形態(tài)、功能和表達(dá)產(chǎn)物呈現(xiàn)連續(xù)漸變過程,各發(fā)育階段之間沒有嚴(yán)格界限。越來越多的研究表明,OL異常在中樞神經(jīng)系統(tǒng)脫髓鞘病變[4]、神經(jīng)元損傷[5]、精神疾病等的發(fā)病機(jī)制中起著重要作用[6-8]。OL可能成為逆轉(zhuǎn)神經(jīng)精神疾病(抑郁癥、孤獨(dú)癥、精神分裂癥等)認(rèn)知障礙的潛在治療靶點(diǎn)[9]。精神分裂癥患者OL密度及數(shù)量下降,而且細(xì)胞內(nèi)出現(xiàn)異染色質(zhì)及異常線粒體聚集等凋亡現(xiàn)象[10]。
將體外培養(yǎng)的OL移植入髓鞘形成障礙或脫失的中樞神經(jīng)系統(tǒng)內(nèi)行細(xì)胞替代治療[11],或應(yīng)用一些藥物促進(jìn)髓鞘的形成和再生,有利于脫髓鞘病灶的修復(fù)以改善腦白質(zhì)病變[12-13],是近年來的研究熱點(diǎn)。而體外純化和培養(yǎng)OL也是了解該細(xì)胞生長特性、對缺氧耐受性、某些特殊因子的表達(dá)及其內(nèi)部信號傳遞、揭示髓鞘形成和再生機(jī)制等研究的重要前提[14]。尋求一種純化度高、簡便易行的培養(yǎng)OL方法,具有非常重要的應(yīng)用價(jià)值。
大多數(shù)研究者選取出生后0~3 d的新生Sprague-Dawley大鼠[15-17],雌雄不限;也有研究者選取孕14~18 d的胎鼠[18],或出生后0~2 d新生C57B6小鼠[19]。OPC培養(yǎng)在種屬之間的差異尚不十分清楚,小鼠OPC對胰酶消化較敏感,成活率較Sprague-Dawley大鼠低[20]。有研究表明[21],成年大鼠中樞神經(jīng)系統(tǒng)中絕大部分為成熟OL,喪失遷移及增殖能力,但也存在OPC;而新生大鼠出生后約1周,OL即逐漸成熟。髓鞘化發(fā)生的高峰期約在哺乳期結(jié)束時(shí),即出生后第3周,因此可采用72 h內(nèi)的新生Sprague-Dawley大鼠皮層進(jìn)行OL原代培養(yǎng),且多采用出生24 h內(nèi)的,這時(shí)處在前體細(xì)胞充分發(fā)育后,髓鞘形成活躍期之前。也有研究者取雙側(cè)視神經(jīng)進(jìn)行OL培養(yǎng)[22-23]。
在無菌條件下取大腦,解剖顯微鏡下剔除腦膜及血管,分離出大腦皮層是取材的關(guān)鍵步驟。原代細(xì)胞培養(yǎng)常用胰酶消化法結(jié)合物理吹打法獲得單細(xì)胞懸液[24],但在實(shí)際操作過程中,可能因胰酶消化過度或吹打力度不均,導(dǎo)致細(xì)胞產(chǎn)量過低。胰蛋白酶的濃度多選取0.125%~0.25%[25],37℃孵育15~25 min,用膠質(zhì)細(xì)胞基本培養(yǎng)液終止消化,如含10%胎牛血清的DMEM/F12培養(yǎng)基[26],或含15%胎牛血清的高糖DMEM培養(yǎng)基[27]。機(jī)械吹打時(shí),有研究者采用平滑管口[28]或經(jīng)火焰拋光的細(xì)頭吸管[29]分層輕柔吹打,以達(dá)到離散細(xì)胞的目的,在很大程度上減少吹打所致的機(jī)械性損傷。制備成細(xì)胞數(shù)為5×106/ml的細(xì)胞懸液,種植于預(yù)先用0.1 mg/ml多聚賴氨酸包被的培養(yǎng)瓶中,置于37℃、5%CO2培養(yǎng)箱中,24 h后換全液,之后可每3天換半液或每隔1天換全液,培養(yǎng)7~8 d。
OPC增殖、發(fā)育分化和髓鞘形成過程受細(xì)胞內(nèi)部性質(zhì)、細(xì)胞生存時(shí)間周期和來源于其他細(xì)胞(神經(jīng)元、間充質(zhì)干細(xì)胞、施萬細(xì)胞、心肌細(xì)胞等)信號分子等因素的影響[30]?;旌夏z質(zhì)細(xì)胞生長7~8 d時(shí)可進(jìn)行OPC的純化[31]。有研究發(fā)現(xiàn)[32],小鼠OPC與心肌細(xì)胞共培養(yǎng)時(shí),心肌細(xì)胞條件培養(yǎng)基中磷酸化的磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)和細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)可以促進(jìn)OPC的增殖,且共培養(yǎng)比OPC單獨(dú)培養(yǎng)表現(xiàn)出更高的增殖能力。而將來源于外胚層神經(jīng)嵴的間充質(zhì)干細(xì)胞與OPC共培養(yǎng),可以促進(jìn)OPC的分化和成熟,能夠增加OL的數(shù)量和突起長度[33]。腦微血管內(nèi)皮細(xì)胞(microvascular endothelial cell, MVEC)能夠減少OPC的凋亡[34]。MVEC條件培養(yǎng)液釋放胞外囊泡可以促進(jìn)OPC的增殖和遷移,促進(jìn)軸突髓鞘修復(fù)。血小板源性生長因子(platelet-derived growth factor,PDGF)、堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)、神經(jīng)營養(yǎng)因子3(neurotrophin 3,NT3)和胰島素樣生長因子1(insulin-like growth factor 1,IGF-1)等可促進(jìn)OPC增殖[35-37]。甲狀腺素、雌激素、孕激素、糖皮質(zhì)激素、視黃酸以及細(xì)胞外基質(zhì)相關(guān)分子等都對OPC的發(fā)育分化有重要作用,而外環(huán)境因素需通過調(diào)節(jié)細(xì)胞內(nèi)部的因子來發(fā)揮作用[38]。有研究發(fā)現(xiàn)[39],P21激酶3(p21-activated kinase 3,PAK3)在OPC中高表達(dá),可能是OPC分化的一個(gè)新的調(diào)節(jié)因子。在OPC培養(yǎng)過程中添加10 ng/ml bFGF,可明顯提高OPC的產(chǎn)出率和純度;更高濃度的bFGF則減弱其促增殖作用[40]。經(jīng)β-淀粉樣蛋白處理過的OL出現(xiàn)了細(xì)胞凋亡,可能是通過提高Dp5的表達(dá)、氧化應(yīng)激等機(jī)制參與誘導(dǎo)OL的死亡[41]。
在OPC增殖、分離、接種、分化等培養(yǎng)基中加入相應(yīng)的物質(zhì),可促進(jìn)其增殖、分化。目前常用的培養(yǎng)基配方如下。①OPC混合培養(yǎng)基:DMEM/F12培養(yǎng)基+10%胎牛血清[42]。②OPC增殖培養(yǎng)基:DMEM/F12+1%N2+15%B104條件培養(yǎng)基[43];或DMEM/F12+10 ng/ml PDGF+10 ng/ml bFGF+0.5%胎牛血清[35]。③OPC分離培養(yǎng)基:DMEM/F12+0.01%EDTA+0.2 mg/ml DNA酶+5μg/ml胰島素。④OPC接種培養(yǎng)基:50%OPC增殖培養(yǎng)基+50%混合培養(yǎng)基。⑤OPC純化培養(yǎng)基:無糖DMEM+1%Lactate(0.5 mol/L)+1%N2+15%B104條件培養(yǎng)基。⑥OPC分化培養(yǎng)基:DMEM/F12+0.8μg/ml亞硒酸鈉+ 16.1μg/ml腐胺+50μg/ml轉(zhuǎn)鐵蛋白+5μg/ml胰島素+0.4μg/ml甲狀腺素。
B104條件培養(yǎng)基具有促細(xì)胞增殖的效應(yīng)[44],c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)通過磷酸化促進(jìn)OPC的增殖,其作用與商品化生長因子(PDGF-AA、bFGF)的效應(yīng)相似[45],應(yīng)用B104培養(yǎng)基代替商品化的細(xì)胞生長因子,花費(fèi)較低。進(jìn)一步研究發(fā)現(xiàn)[46],B104條件培養(yǎng)基促進(jìn)OPC增殖具有濃度依賴性特征。15%B104條件培養(yǎng)基具有最佳的促進(jìn)OPC增殖效應(yīng),而更高濃度則抑制OPC增殖??赡苁且?yàn)锽104條件培養(yǎng)基是培養(yǎng)B104細(xì)胞的陳舊培養(yǎng)基,其中除含有有益于OPC增殖的物質(zhì)外,也含有大量的細(xì)胞代謝廢物。
有研究者通過神經(jīng)細(xì)胞化學(xué)限定性培養(yǎng)基思路,列出了可用于OL體外培養(yǎng)的無血清培養(yǎng)基配方[47-48]。該培養(yǎng)基以DMEM和F12為基礎(chǔ),通過添加一系列維生素、激素及微量元素等成分而成[42]。但是該配方可能不是專門針對OL的體外生長,用這一配方培養(yǎng)神經(jīng)細(xì)胞、星形膠質(zhì)細(xì)胞,也會增殖和生長。
體外培養(yǎng)OL接種后,一般仍先用有血清培養(yǎng)液,在獲得足夠的細(xì)胞數(shù)量后,換為無血清培養(yǎng)液的化學(xué)條件培養(yǎng)基,可使體外培養(yǎng)條件下OPC定向分化為成熟OL,細(xì)胞形態(tài)呈現(xiàn)漸變過程。楊凱等[49]發(fā)現(xiàn),DMEM/F12較DMEM/高糖培養(yǎng)基更適于OL培養(yǎng),在一定范圍內(nèi),獲取的OL數(shù)量隨細(xì)胞接種密度成梯度增多,接種密度在(4×104~8×104)/cm2范圍時(shí),有利于觀察細(xì)胞生長情況。
OPC原代培養(yǎng)是一種共培養(yǎng)狀態(tài)[50],和星形膠質(zhì)細(xì)胞一起生長,需把握好細(xì)胞分離的時(shí)機(jī)。星形膠質(zhì)細(xì)胞層可以主動分泌一些細(xì)胞因子,促進(jìn)OPC的存活和增殖,為OPC的遷移和增殖提供良好的環(huán)境,且不抑制其分化[51]。根據(jù)星形膠質(zhì)細(xì)胞和OL的生長時(shí)間差異、細(xì)胞生長方式及細(xì)胞對培養(yǎng)層黏附等特性的不同[52],星形膠質(zhì)細(xì)胞貼壁更快且更緊密,可采用兩次恒溫?fù)u床振蕩分離純化法、差速貼壁法、胰酶消化法,結(jié)合條件限定培養(yǎng)基培養(yǎng),可獲取并鑒定出高純度的大鼠OL[53]。分離時(shí)間過早則存活能力差,分離時(shí)間過晚則影響OPC的分化。
體外純化OPC,常用的方法包括植塊培養(yǎng)法和分離細(xì)胞培養(yǎng)法。分離細(xì)胞培養(yǎng)法又因白質(zhì)組織和灰質(zhì)組織兩種材料來源而分為密度梯度離心法[54]和恒溫?fù)u床處理法[55]兩種。恒溫?fù)u床處理法分離OL的主要缺點(diǎn)是必須經(jīng)過一定時(shí)間的原代培養(yǎng)期。
楊俊林等[16]利用細(xì)胞分層生長的特點(diǎn)和單克隆形成,簡便地制備出高純度的膠質(zhì)限制前體細(xì)胞,分化成星形膠質(zhì)細(xì)胞和OL,而未分化成神經(jīng)元。段朝霞等[19]根據(jù)星形膠質(zhì)細(xì)胞和OPC系生長時(shí)間的差異、細(xì)胞黏附特性的不同,通過振蕩及差速貼壁法,結(jié)合添加N2、PDGF、bFGF的無血清OL定向培養(yǎng)基,成功獲得高純度的OPC,應(yīng)用巨噬細(xì)胞移動抑制因子(macrophage migration inhibitory factor,MIF)促進(jìn)OPC增殖。盧玉仙等[20]依據(jù)各種膠質(zhì)細(xì)胞黏附性及生長時(shí)間的差異,通過機(jī)械振蕩法和差速貼壁法,從原代培養(yǎng)中獲得純化的OPC,接種于含有PDGF、bFGF的培養(yǎng)液中觀察其增殖情況,再以三碘甲狀腺原氨酸和睫狀神經(jīng)營養(yǎng)因子定向誘導(dǎo)分化,發(fā)現(xiàn)OPC具有良好的增殖能力,沿著少突膠質(zhì)譜系細(xì)胞定向分化,隨有形態(tài)學(xué)及表面表達(dá)抗原的變化。與段朝霞等的研究具有一致性。有研究者提出改良化學(xué)分離傳代法[56],采用EDTA化學(xué)分離為基礎(chǔ)的機(jī)械振蕩法獲取OPC,并與傳統(tǒng)的振蕩分離法及單用化學(xué)分離法進(jìn)行對比,發(fā)現(xiàn)采用EDTA化學(xué)分離為基礎(chǔ)的機(jī)械振蕩改良傳代法能高效獲取大量高純度體外培養(yǎng)的OPC,所得的OPC純度明顯高于另外兩種分離方法,數(shù)量顯著多于傳統(tǒng)的培養(yǎng)方法,且較其他如抗體免疫篩選法[57-58]簡便、可靠。
發(fā)育過程中調(diào)控OPC分化的分子機(jī)制主要包括細(xì)胞骨架水平、轉(zhuǎn)錄水平、時(shí)空水平以及軸突水平等方面[59-60],胞內(nèi)轉(zhuǎn)錄因子Sox10、SCIP、Krox24以及大量含螺旋-環(huán)-螺旋(helix-loop-helix,HLH)結(jié)構(gòu)域的轉(zhuǎn)錄因子等發(fā)揮重要作用[61-62]。
OL的每個(gè)發(fā)育階段都呈現(xiàn)出不同的形態(tài)變化,主要是從簡單的雙極狀態(tài)向分支復(fù)雜的狀態(tài)轉(zhuǎn)變,表達(dá)不同的細(xì)胞表面抗原,通常采用細(xì)胞免疫熒光進(jìn)行鑒定。免疫熒光特異性A2B5、PDGFR和NG2抗體標(biāo)記OPC;特異性O(shè)1、O4、CNP抗體標(biāo)記未成熟OL;髓鞘堿性蛋白(myelin basic protein,MBP)和髓鞘少突膠質(zhì)細(xì)胞糖蛋白(myelin oligodendrocyte glycoprotein,MOG)抗體標(biāo)記成熟OL[63];特異性膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)抗體標(biāo)記星形膠質(zhì)細(xì)胞[64-65]。
混合膠質(zhì)細(xì)胞制備成單個(gè)細(xì)胞懸液適當(dāng)稀釋后,應(yīng)用臺盼藍(lán)排除實(shí)驗(yàn)方法計(jì)數(shù)活細(xì)胞個(gè)數(shù),計(jì)數(shù)時(shí)間為3 min,鏡下觀察死細(xì)胞被染成藍(lán)色,活細(xì)胞為無色透明狀。培養(yǎng)并分離純化的OPC定向分化培養(yǎng)15 d后,細(xì)胞形態(tài)發(fā)生明顯改變,突起增多,呈“分枝”或“蜘蛛網(wǎng)”狀分布于胞體四周,95%左右的細(xì)胞成熟OL特異性抗體MBP和O4染色呈陽性。有研究應(yīng)用恒溫?fù)u床結(jié)合無血清培養(yǎng)的方法純化OL[54],Galc免疫細(xì)胞化學(xué)法鑒定OL,發(fā)現(xiàn)純化后的OL胞體呈圓形或橢圓形,折光性強(qiáng),突起少,陽性細(xì)胞胞漿和突起呈棕黃色,發(fā)現(xiàn)采用此種方法培養(yǎng)出的OL純化度達(dá)95%。該方法耗材少,且方便簡易。無血清化學(xué)條件培養(yǎng)基加入后3 d,相差顯微鏡下觀察可見OL胞體增大,周圍折光強(qiáng),突起明顯增多,相互之間連接成網(wǎng);掃描電鏡觀察可見胞體邊緣不規(guī)則,突起分支更加清晰,分支彼此呈三維立體交錯(cuò),部分細(xì)小突起間可見膜片狀結(jié)
構(gòu)[66]。
OL異常在脫髓鞘疾病、神經(jīng)元損傷、精神疾病等發(fā)病機(jī)制中的作用越來越受到重視。OL原代培養(yǎng)增殖、純化和各分化階段的鑒定仍是難點(diǎn),需要不斷優(yōu)化培養(yǎng)條件,簡化實(shí)驗(yàn)步驟,降低成本,尋求一種簡便易行、經(jīng)濟(jì)有效的辦法。在進(jìn)行體外培養(yǎng)時(shí),可根據(jù)研究目的和需要,摸索實(shí)驗(yàn)條件,添加多種不同濃度的營養(yǎng)因子,應(yīng)用增殖、純化、定向誘導(dǎo)等培養(yǎng)基,得到高產(chǎn)出率、高純度的OL。
[1]O'Rourke M,Gasperini R,Young KM.Adult myelination: wrapping up neuronal plasticity[J].Neural Regener Res,2014, 9(13):1261-1264.
[2]Amaral AI,Tavares JM,Sonnewald U,et al.Oligodendrocytes: development,physiology and glucose metabolism[J].Adv Neurobiol,2016,13:275-294.
[3]El Waly B,Macchi M,Cayre M,et al.Oligodendrogenesis in the normal and pathological central nervous system[J].Front Neurosci,2014,8:145.
[4]Iijima K,Kurachi M,Shibasaki K,et al.Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions[J].J Neurochem, 2015,135(3):539-550.
[5]Takase H,Washida K,Hayakawa K,et al.Oligodendrogenesis after traumatic brain injury[J].Behav Brain Res,2016,11(8): 112-116.
[6]McKenzie IA,Ohayon D,Li H,et al.Motor skill learning requires active central myelination[J].Science,2014,346 (6207):318-322.
[7]Nave KA,Ehrenreich H.Myelination and oligodendrocyte functions in psychiatric diseases[J].JAMA Psychiatry,2014, 71(5):582-584.
[8]Barateiro A,Brites D,Fernandes A.Oligodendrocyte development and myelination in neurodevelopment:molecular mechanisms in health and disease[J].Curr Pharm Des,2016,22(6): 656-679.
[9]Takahashi N,Sakurai T,Davis KL,et al.Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia[J].Prog Neurobiol,2011,93(1):13-24.
[10]Mauney S,Pietersen CY,Sonntag KC,et al.Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia[J].Schizophr Res,2015,169(1-3):374-380.
[11]Gibson EM,Purger D,Mount CW,et al.Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain[J].Science,2014,344(6183):1252304.
[12]Bothwell M.Mechanisms and medicines for remyelination[J].Annu Rev Med,2017,68:431-443.
[13]Louren?o T,Gr?os M.Modulation of oligodendrocyte differ-entiation by mechanotransduction[J].Front Cell Neurosci, 2016,29(10):277-285.
[14]Liu J,Dupree JL,Gacias M,et al.Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice[J].Neuroscience,2016,36(3): 957-962.
[15]Morrison BM,Lee Y,Rothstein JD.Oligodendroglia:metabolic supporters of axons[J].Trends Cell Biol,2013,23(12): 644-651.
[16]楊俊林,曹林,邱猛生.從小鼠大腦皮層制備高純度膠質(zhì)限制前體細(xì)胞[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2013,13(11):2057-2061.
[17]Azim K,Butt AM.GSK3-beta negatively regulates oligodendrocyte differentiation and myelination in vivo[J].Glia,2011, 59(4):540-553.
[18]Marsters CM,Rosin JM,Thornton HF,et al.Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence ofAscl1[J].Neural Dev,2016,11(1):20-26.
[19]段朝霞,張潔元,陳魁君,等.少突膠質(zhì)前體細(xì)胞的培養(yǎng)、鑒定及巨噬細(xì)胞移動抑制因子對其促增殖作用研究[J].中國醫(yī)藥導(dǎo)報(bào),2012,9(35):52-54.
[20]盧玉仙,夏春林,高薇,等.少突膠質(zhì)譜系細(xì)胞的生物學(xué)特性[J].解剖科學(xué)進(jìn)展,2015,21(5):505-508.
[21]Chen CD,Sloane JA,Li H,et al.The anti-aging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS[J].J Neurosci,2013,33(5):1927-1939.
[22]王曉虹,王蘇平,車菊華,等.大鼠視神經(jīng)少突膠質(zhì)細(xì)胞培養(yǎng)方法的改良[J].轉(zhuǎn)化醫(yī)學(xué)雜志,2014,3(6):330-346.
[23]Skaper SD.Culture of purified glial cell populations from optic nerve[J].Methods Mol Biol,2012,846:131-145.
[24]唐軍,鐘琳,姚裕家,等.SD大鼠少突膠質(zhì)前體細(xì)胞系的分離、培養(yǎng)及鑒定[J].實(shí)用兒科臨床雜志,2006,21(23): 1657-1659.
[25]Fancy SPJ,Baranzini SE,Zhao C,et al.Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS[J].Genes Dev,2009,23(13):1571-1585.
[26]徐思敏,周亮,沈穎.GSK3調(diào)控神經(jīng)干細(xì)胞和少突膠質(zhì)細(xì)胞前體細(xì)胞發(fā)育的研究進(jìn)展[J].生理科學(xué)進(jìn)展,2012,43(3): 238-241.
[27]Fancy SPJ,Harrington EP,Yuen TJ,et al.Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination[J].Nat Neurosci,2011,14(8):1009-1016.
[28]興啟,劉軒,楊麗華,等.高純度少突膠質(zhì)前體細(xì)胞改良培養(yǎng)方法的建立[J].上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2010,30(11): 1444-1447.
[29]Gottle P,Sabo JK,Heinen A,et al.Oligodendroglial maturation is dependent on intracellular protein shuttling[J].Neuroscience,2015,35(3):906-919.
[30]Emery B.Regulation of oligodendrocyte differentiation and myelination[J].Science,2010,330(6005):779-782.
[31]Ming X,Chew LJ,Gallo V.Transgenic overexpression of Sox17 promotes oligodendrocyte development and attenuates demyelination[J].Neuroscience,2013,33(30):12528-12542.
[32]Kuroda M,Muramatsu R,Yamashita T.Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation[J].Biochem Biophys Res Commun,2016,12(4):1-5.
[33]Zhang Z,Li Z,Deng W,et al.Ectoderm mesenchymal stem cells promote differentiation and maturation of oligodendrocyte precursor cells[J].Biochem Biophys Res Commun,2016, 480(4):727-733.
[34]Kurachi M,Mikuni M,Ishizaki Y.Extracellular vesicles from vascular endothelial cells promote survival,proliferation and motility of oligodendrocyte precursor cells[J].PLoS One, 2016,11(7):1-14.
[35]Deverman BE,Patterson PH.Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination[J].J Neurosci,2012, 32(6):2100-2109.
[36]Chen YJ,Zhang JX,Shen L,et al.Schwann cells induce proliferation and migration of oligodendrocyte precursor cells through secretion of PDGF-AA and FGF-2[J].Mol Neurosci, 2015,56(4):999-1008.
[37]Annenkov A,Rigby A,Amor S,et al.A chimeric receptor of the insulin-like growth factor receptor type 1(IGFR1)and a single chain antibody specific to myelinoligodendrocyteglycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyteprogenitors[J].Biochim Biophys Acta,2011,1813 (8):1428-1437.
[38]Xiong A,Kundu S,Forsberg M,et al.Heparanase confers a growth advantage to differentiating murine embryonic stem cells,and enhances oligodendrocyte formation[J].Matrix Biol, 2016,11(23):1-13.
[39]Renkilaraj MR,Baudouin L,Wells C,et al.The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation[J].Neurobiol Dis,2017,98:137-148.
[40]闕海萍,趙沉浮,劉勇,等.一種分離培養(yǎng)少突膠質(zhì)前體細(xì)胞的改進(jìn)方法[J].神經(jīng)解剖學(xué)雜志,2013,29(4):435-439.
[41]祁鑫洋,張志珺.β-淀粉樣蛋白誘導(dǎo)的少突膠質(zhì)細(xì)胞死亡[J].東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2014,33(3):385-387.
[42]Yang J,Cheng X,Shen J,et al.A novel approach for amplification and purification of mouse oligodendrocyte progenitor cells[J].Front Cell Neurosci,2016,10:203-211.
[43]Kleinsimlinghaus K,Marx R,Serdar M,et al.Strategies for repair of white matter:influence of osmolarity and microgliaon proliferation and apoptosis of oligodendrocyte precursor cellsin different basal culture media[J].Front Cell Neurosci,2013, 7:277-283.
[44]Zhang JX,Feng YF,Qi Q,et al.JNK is necessary foroligodendrocyteprecursor cell proliferation induced by the conditioned medium from B104neuroblastoma cells[J].Mol Neurosci, 2014,52(2):269-276.
[45]Hu JG,Wu XJ,Feng YF,et al.PDGF-AA and bFGF mediate B104CM-induced proliferation of oligodendrocyte precursor cells[J].Int J Mol Med,2012,30(5):1113-1118.
[46]Hu JG,Wu XJ,Feng YF,et al.The molecular events involved in oligodendrocyte precursor cell proliferation induced by the conditioned medium from B104 neuroblastoma cells[J].Neurochem Res,2013,38(3):601-609.
[47]Yang N,Zuchero JB,Ahlenius H,et al.Generation of oligodendroglial cells by direct lineage conversion[J].Nat Biotechnol,2013,31(5):434-439.
[48]Zhu Q,Zhao X,Zheng K,et al.Genetic evidence that Nkx2.2 and PDGFRα are major determinants of the timing of oligodendrocyte differentiation in the developing CNS[J].Development,2014,141(3):548-555.
[49]楊凱,李一鵬,劉英富,等.大鼠皮質(zhì)少突膠質(zhì)細(xì)胞培養(yǎng)條件的優(yōu)化[J].中國組織工程研究,2016,20(29):4328-4333.
[50]Clemente D,Ortega MC,Melero-Jerez C,et al.The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases[J].Front Cell Neurosci,2013,7:268-272.
[51]Haas C,Neuhuber B,Yamagami T,et al.Phenotypic analysis of astrocytes derived from glial restricted precursors and their impact on axon regeneration[J].Exp Neurol,2012,233(2): 717-732.
[52]Tanner DC,Cherry JD,Mayer-Pr?schel M.Oligodendrocyte progenitors reversibly exit the cell cycle and give rise to astrocytes in response to interferon-γ[J].J Neurosci,2011,31(16): 6235-6246.
[53]White R,Kr?mer-Albers EM.Axon-glia interaction and membrane traffic in myelin formation[J].Front Cell Neurosci, 2014,7:284-290.
[54]Dincman TA,Beare JE,Ohri SS,et al.Isolation of cortical mouse oligodendrocyte precursor cells[J].J Neurosci Methods,2012,209(1):219-226.
[55]Niu J,Wang L,Liu S,et al.An efficient and economical culture approach for the enrichment of purified oligodendrocyte progenitor cells[J].Neurosci Methods,2012,209(1):241-249.
[56]陳婧,史明,王靜,等.改良傳代法獲取大量高純度大鼠少突膠質(zhì)前體細(xì)胞[J].神經(jīng)解剖學(xué)雜志,2014,30(2):141-145.
[57]Wang Y,Tan ZB,Qin LM,et al.Simplified protocol for isolation of multipotential NG2 cells from postnatal mouse[J].J Neurosci Methods,2013,219(2):252-261.
[58]李瑩,富賽里,馬政文.少突膠質(zhì)前體細(xì)胞分離培養(yǎng)方法的改進(jìn)及其譜系限定細(xì)胞體外分化模型的建立[J].上海交通大學(xué)學(xué)報(bào),2011,31(10):1500-1504.
[59]Fitzpatrick JK,Anderson RC,McDermott KW.MicroRNA: Key regulators of oligodendrocyte development and pathobiology[J].Int J Biochem Cell Biol,2015,65:134-138.
[60]Pusic AD,Pusic KM,Clayton BLL,et al.IFNγ-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J].J Neuroimmunol,2014,266(1-2):12-23.
[61]Pusic AD,Kraig RP.Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination[J].Glia,2014,62(2):284-299.
[62]Nicolay DJ,Doucette JR,Nazarali AJ.Transcriptional control of oligodendrogenesis[J].Glia,2007,55(13):1287-1299.
[63]Zuchero JB,Barres BA.Intrinsic and extrinsic control of oligodendrocyte development[J].Curr Opin Neurobiol,2013,23 (6):914-920.
[64]Sakry D,Trotter J.The role of the NG2 proteoglycan in OPC and CNS network function[J].Brain Res,2016,16(38): 161-166.
[65]Marinelli C,Bertalot T,Zusso M,et al.Systematic review of pharmacological properties of the oligodendrocyte lineage[J]. Front Cell Neurosci,2016,10(27):1-19.
[66]Wegener A,Deboux C,Bachelin C,et al.Gain of Olig2 functioninoligodendrocyteprogenitorspromotesremyelination[J].Brain,2015,138(Pt 1):120-135.
Progress in Methodology for Oligodendrocyte Culture in Vitro(review)
SUN Zheng-yu,GU Li-hong,LI Lin
Department of Pharmacology,Xuanwu Hospital of Capital Medical University;Beijing Engineering Research Center for Nerve System Drugs;Key Laboratory for Neurodegenerative Diseases of Ministry of Education,Beijing 100053, China
LI Lin.E-mail:linlixw@126.com
It is important to establish a simple method of culture in vitro to obtain purity oligodendrocyte.This paper introduced the researches about co-culture in vitro with rat cortical gliocyte,proliferation and differentiation of oligodendrocyte progenitor,differentiation of oligodendrocyte and identification of cell surface antigens at different stages of development.
oligodendrocyte;oligodendrocyte precursor cell;cell culture;review
R741
A
1006-9771(2017)05-0543-05
2017-01-17
2017-02-09)
10.3969/j.issn.1006-9771.2017.05.011
[本文著錄格式]孫爭宇,顧麗紅,李林.少突膠質(zhì)細(xì)胞體外培養(yǎng)方法的研究進(jìn)展[J].中國康復(fù)理論與實(shí)踐,2017,23(5): 543-547.
CITED AS:Sun ZY,Gu LH,Li L.Progress in methodology for oligodendrocyte culture in vitro(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2017,23(5):543-547.
1.國家自然科學(xué)基金項(xiàng)目(No.81673406;No.81273498);2.北京市科技專項(xiàng)項(xiàng)目(No.Z131102002813066)。
首都醫(yī)科大學(xué)宣武醫(yī)院藥物研究室,北京市神經(jīng)藥物工程技術(shù)研究中心,神經(jīng)變性病教育部重點(diǎn)實(shí)驗(yàn)室,北京市100053。作者簡介:孫爭宇(1983-),女,漢族,河南鄭州市人,博士研究生,主治醫(yī)師,主要研究方向:神經(jīng)藥理學(xué)。通訊作者:李林,女,漢族,北京市人,教授,博士生研究生導(dǎo)師,主要研究方向:神經(jīng)藥理學(xué)。E-mail:linlixw@126.com。