国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

淺談小學(xué)數(shù)學(xué)思想方法的滲透

2017-01-17 13:59:38夏永霞
東方教育 2016年8期
關(guān)鍵詞:數(shù)學(xué)方法數(shù)學(xué)思想小學(xué)數(shù)學(xué)

夏永霞

摘要:本文明晰了數(shù)學(xué)思想和數(shù)學(xué)方法的概念,并對(duì)小學(xué)數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué)滲透進(jìn)行了詳盡的闡述,加強(qiáng)數(shù)學(xué)思想方法在小學(xué)的滲透,還需要進(jìn)一步提高認(rèn)識(shí),清楚地界定和刻畫(huà)適合小學(xué)生領(lǐng)悟的數(shù)學(xué)思想方法,提出明確具體而又恰當(dāng)?shù)臐B透要求,同時(shí)對(duì)其進(jìn)行了反思。

關(guān)鍵詞:小學(xué)數(shù)學(xué);數(shù)學(xué)思想;數(shù)學(xué)方法

一、數(shù)學(xué)思想和數(shù)學(xué)方法的內(nèi)涵

所謂數(shù)學(xué)思想,是指現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系反映到人的意識(shí)之中,經(jīng)過(guò)思維活動(dòng)而產(chǎn)生的結(jié)果,是被人們反復(fù)運(yùn)用和確認(rèn)的、帶有普遍意義和相對(duì)穩(wěn)定的特征,它是對(duì)數(shù)學(xué)事實(shí)與數(shù)學(xué)理論的本質(zhì)認(rèn)識(shí)。所謂數(shù)學(xué)方法,是指處理數(shù)學(xué)問(wèn)題中所采用的被人們反復(fù)運(yùn)用和確認(rèn)的各種手段、途徑和方式。數(shù)學(xué)思想和數(shù)學(xué)方法互為表里、密切相關(guān),兩者都以一定的知識(shí)為基礎(chǔ),反過(guò)來(lái)又促進(jìn)知識(shí)的深化及形成能力。方法是實(shí)施思想的技術(shù)手段,而思想是對(duì)應(yīng)方法的精神實(shí)質(zhì)和理論依據(jù)。

小學(xué)新課程標(biāo)準(zhǔn)明確指出義務(wù)教育階段的數(shù)學(xué)課程應(yīng)突出體現(xiàn)基礎(chǔ)性、普及性和發(fā)展性,使數(shù)學(xué)教育面向全體學(xué)生,實(shí)現(xiàn)人人學(xué)有價(jià)值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展。這意味著數(shù)學(xué)是人們生活、勞動(dòng)、學(xué)習(xí)必不可少的工具,數(shù)學(xué)能夠幫助人們處理數(shù)據(jù)、進(jìn)行計(jì)算、推理和證明,數(shù)學(xué)模型可以有效地描述自然現(xiàn)象和社會(huì)現(xiàn)象;數(shù)學(xué)為其他科學(xué)提供了語(yǔ)言、思想和方法,是一切重大技術(shù)發(fā)展的基礎(chǔ);數(shù)學(xué)在提高人的推理能力、抽象能力、想像力和創(chuàng)造力等方面有著獨(dú)特的作用;數(shù)學(xué)是人類(lèi)的一種文化,它的內(nèi)容、思想、方法和語(yǔ)言是現(xiàn)代文明的重要組成部分直接為社會(huì)創(chuàng)造價(jià)值。

二、小學(xué)數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué)滲透

數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué)要求教師必需較好地重視并掌握有關(guān)的數(shù)學(xué)思想和數(shù)學(xué)方法。數(shù)學(xué)思想方法是以數(shù)學(xué)為工具進(jìn)行科學(xué)研究的方法。縱觀數(shù)學(xué)的發(fā)展史我們看到數(shù)學(xué)總是伴隨著數(shù)學(xué)思想方法的發(fā)展而發(fā)展的。如坐標(biāo)法思想的具體應(yīng)用產(chǎn)生了解析幾何;無(wú)限細(xì)分求和思想方法導(dǎo)致了微積分學(xué)的誕生……,數(shù)學(xué)思想方法產(chǎn)生數(shù)學(xué)知識(shí),而數(shù)學(xué)知識(shí)又蘊(yùn)載著數(shù)學(xué)思想,二者相輔相成,密不可分。正是數(shù)學(xué)知識(shí)與數(shù)學(xué)思想方法的這種辯證統(tǒng)一性,決定了我們?cè)趥魇跀?shù)學(xué)知識(shí)的同時(shí)必須重視數(shù)學(xué)思想方法的教學(xué)。

對(duì)小學(xué)數(shù)學(xué)而言,數(shù)學(xué)思想方法主要在以下幾個(gè)方面進(jìn)行滲透:一、組合思想。組合思想是把所研究的對(duì)象進(jìn)行合理的分組,并對(duì)可能出現(xiàn)的各種情況既不重復(fù)又不遺漏地一一求解。二、變換思想。變換思想是由一種形式轉(zhuǎn)變?yōu)榱硪环N形式的思想。如解方程中的同解變換,定律、公式中的命題等價(jià)變換,幾何形體中的等積變換,理解數(shù)學(xué)問(wèn)題中的逆向變換等等。三、數(shù)形結(jié)合思想。數(shù)形結(jié)合思想是充分利用“形”把一定的數(shù)量關(guān)系形象地表示出來(lái)。即通過(guò)作一些如線段圖、樹(shù)形圖、長(zhǎng)方形面積圖或集合圖來(lái)幫助學(xué)生正確理解數(shù)量關(guān)系,使問(wèn)題簡(jiǎn)明直觀。四、化歸思想?;瘹w思想是把一個(gè)實(shí)際問(wèn)題通過(guò)某種轉(zhuǎn)化、歸結(jié)為一個(gè)數(shù)學(xué)問(wèn)題,把一個(gè)較復(fù)雜的問(wèn)題轉(zhuǎn)化、歸結(jié)為一個(gè)較簡(jiǎn)單的問(wèn)題。應(yīng)當(dāng)指出,這種化歸思想不同于一般所講的“轉(zhuǎn)化”、“轉(zhuǎn)換”。它具有不可逆轉(zhuǎn)的單向性。此外,還有符號(hào)思想、對(duì)應(yīng)思想、極限思想、集合思想等,在小學(xué)數(shù)學(xué)教學(xué)中都應(yīng)注意有目的、有選擇、適時(shí)地進(jìn)行滲透。

三、小學(xué)數(shù)學(xué)思想和數(shù)學(xué)方法滲透的教學(xué)反思

重視基本數(shù)學(xué)知識(shí)和數(shù)學(xué)技能的教學(xué),并務(wù)必使學(xué)生掌握這些基本知識(shí)和基本技能,這是數(shù)學(xué)思想和數(shù)學(xué)方法教學(xué)的基礎(chǔ)和前提。著名數(shù)學(xué)家華羅庚說(shuō)過(guò):“學(xué)習(xí)數(shù)學(xué)最好到數(shù)學(xué)家的紙簍里找材料,不要只看書(shū)上的結(jié)論。”這就是說(shuō),對(duì)探索結(jié)論過(guò)程的數(shù)學(xué)思想方法學(xué)習(xí),其重要性決不亞于結(jié)論本身。在教師引導(dǎo)下,通過(guò)問(wèn)題和總結(jié)促使學(xué)生對(duì)掌握的基本知識(shí)和基本技能認(rèn)識(shí)深化、內(nèi)化,即對(duì)蘊(yùn)于其中的數(shù)學(xué)思想、數(shù)學(xué)方法有所體會(huì)、有所領(lǐng)悟。許多教師往產(chǎn)生這樣的困惑:題目講得不少,但學(xué)生總是停留在模仿型解題的水平上,只要條件稍稍一變則不知所措,學(xué)生一直不能形成較強(qiáng)解決問(wèn)題的能力。更談不上創(chuàng)新能力的形成。究其原因就在于教師在教學(xué)中僅僅是就題論題,殊不知授之以“漁”比授之以“魚(yú)”更為重要。因此,在數(shù)學(xué)問(wèn)題的探索的教學(xué)中重要的是讓學(xué)生真正領(lǐng)悟隱含于數(shù)學(xué)問(wèn)題探索中的數(shù)學(xué)思想方法。使學(xué)生從中掌握關(guān)于數(shù)學(xué)思想方法方面的知識(shí),并使這種“知識(shí)”消化吸收成具有“個(gè)性”的數(shù)學(xué)思想。逐步形成用數(shù)學(xué)思想方法指導(dǎo)思維活動(dòng),這樣在遇到同類(lèi)問(wèn)題時(shí)才能胸有成竹,從容對(duì)待。數(shù)學(xué)思想、數(shù)學(xué)方法的教學(xué)是循環(huán)往復(fù)、螺旋上升的過(guò)程,往往是幾種數(shù)學(xué)思想、數(shù)學(xué)方法交織在一起,在教學(xué)中依據(jù)具體情況在一段時(shí)間內(nèi)再滲透、明確介紹或突出體現(xiàn)一種數(shù)學(xué)思想或數(shù)學(xué)方法,這樣效果會(huì)更好。數(shù)學(xué)知識(shí)的學(xué)習(xí)要經(jīng)過(guò)預(yù)習(xí)、聽(tīng)講、復(fù)習(xí)、練習(xí)等才能掌握和鞏固。數(shù)學(xué)思想、方法的形成同樣有一個(gè)循序漸進(jìn)的過(guò)程。只有經(jīng)過(guò)反復(fù)訓(xùn)練才能使學(xué)生真正領(lǐng)會(huì)。另外,使學(xué)生形成自覺(jué)運(yùn)用數(shù)學(xué)思想方法的意識(shí),必須建立起學(xué)生自我的“數(shù)學(xué)思想方法系統(tǒng)”,這更需要一個(gè)反復(fù)訓(xùn)練、不斷完善的過(guò)程。比如,運(yùn)用類(lèi)比的數(shù)學(xué)方法,在新概念提出、新知識(shí)點(diǎn)的學(xué)習(xí)過(guò)程中,可以使學(xué)生易于理解和掌握。如通過(guò)分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對(duì)比板演,指導(dǎo)學(xué)生小結(jié)解答這類(lèi)應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對(duì)應(yīng)分率,從而使學(xué)生自己體驗(yàn)到對(duì)應(yīng)思想和化歸思想。其次要注意滲透的長(zhǎng)期性,應(yīng)該看到,對(duì)學(xué)生數(shù)學(xué)思想方法的滲透不是一朝一夕就能見(jiàn)到學(xué)生數(shù)學(xué)能力提高的,而是有一個(gè)過(guò)程。數(shù)學(xué)思想方法必須經(jīng)過(guò)循序漸進(jìn)和反復(fù)訓(xùn)練,才能使學(xué)生真正地有所領(lǐng)悟。通過(guò)多次重復(fù)性的演示,使學(xué)生真正理解、掌握類(lèi)比的數(shù)學(xué)方法。教學(xué)中要適時(shí)恰當(dāng)?shù)貙?duì)數(shù)學(xué)方法給予提煉和概括,讓學(xué)生有明確的印象。由于數(shù)學(xué)思想、方法分散在各個(gè)不同部分,而同一問(wèn)題又可以用不同的數(shù)學(xué)思想、方法來(lái)解決。因此,教師的概括、分析是十分重要的。教師還要有意識(shí)地培養(yǎng)學(xué)生自我提煉、揣摩概括數(shù)學(xué)思想方法的能力,這樣才能把數(shù)學(xué)思想、方法的教學(xué)落在實(shí)處。

數(shù)學(xué)思想方法貫穿在整個(gè)中學(xué)數(shù)學(xué)教材的知識(shí)點(diǎn)中,以?xún)?nèi)隱的方式溶于數(shù)學(xué)知識(shí)體系。要使學(xué)生把這種思想內(nèi)化成自己的觀點(diǎn),應(yīng)用它去解決問(wèn)題,就要把各種知識(shí)所表現(xiàn)出來(lái)的數(shù)學(xué)思想適時(shí)作出歸納概括。概括數(shù)學(xué)思想方法要納入教學(xué)計(jì)劃,要有目的、有步驟地引導(dǎo)參與數(shù)學(xué)思想的提煉概括過(guò)程,特別是章節(jié)復(fù)習(xí)時(shí)在對(duì)知識(shí)復(fù)習(xí)的同時(shí),將統(tǒng)領(lǐng)知識(shí)的數(shù)學(xué)思想方法概括出來(lái),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)思想的應(yīng)用意識(shí),從而有利于學(xué)生更透徹地理解所學(xué)的知識(shí),提高獨(dú)立分析、解決問(wèn)題的能力。

總之,教學(xué)實(shí)踐證明,加強(qiáng)數(shù)學(xué)思想方法的教學(xué)對(duì)于提高教學(xué)質(zhì)量,改變重結(jié)論,輕過(guò)程,重知識(shí)、重形式,輕思想的現(xiàn)狀,培養(yǎng)高素質(zhì)人才有著深遠(yuǎn)而重大的現(xiàn)實(shí)意義。

參考文獻(xiàn):

[1] 陳祥彬.在小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法[J].課程·教材·教法.2010(07)

[2] 李曉梅.關(guān)于在小學(xué)數(shù)學(xué)教學(xué)中發(fā)展學(xué)生主體性的思考[J].課程·教材·教法.2010(08)

[3] 李銀銀.小學(xué)高段“空間與圖形”教學(xué)中數(shù)學(xué)思想滲透策略探討[J].新課程(小學(xué)).2016(01)

[4] 李彩琴.小學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)思想方法的認(rèn)識(shí)點(diǎn)滴[J].新課程(小學(xué)).2016(01)

猜你喜歡
數(shù)學(xué)方法數(shù)學(xué)思想小學(xué)數(shù)學(xué)
數(shù)學(xué)方法在化學(xué)平衡學(xué)習(xí)中的重要應(yīng)用
淺析數(shù)學(xué)方法在金融學(xué)中的應(yīng)用
月牙肋岔管展開(kāi)圖的數(shù)學(xué)方法解析
淺談數(shù)學(xué)思想在初中數(shù)學(xué)教學(xué)中的應(yīng)用
《復(fù)變函數(shù)》課程的教與學(xué)
加強(qiáng)數(shù)學(xué)思想滲透發(fā)展數(shù)學(xué)思維能力
如何培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣
南北橋(2016年10期)2016-11-10 17:34:11
農(nóng)村學(xué)校數(shù)學(xué)生活化教學(xué)探析
成才之路(2016年26期)2016-10-08 11:22:10
培養(yǎng)學(xué)生自主探究能力的策略研究
成才之路(2016年26期)2016-10-08 11:18:41
體驗(yàn)式學(xué)習(xí)在數(shù)學(xué)教學(xué)中的應(yīng)用研究
成才之路(2016年25期)2016-10-08 10:50:54
青神县| 桃园市| 南召县| 兴业县| 新邵县| 灵石县| 诏安县| 定远县| 西乌珠穆沁旗| 肃宁县| 南充市| 金湖县| 镇宁| 尚志市| 子长县| 天镇县| 祁门县| 济宁市| 双柏县| 晴隆县| 革吉县| 拉孜县| 茂名市| 兰溪市| 福安市| 龙胜| 韶关市| 肇源县| 喀喇| 龙南县| 民和| 遂平县| 抚远县| 绍兴市| 胶州市| 岑巩县| 石景山区| 绥芬河市| 年辖:市辖区| 城固县| 江口县|