,
巨噬細(xì)胞與血管緊張素Ⅱ誘導(dǎo)腹主動(dòng)脈瘤形成的機(jī)制
楊 光1,楊 光2,胡 南3
腹主動(dòng)脈瘤(abdominal aortic aneurysm,AAA)是血管壁損傷出現(xiàn)擴(kuò)張的現(xiàn)象,嚴(yán)重者會(huì)出現(xiàn)血管破裂,致死率高。血管緊張素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)作為腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)的主要效應(yīng)物,被證實(shí)可引發(fā)高血壓、動(dòng)脈粥樣硬化、AAA,因而被廣泛用于動(dòng)物心血管與AAA模型研究。研究發(fā)現(xiàn),Ang Ⅱ在AAA的起始、形成、破裂過(guò)程中均起著重要作用,這可能與巨噬細(xì)胞浸潤(rùn)有關(guān)。巨噬細(xì)胞參與血管炎性反應(yīng),被證明與一氧化氮(nitric oxide,NO)減少、活性氧簇(reactive oxygen species,ROS)產(chǎn)物增加、炎性因子增多、血管基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)分泌增加存在聯(lián)系。筆者綜述巨噬細(xì)胞和Ang Ⅱ誘導(dǎo)AAA形成的機(jī)制,旨在為臨床預(yù)防和治療AAA提供指導(dǎo)。
腹主動(dòng)脈瘤;腎素血管緊張素系統(tǒng);血管緊張素Ⅱ;巨噬細(xì)胞
動(dòng)脈瘤是血管壁出現(xiàn)病變或損傷,局部出現(xiàn)擴(kuò)張或膨出的現(xiàn)象,其主要危險(xiǎn)在于瘤體破裂出血而引發(fā)的死亡,腹主動(dòng)脈瘤(abdominal aortic aneurysm,AAA)是動(dòng)脈瘤的主要表現(xiàn)形式之一。AAA的危險(xiǎn)系數(shù)與動(dòng)脈橫徑成正比,當(dāng)動(dòng)脈橫徑超過(guò)正常橫徑50%或3 cm時(shí)可被診斷為AAA。AAA隨著年齡增大危險(xiǎn)性增加,是導(dǎo)致老年人死亡的主要原因之一,男性發(fā)病率高于女性[1-3]。目前,AAA通常的治療途徑為開放性手術(shù)或介入手術(shù),仍然缺乏有效的藥物治療[4,5]。近年來(lái),對(duì)AAA病理的解釋不斷獲得突破,了解AAA的形成機(jī)理,對(duì)于發(fā)展預(yù)防和治療藥物有潛在的應(yīng)用價(jià)值。
1.1 傳統(tǒng)理論 AAA的病理機(jī)制復(fù)雜。傳統(tǒng)觀點(diǎn)認(rèn)為,AAA的形成與血管重塑有關(guān),血壓與血流在其中起著關(guān)鍵作用[6]。動(dòng)脈中層受損,彈性纖維破裂,疤痕組織隨之產(chǎn)生,動(dòng)脈壁因此失去彈性,進(jìn)而不能進(jìn)行正常的血管舒張收縮功能而傳送血液,因此動(dòng)脈壁不能耐受血流沖擊,病變區(qū)局部血壓升高逐漸膨大形成AAA,動(dòng)脈內(nèi)壓力升高有助于瘤體膨大。而動(dòng)脈粥樣硬化是引起AAA最常見的原因,粥樣斑塊侵蝕主動(dòng)脈壁,彈力纖維發(fā)生退行性變。管壁因粥樣硬化變厚,使滋養(yǎng)層血管受壓,發(fā)生營(yíng)養(yǎng)障礙,或滋養(yǎng)血管破裂而在中層積血。
1.2 現(xiàn)代發(fā)現(xiàn) 動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),血管緊張素Ⅱ(angiotensin Ⅱ,AngⅡ)誘導(dǎo)的AAA形成與巨噬細(xì)胞有密切關(guān)聯(lián),單純血壓升高并不能直接導(dǎo)致AAA。針對(duì)AAA的研究中發(fā)現(xiàn),AngⅡ誘發(fā)載脂蛋白E敲除(apolipoprotein E knockout,ApoE-KO)小鼠的AAA形成部位,初期特征是出現(xiàn)大量巨噬細(xì)胞積聚在血管中層與彈性蛋白降解[7]。隨后Cassis等[8]通過(guò)向低密度脂蛋白敲除(low-density lipoprotein knockout,LDLKO)和ApoE小鼠分別注射AngⅡ和去甲腎上腺素(norepinephrine,NE)發(fā)現(xiàn),AngⅡ誘發(fā)了AAA和高血壓,而NE提升了血壓卻并未引起AAA,進(jìn)一步說(shuō)明AngⅡ誘發(fā)的AAA與巨噬細(xì)胞浸潤(rùn)有直接關(guān)系,而血壓并非直接原因。此后,有證據(jù)表明,AAA是一種漸進(jìn)性炎性反應(yīng)[9-11]。T淋巴細(xì)胞與B淋巴細(xì)胞都在AAA病變部位被發(fā)現(xiàn),兩者分泌促炎性反應(yīng)因子,進(jìn)一步激發(fā)巨噬細(xì)胞浸潤(rùn),并使其釋放更多炎性反應(yīng)因子,最終形成AAA。這些研究表明,巨噬細(xì)胞在AngⅡ誘發(fā)的AAA形成過(guò)程中起著關(guān)鍵作用。此外,巨噬細(xì)胞作為一種炎性反應(yīng)標(biāo)志物,被認(rèn)為同樣在動(dòng)脈粥樣硬化中扮演重要角色,激活后通過(guò)釋放各類炎性因子引發(fā)組織炎性反應(yīng),因此動(dòng)脈粥樣硬化也被歸納為一種血管炎性反應(yīng)[12,13]。這可以進(jìn)一步解釋動(dòng)脈粥樣硬化與AAA的聯(lián)系。巨噬細(xì)胞還被發(fā)現(xiàn)參與腦血管破裂修復(fù),通過(guò)機(jī)械方式將斷裂的腦血管重新連接在一起[14]。由此可見,巨噬細(xì)胞從血管損傷的初期到后期,發(fā)揮著多種作用,與AAA形成關(guān)系密切。筆者通過(guò)概括近年來(lái)對(duì)AAA病理的研究,綜述巨噬細(xì)胞與AngⅡ誘發(fā)的AAA二者聯(lián)系對(duì)于未來(lái)治療AAA具有重要意義。
RAS是體內(nèi)一個(gè)主要生理調(diào)節(jié)系統(tǒng),在心血管疾病病理過(guò)程中扮演重要作用,也是調(diào)控AAA形成的主要因素之一[15]。目前,對(duì)RAS的研究主要集中在兩條途徑,血管緊張素轉(zhuǎn)換酶/血管緊張素Ⅱ/血管緊張素Ⅱ受體1型(angiotensin converting enzyme /angiotensinⅡ /angiotensinⅡ receptor type 1,ACE/AngⅡ /AT1R)軸和血管緊張素轉(zhuǎn)換酶Ⅱ/血管緊張素-(1-7)/Mas受體[angiotensin converting enzyme Ⅱ/angiotensin-(1-7)/mas receptor,ACE2/Ang-(1-7)/Mas]軸。AngⅡ由血管緊張素轉(zhuǎn)換酶(angiotensin converting enzyme,ACE)剪切血管緊張素Ⅰ(angiotensinⅠ,AngⅠ)生成,是RAS系統(tǒng)中一個(gè)重要效應(yīng)物,主要通過(guò)激活血管緊張素Ⅱ受體1型(angiotensin Ⅱ receptor type 1,AT1R)引起多種血管疾病的形成[16],如高血壓、動(dòng)脈粥樣硬化與AAA[17-21]。AngⅡ引發(fā)的血管病變可以被血管緊張素Ⅱ受體2型(angiotensinⅡ receptor type 2,AT2R)或ACE2/Ang-(1-7)/Mas拮抗[22-25]。Ang-(1-7)主要由ACE2剪切AngⅡ生成,Ang-(1-7)激活Mas受體保護(hù)血管,敲除mas基因會(huì)加劇動(dòng)脈粥樣硬化與AAA的形成[26,27]。
1999年,Daugherty與 Cassis[28]通 過(guò) 向LDL-KO小鼠皮下植入包含AngⅡ的微型滲透泵,首次發(fā)現(xiàn)AngⅡ可以引發(fā)AAA形成。之后,AngⅡ被發(fā)現(xiàn)也可以促進(jìn)ApoE-KO小鼠AAA的形成[7]。從而開啟了AAA動(dòng)物模型的研究之門。AngⅡ也會(huì)導(dǎo)致升主動(dòng)脈、動(dòng)脈弓、降主動(dòng)脈及胸主動(dòng)脈動(dòng)脈瘤的形成。除體動(dòng)脈瘤之外,AngⅡ也被認(rèn)為是引起顱內(nèi)動(dòng)脈瘤的原因之一。大量臨床分析與實(shí)驗(yàn)數(shù)據(jù)顯示,RAS是顱內(nèi)動(dòng)脈瘤形成與破裂的關(guān)鍵因素[29]。近年來(lái)研究觀點(diǎn)認(rèn)為,AngⅡ通過(guò)引起一系列調(diào)控影響血管功能,促進(jìn)AAA形成,包括血管內(nèi)皮功能紊亂、白血球滲透、炎性反應(yīng)、蛋白酶引起的細(xì)胞外基質(zhì)蛋白(extracellular matrix proteins,ECM)降解和血管氧化應(yīng)激反應(yīng)[30],其中巨噬細(xì)胞發(fā)揮著關(guān)鍵作用。
巨噬細(xì)胞是位于組織內(nèi)的一種白血球,源自單核細(xì)胞,主要功能是以固定細(xì)胞或游離細(xì)胞的形式對(duì)細(xì)胞殘片及病原體進(jìn)行吞噬消化,并激活淋巴球或其他免疫細(xì)胞,令其對(duì)病原體作出反應(yīng)。巨噬細(xì)胞也是參與炎性反應(yīng)、激活免疫系統(tǒng)的主要因素之一,還能分泌多種不同因子參與AAA形成。
AAA的病理機(jī)制涉及血管重塑、炎性反應(yīng)及血管內(nèi)皮功能紊亂[31],這些都與巨噬細(xì)胞浸潤(rùn)關(guān)系緊密。Saraff等[7]發(fā)現(xiàn),AngⅡ皮下注射48 h后,巨噬細(xì)胞在血管中層大量積聚,并伴隨彈性纖維的降解。進(jìn)一步的研究顯示,血管夾層破裂與血管內(nèi)徑、血栓形成有關(guān),此時(shí),血管外膜起著固定血栓的作用,血栓會(huì)加速巨噬細(xì)胞、T淋巴細(xì)胞、B淋巴細(xì)胞引起的炎性反應(yīng)。巨噬細(xì)胞還會(huì)釋放血管基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)降解血管外膜,血管外膜成分被破壞,失去固定血管形狀的作用,在血壓的沖擊下血管發(fā)生膨大,最終引起AAA發(fā)生。這種AngⅡ引起的AAA還伴隨血管內(nèi)皮修復(fù)、彈性纖維再生和血管再生,而且動(dòng)脈粥樣硬化產(chǎn)生的情況晚于AAA。因此,AAA的發(fā)生被認(rèn)為與巨噬細(xì)胞浸潤(rùn)關(guān)系密切。
3.1 氧化應(yīng)激與炎性反應(yīng) AngⅡ會(huì)提升氧化應(yīng)激和組織炎性反應(yīng)。氧化應(yīng)激和炎性反應(yīng)密切相關(guān),氧化應(yīng)激刺激巨噬細(xì)胞釋放炎性因子,引起炎性反應(yīng)[32]。研究發(fā)現(xiàn),氧化應(yīng)激提高了細(xì)胞炎性反應(yīng)、損傷和血管內(nèi)皮功能紊亂的風(fēng)險(xiǎn),包括調(diào)節(jié)MMPs、誘導(dǎo)平滑肌細(xì)胞凋亡[33]。而活性氧簇(reactive oxygen species,ROS)和活性氮類(reactive nitrogen species, RNS)作為氧化應(yīng)激的標(biāo)志物,也被認(rèn)為參與AAA的形成過(guò)程[34]。因此,氧化應(yīng)激和炎性反應(yīng)是AAA形成的關(guān)鍵因素之一。
有研究指出,AngⅡ會(huì)引起白細(xì)胞與單核細(xì)胞浸潤(rùn),多種趨化因子、炎性反應(yīng)細(xì)胞因子和蛋白酶在這個(gè)過(guò)程中被釋放[35]。浸潤(rùn)的免疫細(xì)胞表達(dá)單核細(xì)胞趨化蛋白1(monocyte chemotactic protein 1,MCP-1),MCP-1促進(jìn)血管壁吸收更多巨噬細(xì)胞[36],這個(gè)不斷循環(huán)的過(guò)程加劇炎性反應(yīng)。另外,因免疫反應(yīng)過(guò)量表達(dá)的MMPs和絲氨酸蛋白酶會(huì)分解層粘連蛋白、膠原蛋白和彈性纖維,這些因素導(dǎo)致血管壁薄化[37]。當(dāng)ECM韌性不足以支撐血流的壓力時(shí),動(dòng)脈破裂就發(fā)生了。持續(xù)不斷的炎性反應(yīng)和增加的ROS產(chǎn)物對(duì)血管平滑肌細(xì)胞(vascular smooth muscle cells,VSMC)有害,引起VSMC細(xì)胞凋亡,凋亡的VSMC可能釋放更多蛋白酶,進(jìn)一步加速血管壁薄化[38]。因此,AAA的情況會(huì)因氧化應(yīng)激反應(yīng)和炎性反應(yīng)而不斷加劇。
與AngⅡ功效相反的是Ang-(1-7),近來(lái)大量研究證明,激活A(yù)ng-(1-7)/Mas軸能拮抗AngⅡ增高氧化壓力與炎性反應(yīng)引起的血管病變。Pena等[39]通過(guò)小鼠實(shí)驗(yàn)發(fā)現(xiàn),Ang-(1-7)能夠激活Mas降低AngⅡ引起的炎性反應(yīng)。另一項(xiàng)對(duì)人體血管內(nèi)皮細(xì)胞的研究表明,Ang-(1-7)能夠降低AngⅡ引起的細(xì)胞間粘附分子1(intercellular adhesion molecule 1,ICAM-1)、血管細(xì)胞粘附蛋白1(vascular cell adhesion protein,VCAM-1)和MCP-1表達(dá)情況,這與抑制p38信號(hào)通路和活化B細(xì)胞的核因子κ-輕鏈增強(qiáng)子(nuclear factor kappalight-chain-enhancer of activated B cells,NF-κB)途徑有關(guān),也能降低血管炎性反應(yīng)[40]。Ang-(1-7)/Mas軸還可以調(diào)控人體腦部VSMC和微血管的NF-κB炎性反應(yīng)通路,降低腫瘤壞死因子α(tumor necrosis factor alpha,TNF-α)、MCP-1和白細(xì)胞介素8(interleukin 8,IL-8)的表達(dá)水平,進(jìn)而改善AngⅡ引起的血管重塑[29,41]。Liu等[42]發(fā)現(xiàn)烏索脫氧膽酸(ursodeoxycholic acid)可以抑制AngⅡ誘發(fā)的AAA破裂,這主要通過(guò)降低因氧化應(yīng)激產(chǎn)生的VSMC細(xì)胞凋亡來(lái)實(shí)現(xiàn)。同時(shí),烏索脫氧膽酸會(huì)引起nrf2基因表達(dá)提升。nrf2是細(xì)胞抵抗環(huán)境氧化壓力的重要基因,能調(diào)控多種抗氧化反應(yīng)因素[43]。基于以上情況,氧化應(yīng)激是AAA發(fā)生的關(guān)鍵因素之一,氧化應(yīng)激增加能夠提升血管炎性反應(yīng)惡化血管損傷,抗氧化劑的干擾能降低血管病變的可能。
3.2 血管外膜 血管外膜環(huán)繞血管,是維持血管形態(tài)的基本組成物質(zhì)之一,也是AAA產(chǎn)生過(guò)程中形態(tài)改變較大的因素之一。血管外膜由疏松結(jié)締組織組成,主要構(gòu)成是成纖維細(xì)胞,成纖維細(xì)胞能合成分泌彈性纖維和膠原纖維,這種構(gòu)成在維持血管正常形態(tài)中起作用。血管外膜成纖維細(xì)胞同樣在血管炎性反應(yīng)中表現(xiàn)出重要作用。細(xì)胞培養(yǎng)與動(dòng)物實(shí)驗(yàn)證明,AngⅡ會(huì)提升外膜成纖維細(xì)胞的P選擇素、ICAM-1、IL-6和MCP-1四種炎性反應(yīng)因子表達(dá)水平,并且增加外膜成纖維細(xì)胞對(duì)巨噬細(xì)胞的趨化黏附現(xiàn)象[44]。MCP-1促進(jìn)更多單核細(xì)胞黏附在成纖維細(xì)胞上,促進(jìn)成纖維細(xì)胞增殖,使血管外膜變厚,并額外促進(jìn)細(xì)胞因子的產(chǎn)生[45]。這種循環(huán)可能就是調(diào)控血管外膜炎性反應(yīng)的標(biāo)志。
巨噬細(xì)胞還會(huì)分泌一類蛋白酶MMPs,可以降解多種細(xì)胞外基質(zhì)成分。MMP2和MMP9都是MMPs的成員,被發(fā)現(xiàn)在AAA患者的病變部位大量表達(dá),而兩者的過(guò)量表達(dá)會(huì)降解ECM,使血管外膜組成改變失去固定血管結(jié)構(gòu)的功能[46,47]。反之,敲除或抑制MMP2和MMP9表達(dá)可以降低ECM的降解與AAA的形成[48]。因此,巨噬細(xì)胞分泌的MMP2和MMP9被認(rèn)為是AAA形成的重要原因之一。
3.3 B淋巴細(xì)胞與T淋巴細(xì)胞 B淋巴細(xì)胞也被認(rèn)為在AAA的產(chǎn)生中起了溝通作用。有研究顯示,在AAA形成部位的血管外壁發(fā)現(xiàn)大量B淋巴細(xì)胞浸潤(rùn)現(xiàn)象[12]。這可能是被激活的B細(xì)胞通過(guò)釋放炎性反應(yīng)因子、免疫球蛋白、MMPs,進(jìn)一步激活巨噬細(xì)胞與肥大細(xì)胞,來(lái)加速AAA的形成。這些因?yàn)锽細(xì)胞刺激釋放的物質(zhì)會(huì)造成膠原與基質(zhì)蛋白分解,引起血管壁重塑,最終演變?yōu)锳AA。
T淋巴細(xì)胞也是人體免疫系統(tǒng)中的一個(gè)關(guān)鍵因子,常與巨噬細(xì)胞互動(dòng),巨噬細(xì)胞激活靶組織中的T細(xì)胞,T細(xì)胞也會(huì)釋放炎性細(xì)胞因子進(jìn)一步激活巨噬細(xì)胞和T細(xì)胞本身。在人體AAA檢測(cè)中發(fā)現(xiàn),T淋巴細(xì)胞與巨噬細(xì)胞一樣,都是優(yōu)先參與免疫反應(yīng)的炎性因子[49]。因此,T淋巴細(xì)胞和巨噬細(xì)胞一樣,都參與AAA的形成[15]。這種炎性反應(yīng)過(guò)程往往包含彈性纖維碎片化,而降低炎性反應(yīng)可以降低動(dòng)脈擴(kuò)張的幅度和概率[50]。近來(lái)有研究發(fā)現(xiàn),調(diào)控性T淋巴細(xì)胞在AAA形成中有保護(hù)作用,通過(guò)釋放IL-10抑制炎性細(xì)胞趨化、動(dòng)脈壁重塑和血管生成[51]。
3.4 巨噬細(xì)胞極化 巨噬細(xì)胞多種形態(tài)在炎性反應(yīng)中的功能不同,引起炎性反應(yīng)的巨噬細(xì)胞被稱為M1巨噬細(xì)胞,而那些減少炎性反應(yīng)和參與組織修復(fù)的被稱為M2巨噬細(xì)胞[52]。這種極化差異主要反映在其獨(dú)特的代謝能力上,M1巨噬細(xì)胞能降解精氨酸成為具有危害性的一氧化氮(nitric oxide,NO)分子,而M2巨噬細(xì)胞能降解精氨酸成為具有修復(fù)能力的鳥氨酸。巨噬細(xì)胞浸潤(rùn)過(guò)程中,M1型巨噬細(xì)胞釋放促炎性反應(yīng)因子,例如TNF-α、IL-6、IL-12和MCP-1,這些調(diào)控因子用于消除疾病和損傷的細(xì)胞。M2型巨噬細(xì)胞釋放抗炎性反應(yīng)分子,如IL-10,轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor beta,TGF-β),IL-1Ra和趨化因子(C-C基序)配體18[chemokine (C-C motif) ligand 18,CCL-18],這些分子可促進(jìn)組織修復(fù)和腫瘤生長(zhǎng)[53]。M1型還可通過(guò)上調(diào)細(xì)胞因子信號(hào)抑制因子3(suppressor of cytokine signaling 3,SOCS3)來(lái)激活誘導(dǎo)性一氧化氮合成酶(inducible nitric oxide synthase, iNOS)加速NO的產(chǎn)生[54]。敲除ace2基因可以引發(fā)巨噬細(xì)胞向M1表型轉(zhuǎn)化[55],這可能與ACE2的減少增加了AngⅡ含量有關(guān);而筆者近來(lái)的研究顯示,敲除mas基因也會(huì)增加巨噬細(xì)胞浸潤(rùn),并向M1轉(zhuǎn)化[56],這些都說(shuō)明,AngⅡ是巨噬細(xì)胞產(chǎn)生極化現(xiàn)象的一個(gè)重要調(diào)節(jié)因素,其表達(dá)水平提升能促進(jìn)極化現(xiàn)象,加劇炎性反應(yīng)。
M1和M2的比例被看作是血管損傷的重要參考因素,血管損傷會(huì)增加AAA的發(fā)生概率。較高的M1/ M2比值通常伴隨不穩(wěn)定動(dòng)脈粥樣硬化斑塊,是人體的一個(gè)危險(xiǎn)信號(hào),這種情況與IL-1β呈正相關(guān),與高密度脂蛋白(high-density lipoproteins,HDL)和載脂蛋白A1呈負(fù)相關(guān)[57]。IL-4干預(yù)被證實(shí)可以通過(guò)降低M1/M2比值來(lái)降低氧化低密度脂蛋白(oxidized lowdensity lipoprotein,oxLDL)引起的動(dòng)脈粥樣硬化,較低的oxLDL會(huì)降低細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal–regulated kinases,ERK)和Jun氨基末端激酶(Jun amino-terminal kinases,JNK)的磷酸化水平[58]。在另一個(gè)Ang II灌注的小鼠實(shí)驗(yàn)中,發(fā)現(xiàn)趨化因子受體2型(chemokine receptor type 2,CCR2)抑制劑能降低血管中單核細(xì)胞和M2的積累情況,這與降低組織纖維化、降低彈性蛋白損失、阻止血壓升高有關(guān)[59]。這些血管重塑的情況都會(huì)增加AAA的發(fā)生概率。因此,巨噬細(xì)胞的極化比值是AAA發(fā)生的重要參考因素。
3.5 iNOS NO是血管功能中一個(gè)重要效應(yīng)因子。血管內(nèi)皮細(xì)胞一氧化氮合成酶(endothelial nitric oxide synthase,eNOS)生成的NO能增強(qiáng)心血管功能。iNOS也能合成NO,但功效不同,這種iNOS引起的NO大量生成情況被認(rèn)為可能涉及宿主免疫反應(yīng)[60],參與巨噬細(xì)胞引起的氧化爆發(fā)。Zhang等[29]發(fā)現(xiàn),人類AAA病變區(qū)的細(xì)胞外膜與細(xì)胞中膜的iNOS表達(dá)水平大幅提升,可能是iNOS增加了亞硝酸鹽的生成,亞硝酸鹽進(jìn)一步引起了AAA區(qū)域的氧化應(yīng)激和細(xì)胞損傷。同時(shí),Ang II誘導(dǎo)的AAA形成伴隨大量炎性反應(yīng)因子的產(chǎn)生,而炎性反應(yīng)因子會(huì)刺激iNOS持續(xù)大量生成NO[61]。氧化應(yīng)激和巨噬細(xì)胞釋放的促炎性因子能調(diào)節(jié)iNOS大量表達(dá)NO,這對(duì)處于高氧化應(yīng)激反應(yīng)的組織有保護(hù)作用。過(guò)量產(chǎn)生的NO可以與ROS反應(yīng),生成過(guò)氧化亞硝酸鹽,進(jìn)而產(chǎn)生細(xì)胞毒性。
總之,越來(lái)越多的證據(jù)顯示,巨噬細(xì)胞在Ang II誘導(dǎo)的AAA中起著關(guān)鍵作用,其能調(diào)控分泌多種化學(xué)信號(hào),造成血管重塑。血管結(jié)構(gòu)改變后逐漸弱化對(duì)血管舒張的約束能力,再因血壓引起血管膨脹形成AAA,甚至產(chǎn)生夾層動(dòng)脈瘤或破裂。此外,巨噬細(xì)胞還起著修復(fù)破損血管的作用。這些巨噬細(xì)胞不同的功能表現(xiàn)形式,可能與巨噬細(xì)胞不同的極化方向有關(guān)。對(duì)巨噬細(xì)胞的極化研究能幫助更好了解巨噬細(xì)胞在AAA形成中的作用。目前的醫(yī)療條件有限,因此AAA必須通過(guò)外科手術(shù)才能治療,無(wú)法通過(guò)藥物預(yù)防或治療。而研究者認(rèn)為,將目光集中于如何降低血管炎性反應(yīng)、增加巨噬細(xì)胞對(duì)破損血管機(jī)械修復(fù)的方向,是未來(lái)研究的一個(gè)可行性選擇。
[1]Golledge J, Muller J, Daugherty A, et al. Abdominal aortic aneurysm: pathogenesis and implications for management [J]. Arterioscler Thromb Vasc Biol, 2006, 26(12): 2605-2613. DOI:10.1161/01.ATV.0000245819.32762.cb.
[2]Lindsay M E, Dietz H C. Lessons on the pathogenesis of aneurysm from heritable conditions [J]. Nature, 2011, 473(7347): 308-316. DOI:10.1038/nature10145.
[3]Baxter B T, Terrin M C, Dalman R L. Medical management of small abdominal aortic aneurysms [J]. Circulation, 2008, 117(14): 1883-1889. DOI:10.1161/ CIRCULATIONAHA.107.735274.
[4]Piotin M, Blanc R. Balloons and stents in the endovascular treatment of cerebral aneurysms: vascular anatomy remodeled [J]. Front Neurol, 2014, 5(8): 41. DOI: 10.3389/fneur.2014.00041. eCollection 2014.
[5]Kent K C. Clinical practice. Abdominal aortic aneurysms [J]. N Engl J Med, 2014, 371(22): 2101-2108. DOI: 10.1056/NEJMcp1401430.
[6]Sekhar L N, Heros R C. Origin, growth, and rupture of saccular aneurysms: a review [J]. Neurosurgery, 1981, 8(2): 248-260. DOI: 10.1227/00006123-198102000-00020.
[7]Saraff K, Babamusta F, Cassis L A, et al. Aortic dissectionprecedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice [J]. Arterioscler Thromb Vasc Biol, 2003, 23(9): 1621-1626. DOI: 10.1161/01.ATV.0000085631.76095.64.
[8]Cassis L A, Gupte M, Thayer S, et al. ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice [J]. Am J Physiol Heart Circ Physiol, 2009, 296(5): H1660-H1665. DOI: 10.1152/ajpheart.00028.2009.
[9]Dale M A, Ruhlman M K, Baxter B T. Inflammatory cell phenotypes in AAAs their role and potential as targets for therapy [J]. Arterioscler Thromb Vasc Biol, 2015, 35(8): 1746-1755. DOI: 10.1161/ATVBAHA.115.305269.
[10]Wang C, Wu T, Hu X, et al. Identification and characterization of CD4(+)AT2(+) T lymphocyte population in human thoracic aortic aneurysm [J]. Am J Transl Res, 2015, 7(2): 232-241.
[11]Zhang L, Wang Y. B lymphocytes in abdominal aortic aneurysms [J]. Atherosclerosis, 2015, 242(1): 311-317. DOI: 10.1016/j.atherosclerosis.2015.07.036.
[12]Libby P. Inflammation in atherosclerosis [J]. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2045-2051. DOI: 10.1161/ATVBAHA.108.179705.
[13]Decano J L, Mattson P C, Aikawa M. Macrophages in vascular inflammation: origins and functions [J]. Curr Atheroscler Rep, 2016, 18(6): 34. DOI: 10.1007/ s11883-016-0585-2.
[14]Liu C, Wu C, Yang Q, et al. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction [J]. Immunity,2016,44(5):1162-1176. DOI: 10.1016/j.immuni.2016.03.008.
[15]Stegbauer J, Coffman T M. New insights into angiotensin receptor actions: from blood pressure to aging [J]. Curr opin nephrol hypertens, 2011, 20(1): 84-88. DOI: 10.1097/ MNH.0b013e3283414d40.
[16]Stegbauer J, Lee D H, Seubert S, et al. Role of the reninangiotensin system in autoimmune inflammation of the central nervous system [J]. Proc Natl Acad Sci U S A, 2009, 106(35): 14942-14947. DOI: 10.1073/pnas. 0903602106.
[17]Daugherty A, Cassis L. Angiotensin II and abdominal aortic aneurysms [J]. Curr Hypertens Rep, 2004, 6(6): 442-446. DOI: 10.1007/s11906-004-0038-0.
[18]Daugherty A, Manning M W, Cassis L A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice [J]. J Clin Invest, 2000, 105(11): 1605-1612. DOI: 10.1172/JCI7818.
[19]Weiss D, Kools J J, Taylor W R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice [J]. Circulation, 2001, 103(3): 448-454. DOI: org/10.1161/01.CIR.103.3.448.
[20]Dzau V J. Vascular renin-angiotensin system and vascular protection [J]. J Cardiovasc Pharmacol, 1993, 22 Suppl 5: S1-S9. DOI: 10.1097/00005344-199312000-00021.
[21]Crowley S D, Gurley S B, Herrera M J, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney [J]. Proc Natl Acad Sci U S A, 2006, 103(47): 17985-17990. DOI:10.1073/pnas.0605545103.
[22]Lüscher T F, Barton M. Biology of the endothelium [J]. Clin Cardiol, 1997, 20(11 Suppl 2): II-3-10.
[23]Zulli A, Burrell L M, Buxton B F, et al. ACE2 and AT4R are present in diseased human blood vessels [J]. Eur J Histochem, 2008, 52(1): 39-44. DOI: 10.1109/ TWC.2005.850310.
[24]楊 光, 何 希, 余 萍, 等. 動(dòng)脈粥樣硬化中血管緊張素( 17)/Mas 受體途徑與血管炎癥的關(guān)系[J]. 西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 41(1): 17-23. DOI:10.11920/xnmdzk.2015.01.004.
[25]Yang G, Chu P L, Rump L C, et al. ACE2 and the homolog collectrin in the modulation of nitric oxide and oxidative stress in blood pressure homeostasis and vascular injury [J/ OL]. Antioxid Redox Signal, 2016 [2016-07-10]. https:// www.ncbi.nlm.nih.gov/pubmed/?term=ACE2+and+the+h omolog+collectrin+in+the+modulation+of+nitric+oxide+a nd+oxidative+stress+in+blood+pressure+homeostasis+an d+vascular+injury. [Epub ahead of print]. DOI: 10.1089/ ars.2016.6950.
[26]Yang G, Grave K, Thieme M, et al. PP. 13.12: Deletion of the mas receptor aggravates the development of atherosclerosis and abdominal aortic aneurysms in apolipoprotein E-dificient mice [J]. J Hypertens, 2015, 33: e241. DOI: 10.1097/01.hjh.0000468084.72215.3f.
[27]Yang G, Grave K, Thieme M, et al. Abstract P135: deletion of the mas receptor aggravates vascular dysfunction and the development of atherosclerosis through a NO-dependent mechanism in apolipoprotein E-deficient mice[J]. Hypertension, 2015, 66(Suppl 1): AP135.
[28]Daugherty A, Cassis L. Chronic angiotensin II infusionpromotes atherogenesis in low density lipoprotein receptor -/- mice [J]. Ann N Y Acad Sci, 1999, 892(11): 108-118. DOI: 10.1111/j.1749-6632.1999.tb07789.x.
[29]Liu Y, Li P, Hu X, et al. Angiotensin-converting enzyme insertion/deletion gene polymorphism and risk of intracranial aneurysm in a Chinese population [J]. J Int Med Res, 2013, 41(4): 1079-1087. DOI: 10.1177/0300060513487625.
[30]Sim?es e Silva A C, Silveira K D, Ferreira A J, et al. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis[J]. Br J Pharmacol, 2013, 169(3):477-492. DOI: 10.1111/bph.12159.
[31]Siasos G, Mourouzis K, Oikonomou E, et al. The role of endothelial dysfunction in aortic aneurysms [J]. Curr Pharm Des, 2015, 21(28): 4016-4034. DOI: 10.2174/13816128 21666150826094156.
[32]Salzano S, Checconi P, Hanschmann E M, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal [J]. Proc Natl Acad Sci U S A, 2014, 111(33): 12157-12162. DOI: 10.1073/pnas.1401712111.
[33]Satoh K, Nigro P, Berk B C. Oxidative stress and vascular smooth muscle cell growth: a mechanistic linkage by cyclophilin A [J]. Antioxid Redox Signal, 2010, 12(5): 675-682. DOI: 10.1089/ars.2009.2875.
[34]Zhang J, Schmidt J, Ryschich E, et al. Inducible nitric oxide synthase is present in human abdominal aortic aneurysm and promotes oxidative vascular injury [J]. J Vasc Surg, 2003, 38(2): 360-367. DOI: 10.1016/S0741-5214(03)00148-4.
[35]Montezano A C, Nguyen Dinh Cat A, Rios F J, et al. Angiotensin II and vascular injury [J]. Curr Hypertens Rep, 2014, 16(6): 431. DOI: 10.1007/s11906-014-0431-2.
[36]Deshmane S L, Kremlev S, Amini S, et al. Monocyte chemoattractant protein-1( MCP-1): an overview [J]. J Interferon Cytokine Res, 2009, 29(6): 313-326. DOI: 10.1089/jir.2008.0027.
[37]Otto S, Deussen A, Zatschler B, et al. A novel role of endothelium in activation of latent pro-membrane type 1 MMP and pro-MMP-2 in rat aorta [J]. Cardiovasc Res, 2016, 109(3): 409-418. DOI: 10.1093/cvr/cvv256.
[38]Henderson E L, Geng Y J, Sukhova G K, et al. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms [J]. Circulation, 1999, 99(1): 96-104. DOI: org/10.1161/01.CIR.99.1.96.
[39]Pe?a Silva R A, Kung D K, Mitchell I J, et al. Angiotensin 1-7 reduces mortality and rupture of intracranial aneurysms in mice [J]. Hypertension, 2014, 64(2): 362-368. DOI: 10.1161/HYPERTENSIONAHA.114.03415.
[40]Liang B, Wang X, Zhang N, et al. Angiotensin-(1-7)attenuates angiotensin II-induced ICAM-1, VCAM-1, and MCP-1 expression via the MAS receptor through suppression of P38 and NF-κB pathways in HUVECs [J]. Cell Physiol Biochem, 2015, 35(6): 2472-2482. DOI: 10.1159/000374047.
[41]Bihl J C, Zhang C, Zhao Y, et al. Angiotensin-(1-7)counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: role of the NFsmall ka, CyrillicB inflammatory pathway [J]. Vascul Pharmacol, 2015, 73(10): 115-123. DOI: 10.1016/ j.vph.2015.08.007.
[42]Liu W, Wang B, Wang T, et al. Ursodeoxycholic acid attenuates acute aortic dissection formation in angiotensin II-infused apolipoprotein E-deficient mice associated with reduced ROS and increased Nrf2 levels [J]. Cell Physiol Biochem, 2016, 38(4): 1391-1405. DOI: 10.1159/000443082.
[43]Kim J, Keum Y S. NRF2, a key regulator of antioxidants with two faces towards cancer [J]. Oxid Med Cell Longev, 2016, 2016(2): 2746457. DOI: 10.1155/2016/2746457.
[44]Chen W D, Chu Y F, Li X D, et al. Angiotensin II induces expression of inflammatory mediators in vascular adventitial fibroblasts [J]. Sheng Li Xue Bao, 2015, 67(6): 603-610.
[45]Tieu B C, Ju X, Lee C, et al. Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling [J]. J Vasc Res, 2011, 48(3): 261-272. DOI: 10.1159/000320358.
[46]Goodall S, Crowther M, Hemingway D M, et al. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms [J]. Circulation, 2001, 104(3): 304-309. DOI: org/10.1161/01.CIR.104.3.304.
[47]Longo G M, Xiong W, Greiner T C, et al. Matrix metalloproteinases 2 and 9 work in concert to produceaortic aneurysms [J]. J Clin Invest, 2002, 110(5): 625-632. DOI: 10.1172/JCI15334.
[48]Xiong W, Knispel R, Mactaggart J, et al. Effects of tissue inhibitor of metalloproteinase 2 deficiency on aneurysm formation [J]. J Vasc Surg, 2006, 44(5): 1061-1066. DOI: 10.1016/j.jvs.2006.06.036.
[49]Bobryshev Y V, Lord R S, P?rsson H. Immunophenotypic analysis of the aortic aneurysm wail suggests that vascular dendritic cells are involved in immune responses [J]. Cardiovasc Surg, 1998, 6(3): 240-249. DOI: org/10.1016/S0967-2109(97)00168-3.
[50]Ricci M A, Strindberg G, Slaiby J M, et al. Anti-CD 18 monoclonal antibody slows experimental aortic aneurysm expansion[J]. J Vasc Surg, 1996, 23(2): 301-307. DOI: http://dx.DOI.org/10.1016/S0741-5214(96)70274-4.
[51]Zhou Y, Wu W, Lindholt J S, et al. Regulatory T cells in human and angiotensin II-induced mouse abdominal aortic aneurysms [J]. Cardiovasc res, 2015,107(1): 98-107. DOI: 10.1093/cvr/cvv119.
[52]Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation [J]. Front Immunol, 2014, 5(10): 514. DOI: 10.3389/ fimmu.2014.00514.
[53]Murray P J, Wynn T A. Protective and pathogenic functions of macrophage subsets [J]. Nat Rev Immunol, 2011, 11(11): 723-737. DOI: 10.1038/nri3073.
[54]Arnold C E, Whyte C S, Gordon P, et al. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo [J]. Immunology, 2014, 141(1): 96-110. DOI: 10.1111/ imm.12173.
[55]Patel V B, Mori J, Mclean B A, et al. ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity [J]. Diabetes, 2016, 65(1): 85-95. DOI: 10.2337/db15-0399.
[56]Hammer A, Yang G, Friedrich J, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo [J]. Proc Natl Acad Sci U S A, 2016,113(49):14109-14114. DOI: 10.1073/pnas.1612668113.
[57]Williams H, Cassorla G, Pertsoulis N, et al. Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease [J/OL]. Int Angiol, 2016 [2016-07-10]. https://www.ncbi. nlm.nih.gov/pubmed/?term=Human+classical+monocytes+ display+unbalanced+M1%2FM2+phenotype+with+increas ed+atherosclerotic+risk+and+presence+of+disease. [Epub ahead of print].
[58]Zhao X N, Li Y N, Wang Y T. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis [J]. Genet Mol Res, 2016, 15(1):gmr7348 . DOI: 10.4238/gmr.15017348.
[59]Moore J P, Vinh A, Tuck K L, et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure [J]. Am J Physiol Heart Circ Physiol, 2015, 309(5): H906-H917. DOI: 10.1152/ ajpheart.00821.2014.
[60]Wink D A, Hines H B, Cheng R Y, et al. Nitric oxide and redox mechanisms in the immune response [J]. J Leukoc Biol, 2011, 89(6): 873-891. DOI: 10.1189/jlb.1010550.
[61]Green S J, Scheller L F, Marletta M A, et al. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens [J]. Immunol Lett, 1994, 43(1-2): 87-94. DOI:10.1016/0165-2478(94)00158-8.
(2016-07-11 收稿 2016-12-16 修回)
(本文編輯 張亞麗)
Formation mechanism of abdominal aortic aneurysms induced by macrophages and angiotension II: a systematic review
YANG Guang1, YANG Guang2, and HU Nan3. 1. Department of Nephrology, Heinrich Heine Universit?t, Düsseldorf 40225, Germany; 2. College of Pharmacy, University of Florida, Gainesville 32611, USA; 3. Department of Nutrition, General Hospital of Chinese People's Armed Police Force, Beijing 100039, China
Abdominal aortic aneurysms (AAA), is a vascular expansion caused by the injury of arterial wall, and vascular rupture will occur in the severe patients with a high mortality risk factor. Angiotensin Ⅱ (Ang Ⅱ), as the primary bioactive peptide of the renin-angiotensin-system (RAS), is defined as a key mediator in the development of hypertension, atherosclerosis, and AAA. Therefore, AngⅡ is widely used in the research of cardiovascular diseases and AAA in animal models. Many studies show that AngⅡ plays a pivotal role in the initiation, progression and rupture of AAA, which may be associated with macrophages infiltration. Involvement of macrophages in vascular inflammation has been proven to be related to decrease of nitric oxide (NO) bioavailability, increase of reactive oxygen species products, inflammatory cytokines and matrix metalloproteinases (MMPs) secretion. This paper reviews the recent publications regarding the formation mechasim of AAA induced by macrophages and AngⅡ, which provides guidance for the future prevention and treatment of AAA.
abdominalaortic aneurysm; renin-angiotensin-system; angiotensin Ⅱ; macrophagesn
R65
10.13919/j.issn.2095-6274.2017.02.013
1. 40225 Düsseldorf,Department of Nephrology, Heinrich Heine Universit?t;2. 32611 Gainesville,College of Pharmacy, University of Florida;3. 100039 北京,武警總醫(yī)院營(yíng)養(yǎng)科
楊 光,E-mail: yakoaka@gmail.com