楊鳳環(huán), 田 芳, 陳華民, 何晨陽
(中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 北京 100193)
病原細(xì)菌受體介導(dǎo)的c-di-GMP信號傳導(dǎo)及其調(diào)控機(jī)制
楊鳳環(huán), 田 芳, 陳華民, 何晨陽*
(中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所, 植物病蟲害生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 北京 100193)
細(xì)菌第二信使環(huán)二鳥苷酸(c-di-GMP)信號網(wǎng)絡(luò)系統(tǒng)主要涉及信號代謝、識別、接受、傳遞、功能表達(dá)和調(diào)控。c-di-GMP胞內(nèi)水平受到鳥苷酸環(huán)化酶(DGC)和磷酸二酯酶(PDE)的控制。c-di-GMP信號受體類型多樣,包括轉(zhuǎn)錄調(diào)控因子、PilZ結(jié)構(gòu)域蛋白、退化的GGDEF和EAL結(jié)構(gòu)域蛋白、核糖體開關(guān)、多核苷酸磷酸化酶和新發(fā)現(xiàn)的蛋白激酶等。c-di-GMP受體接受信號后,可以在轉(zhuǎn)錄、翻譯以及翻譯后水平上對下游靶標(biāo)進(jìn)行調(diào)控,從而影響細(xì)菌的毒性、運(yùn)動性、生物膜形成、細(xì)胞分裂等生理生化過程。本文結(jié)合本實(shí)驗(yàn)室對水稻白葉枯病菌的研究結(jié)果,綜述了近年來國內(nèi)外在c-di-GMP信號受體介導(dǎo)的調(diào)控機(jī)制等方面的研究進(jìn)展。
c-di-GMP; 信號代謝; 受體; 傳導(dǎo); 調(diào)控
在復(fù)雜的生境中,細(xì)菌需要感知、轉(zhuǎn)導(dǎo)、傳遞來自細(xì)胞內(nèi)外的信號。第二信使小分子核苷酸是細(xì)菌細(xì)胞信號傳遞的重要載體,可將外界信號轉(zhuǎn)換成胞內(nèi)受體可感知的化學(xué)小分子[1]。環(huán)二鳥苷酸(c-di-GMP)是20世紀(jì)80年代在葡糖酸醋酸桿菌中發(fā)現(xiàn)的纖維素合成酶異構(gòu)激活因子[2]。隨后的研究表明,c-di-GMP是細(xì)菌中普遍存在的全新第二信使[3-6]。含有GGDEF結(jié)構(gòu)域的鳥苷酸環(huán)化酶(DGC)和含有EAL或者HD-GYP結(jié)構(gòu)域的磷酸二酯酶(PDE)分別控制了信號合成和降解[7]。c-di-GMP信號分子可通過與受體結(jié)合,從而調(diào)控細(xì)菌生物膜形成、運(yùn)動性和毒性等重要的生物學(xué)表型[3-6]。c-di-GMP信號代謝、受體感應(yīng)及調(diào)控機(jī)制的研究是病原細(xì)菌研究領(lǐng)域的熱點(diǎn)之一。近年來,在c-di-GMP受體介導(dǎo)的調(diào)控機(jī)制方面取得了重要的研究進(jìn)展。本文結(jié)合本實(shí)驗(yàn)室對水稻白葉枯病菌Xanthomonasoryzaepv.oryzaec-di-GMP受體功能的研究結(jié)果,綜述了近年來國內(nèi)外該領(lǐng)域的最新進(jìn)展。
c-di-GMP信號網(wǎng)絡(luò)主要包括4個(gè)組成部分:含有GGDEF結(jié)構(gòu)域的DGC、含有EAL或者HD-GYP結(jié)構(gòu)域的PDE、信號受體以及下游靶標(biāo)蛋白[3-5](圖1)。在c-di-GMP信號途徑中,DGC或PDE可感應(yīng)來自胞內(nèi)外的環(huán)境信號,影響其c-di-GMP代謝酶活性,進(jìn)而影響胞內(nèi)c-di-GMP水平,下游通過信號受體的感應(yīng)、實(shí)現(xiàn)c-di-GMP信號的輸出,即調(diào)控下游基因或靶標(biāo)蛋白的表達(dá)[6]。c-di-GMP信號網(wǎng)絡(luò)的4個(gè)組成部分在細(xì)菌中廣泛存在。因此,不同細(xì)菌中的調(diào)節(jié)過程也復(fù)雜多樣。
圖1 細(xì)菌c-di-GMP信號調(diào)控網(wǎng)絡(luò)模式[3-6]Fig.1 Bacterial c-di-GMP signaling pathway[3-6]
在葡糖酸醋酸桿菌Acetobacterxylinum研究中發(fā)現(xiàn),c-di-GMP可作為纖維素合成酶的異構(gòu)激活因子[2]。在細(xì)菌體內(nèi)c-di-GMP的代謝水平主要受到DGC和PDE的控制[8]。DGC可將兩分子GTP合成一分子c-di-GMP,PDE將c-di-GMP降解為線性的二核苷酸pGpG、進(jìn)而降解為GMP。許多DGC或PDE具有REC、PAS和HAMP等感應(yīng)結(jié)構(gòu)域,可感應(yīng)來自環(huán)境的小分子、氧化還原、光、磷酸化、營養(yǎng)和抗生素等信號,從而調(diào)控胞內(nèi)c-di-GMP水平[9]。一般細(xì)菌可同時(shí)編碼多個(gè)GGDEF和EAL結(jié)構(gòu)域蛋白[7]。目前已經(jīng)鑒定出多個(gè)具有DGC和PDE酶活性的相關(guān)蛋白,例如新月柄桿菌Caulobactercrescentus的鳥苷酸環(huán)化酶PleD、銅綠假單胞菌Pseudomonasaeruginosa的鳥苷酸環(huán)化酶WspR、DgcP和磷酸二酯酶DipA、霍亂弧菌Vibriocholerae的磷酸二酯酶VieA等[10-14]。水稻白葉枯病菌PXO99A共有26個(gè)c-di-GMP代謝相關(guān)蛋白,14個(gè)蛋白具有信號感應(yīng)結(jié)構(gòu)域。其中含有GGDEF、EAL和REC結(jié)構(gòu)域蛋白PdeR具有PDE活性,與上游組氨酸激酶PdeK組成一對雙組分調(diào)控系統(tǒng),參與c-di-GMP代謝和病菌毒性的調(diào)節(jié)[15]。
c-di-GMP通過與信號受體結(jié)合,改變受體空間構(gòu)象及其功能,影響下游基因表達(dá)或相關(guān)酶活性,從而調(diào)控細(xì)菌生物膜形成、細(xì)胞分裂、運(yùn)動性及毒性因子表達(dá)等生理生化過程[1,3-5]。已鑒定的信號受體包括轉(zhuǎn)錄調(diào)控因子、 PilZ結(jié)構(gòu)域蛋白、退化的GGDEF和EAL結(jié)構(gòu)域蛋白、 核糖體開關(guān)、多核苷酸磷酸化酶(PNPase)以及新發(fā)現(xiàn)的蛋白激酶六類。c-di-GMP受體接受信號后可以在轉(zhuǎn)錄、翻譯以及翻譯后水平對下游靶標(biāo)進(jìn)行調(diào)控[5, 16]。
3.1 轉(zhuǎn)錄調(diào)控因子受體介導(dǎo)的轉(zhuǎn)錄調(diào)控作用
轉(zhuǎn)錄調(diào)控因子可作為c-di-GMP受體,通過與調(diào)控序列的結(jié)合調(diào)控基因轉(zhuǎn)錄,形成c-di-GMP轉(zhuǎn)錄水平上的調(diào)控網(wǎng)絡(luò)。銅綠假單胞菌FleQ 蛋白是第一個(gè)被鑒定的、作為信號受體的轉(zhuǎn)錄調(diào)控因子。FleQ不僅通過激活鞭毛合成基因轉(zhuǎn)錄、調(diào)控鞭毛的產(chǎn)生,而且通過AAA結(jié)構(gòu)域與c-di-GMP結(jié)合,抑制了FleQ與調(diào)控胞外多糖產(chǎn)生的pel啟動子結(jié)合,從而調(diào)控細(xì)菌胞外多糖產(chǎn)生[17]。另外一種作為c-di-GMP受體的轉(zhuǎn)錄調(diào)控因子為CRP 家族蛋白。CRP/FNR家族蛋白C端具有cNMP結(jié)構(gòu)域和N端具有HTH結(jié)構(gòu)域。與FleQ作用方式不同,與c-di-GMP的結(jié)合可使CRP 蛋白行使轉(zhuǎn)錄因子活性,增強(qiáng)其與靶標(biāo)DNA的結(jié)合作用。大腸桿菌EscherichiacoliCRP蛋白、霍亂弧菌CRP家族蛋白VpsT以及克雷伯氏肺炎桿菌KlebsiellapneumoniaePliZ結(jié)構(gòu)域轉(zhuǎn)錄因子MrkH與c-di-GMP結(jié)合后行使轉(zhuǎn)錄調(diào)控活性[18-22];新洋蔥伯克霍爾德菌BurkholderiacenocepaciaCRP/FNR家族蛋白成員Bcam139則通過與c-di-GMP結(jié)合,加強(qiáng)了與靶標(biāo)DNA的結(jié)合作用[23]。
水稻白葉枯病菌轉(zhuǎn)錄調(diào)控因子Clpxoo蛋白與cAMP受體CRP蛋白同源,可與c-di-GMP結(jié)合,參與細(xì)菌鞭毛運(yùn)動性、胞外多糖產(chǎn)生、H2O2抗性以及毒性的調(diào)控[24-25]。采用ChIP-seq方法,從病菌基因組中鑒定了78個(gè)與Clpxoo結(jié)合的基因啟動子,這些基因的功能涉及毒性因子產(chǎn)生、核苷酸代謝、蛋白分泌、信號感應(yīng)以及鞭毛合成等(待發(fā)表資料)。
3.2 PilZ蛋白受體介導(dǎo)的翻譯后調(diào)節(jié)作用
PilZ結(jié)構(gòu)域是最早發(fā)現(xiàn)可以與c-di-GMP結(jié)合的結(jié)構(gòu)域,隨后試驗(yàn)進(jìn)一步從銅綠假單胞菌中鑒定出來,命名為PilZ結(jié)構(gòu)域[26]。PliZ結(jié)構(gòu)域中保守殘基RXXXR和D/NXSXXG是與c-di-GMP結(jié)合的關(guān)鍵位點(diǎn)[26]。c-di-GMP 與PilZ 蛋白結(jié)合后會引起蛋白結(jié)構(gòu)發(fā)生改變,從而激活受體;通過蛋白與蛋白的互作、調(diào)控目標(biāo)基因表達(dá)或蛋白活性和功能。YcgR和BcsA是兩個(gè)最早證實(shí)作為c-di-GMP 受體的PliZ家族成員。大腸桿菌和沙門氏菌YcgR通過與鞭毛的啟動成分FliG和FliM 互相作用調(diào)控運(yùn)動性,而BcsA在與c-di-GMP結(jié)合的情況下具有調(diào)控纖維素合成的酶活性[27]。細(xì)菌基因組通常編碼一個(gè)或多個(gè)PilZ結(jié)構(gòu)域蛋白,不同蛋白在與c-di-GMP結(jié)合時(shí)調(diào)控不同的生物學(xué)功能。銅綠假單胞菌有7個(gè)PilZ結(jié)構(gòu)域蛋白,其中2個(gè)參與調(diào)控細(xì)菌運(yùn)動性,而Alg44參與調(diào)控海藻酸的產(chǎn)生[28-29];霍亂弧菌存在5個(gè)PilZ結(jié)構(gòu)域蛋白,其中3個(gè)參與調(diào)控細(xì)菌的運(yùn)動性以及生物膜的形成[30]。
水稻白葉枯病菌有3個(gè)PilZ蛋白,其中PXO_00049和PXO_02374具有保守的PilZ結(jié)構(gòu)域,作為受體與c-di-GMP結(jié)合,而PXO_02715不能直接與c-di-GMP結(jié)合[31]。3個(gè)PilZ蛋白對病菌毒性和運(yùn)動性的調(diào)控功能也不盡相同。例如PXO_00049負(fù)向調(diào)控毒性、正向調(diào)控運(yùn)動性,PXO_02374負(fù)向調(diào)控毒性和運(yùn)動性,PXO_02715正向調(diào)控毒性、負(fù)向調(diào)控運(yùn)動性。然而,這些PilZ蛋白均不參與病菌EPS產(chǎn)生和生物膜形成的調(diào)控。PXO_00049 和PXO_02374定位細(xì)菌兩極和中間位置,而PXO_02715卻定位于細(xì)菌周身。PXO_02374可能通過與下游蛋白的互作,參與病菌毒性調(diào)控(待發(fā)表資料)。
3.3 退化的GGDEF/EAL蛋白受體介導(dǎo)的蛋白質(zhì)-蛋白質(zhì)互作
一些具有退化的GGDEF或EAL結(jié)構(gòu)域蛋白不具有DGC或者PDE活性,但可通過GGDEF結(jié)構(gòu)域中變構(gòu)的I位點(diǎn)(RXXD殘基)、或者EAL結(jié)構(gòu)域中的接觸位點(diǎn)與c-di-GMP結(jié)合,行使信號受體的功能。新月柄桿菌GGDEF結(jié)構(gòu)域蛋白PopA、霍亂弧菌GGDEF結(jié)構(gòu)域蛋白CdgG都可通過其I位點(diǎn)與c-di-GMP結(jié)合,參與調(diào)控細(xì)菌細(xì)胞周期進(jìn)程、菌體褶皺狀態(tài)、生物膜形成以及運(yùn)動性[32-33]。最新研究發(fā)現(xiàn),在大腸桿菌、沙門氏菌SalmonellaLignieres和克雷白氏桿菌Klebsiellapneumoniae的BcsE蛋白GIL結(jié)構(gòu)域中,RxGD殘基與GGDEF結(jié)構(gòu)域中的I位點(diǎn)類似,同樣可與c-di-GMP結(jié)合[34]。熒光假單胞菌PseudomonasfluorescensLapD、銅綠假單胞菌和柑橘潰瘍病菌Xanthomonascampestrispv.citriFimX都可通過退化的EAL結(jié)構(gòu)域與c-di-GMP結(jié)合;FimX還可與下游退化的PilZ結(jié)構(gòu)域蛋白互作,與菌毛合成相關(guān)蛋白形成復(fù)合體,從而影響運(yùn)動性[35-38]。
水稻白葉枯病菌Filp蛋白含有退化的GGDEF和EAL結(jié)構(gòu)域,不具有c-di-GMP代謝酶活性,但是可以通過EAL結(jié)構(gòu)域與c-di-GMP進(jìn)行結(jié)合。Filp可通過與下游PilZ結(jié)構(gòu)域蛋白PXO_02715互作,調(diào)控了病菌毒性和致敏性[39]。最新的蛋白組學(xué)分析發(fā)現(xiàn),Filp和PXO_02715共調(diào)控了100多個(gè)下游靶標(biāo)蛋白的表達(dá),包括雙組分調(diào)控系統(tǒng)激酶、c-di-GMP代謝相關(guān)蛋白以及TonB類受體等(待發(fā)表資料)。這些蛋白功能的解析將有助于闡明c-di-GMP受體介導(dǎo)的毒性調(diào)控機(jī)理。
3.4 核糖體開關(guān)受體介導(dǎo)的轉(zhuǎn)錄后調(diào)節(jié)作用
核糖體開關(guān)(riboswitch)是一類存在于mRNA中的非編碼部分,作為c-di-GMP非蛋白類受體在細(xì)菌中普遍存在[40]。核糖體開關(guān)可直接結(jié)合c-di-GMP,導(dǎo)致mRNA二級結(jié)構(gòu)發(fā)生改變,從而調(diào)控基因轉(zhuǎn)錄過程的mRNA元件。目前已發(fā)現(xiàn)來自霍亂弧菌的Class I和來自艱難梭狀芽胞桿菌Clostridiumdifficile的Class II兩類核糖體受體[41-43],這兩類核糖體開關(guān)與c-di-GMP結(jié)合的保守序列和結(jié)構(gòu)完全不同,其中Class I是細(xì)菌中c-di-GMP信號主要的核糖體開關(guān)受體[41-42]。c-di-GMP與核糖體開關(guān)的結(jié)合,不僅豐富了c-di-GMP所調(diào)控的基因種類,也實(shí)現(xiàn)了c-di-GMP對相關(guān)基因的轉(zhuǎn)錄后調(diào)控。
3.5 PNPase受體介導(dǎo)的RNA代謝催化作用
多核苷酸磷酸化酶(PNPase)在細(xì)菌體內(nèi)可行使3′多聚核糖核苷酸聚合酶活性,或者3′-5′的核糖核酸外切酶活性,參與mRNA反轉(zhuǎn)錄和核糖體RNA前體合成[44-45]。在大腸桿菌中,PNPase可與DosC(氧感應(yīng)DGC)和DosP(氧感應(yīng)PDE)形成復(fù)合體。當(dāng)環(huán)境中氧信號水平降低時(shí),PNPase從與DosC-DosP的復(fù)合體上解離,DosC呈現(xiàn)DGC酶活性,增加了胞內(nèi)的c-di-GMP水平,PNPase與c-di-GMP結(jié)合激活其核糖核酸外切酶活性;當(dāng)環(huán)境中氧信號水平上升時(shí),DosC與DosP相互結(jié)合,激活DosP的PDE酶活性,降低c-di-GMP水平,PNPase失去催化能力[43]。PNPase通過與c-di-GMP的結(jié)合,調(diào)控了細(xì)菌中依賴于氧信號的RNA加工。
3.6 蛋白激酶受體介導(dǎo)的細(xì)胞分化調(diào)控作用
蛋白激酶CckA是在新月柄桿菌中最新發(fā)現(xiàn)的c-di-GMP受體。c-di-GMP可直接與CckA結(jié)合,從而抑制后者的蛋白激酶活性,促進(jìn)磷酸酶活性,加速其從激酶到磷酸酶的過渡[46]。在細(xì)菌分化階段,c-di-GMP利用對CckA的空間調(diào)控設(shè)置未來子細(xì)胞復(fù)制的不對稱。新月柄桿菌雙組分系統(tǒng)中反應(yīng)調(diào)控蛋白PleD、感應(yīng)激酶DivL、反應(yīng)調(diào)控蛋白DivK都參與細(xì)菌的分化調(diào)控[47],使CckA在不同的調(diào)控模式間轉(zhuǎn)換。當(dāng)PleD定位于游動細(xì)胞時(shí),PleD和DivK處于脫磷酸化狀態(tài),CckA與DivL直接作用激活下游的CtrA,從而阻礙復(fù)制的開始;當(dāng)感應(yīng)激酶DivJ出現(xiàn)在柄狀細(xì)胞時(shí),PleD和DivK磷酸化,使CckA進(jìn)入磷酸酶模式,不能激活CtrA。c-di-GMP在柄桿菌細(xì)菌中是一個(gè)細(xì)胞周期蛋白相似分子,可協(xié)調(diào)細(xì)胞形態(tài)形成過程中染色體的復(fù)制。此外,在根癌農(nóng)桿菌Agrobacteriumtumefaciens中也存在c-di-GMP通過全局調(diào)控因子調(diào)控細(xì)菌毒性和生存的機(jī)制[48]??梢奵-di-GMP對細(xì)菌周期及其分化的調(diào)控可能是一個(gè)普遍的調(diào)控機(jī)制。
c-di-GMP信號作為在細(xì)菌中廣泛存在的第二信使,在生物學(xué)進(jìn)程的調(diào)控中發(fā)揮了至關(guān)重要的作用,已經(jīng)成為細(xì)菌中研究最為廣泛和深入的信號分子之一。盡管對c-di-GMP信號代謝及其與受體互作的分子機(jī)制已經(jīng)有了一定的認(rèn)識,但是對于c-di-GMP新受體的結(jié)構(gòu)與功能鑒定、c-di-GMP信號在不同水平上的調(diào)控差異和級聯(lián)效應(yīng)、c-di-GMP與其他信號系統(tǒng)的整合等都是未來需要解決的關(guān)鍵科學(xué)問題。本實(shí)驗(yàn)室多年來的研究表明,在水稻白葉枯病菌中存在一個(gè)c-di-GMP信號產(chǎn)生/降解、識別、接受和傳遞、表型和功能表達(dá)的調(diào)控途徑。3種不同類型的信號受體(Filp、PilZ和Clpxoo)的鑒定及其介導(dǎo)的毒性調(diào)控機(jī)理的解析,為揭示水稻白葉枯病菌c-di-GMP信號分子機(jī)制奠定了堅(jiān)實(shí)的基礎(chǔ)(圖2)。進(jìn)一步運(yùn)用組學(xué)等方法,對信號受體的全局性調(diào)控作用以及它們在c-di-GMP信號網(wǎng)絡(luò)中的交互和協(xié)同作用進(jìn)行解析,可為全面闡明揭示水稻白葉枯病菌c-di-GMP信號途徑及其對毒性表達(dá)的調(diào)控機(jī)制提供更多的科學(xué)依據(jù)。
圖2 水稻白葉枯病菌c-di-GMP受體介導(dǎo)的調(diào)控作用模式Fig.2 A working model for c-di-GMP receptor-mediated regulation in Xanthomonas oryzae pv. oryzae
[1] Hengge R, Grundling A, Jenal U, et al. Bacterial signal transduction by c-di-GMP and other nucleotide second messengers [J]. Journal of Bacteriology, 2016, 198:15-26.
[2] Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis inAcetobacterxylinumby cyclic diguanylic acid [J]. Nature, 1987, 325: 279-281.
[3] Romling U, Gomelsky M, Galperin M Y. C-di-GMP: the dawning of a novel bacterial signalling system [J]. Molecular Microbiology, 2005, 57: 629-639.
[4] Hengge R. Principles of c-di-GMP signalling in bacteria [J]. Nature Reviews Microbiology, 2009, 7:263-273.
[5] Romling U, Galperin M Y, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger [J]. Microbiology and Molecular Biology Reviews, 2013, 77(1): 1-52.
[6] Sondermann H, Shikuma N J, Yildiz FH. You’ve come a long way: c-di-GMP signaling [J]. Current Opinion in Microbiology, 2012, 15:140-146.
[7] Schirmer T, Jenal U. Structural and mechanistic determinants of c-di-GMP signalling [J]. Nature Reviews Microbiology, 2009, 7(10): 724-735.
[8] Bordeleau E, Fortier L C, Malouin F, et al. c-di-GMP turn-over inClostridiumdifficileis controlled by a plethora of diguanylate cyclases and phosphodiesterases [J]. PLoS Genetics, 2011, 7:e1002039.
[9] Simm R, Morr M, Kader A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility [J]. Molecular Microbiology, 2004, 53:1123-1134.
[10]Paul R, Abel S, Wassmann P, et al. Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization [J]. The Journal of Biological Chemistry, 2007, 282: 29170-29177.
[11]Goymer P, Kahn S G, Malone J G, et al. Adaptive divergence in experimental populations ofPseudomonasfluorescensII. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype [J]. Genetics, 2006, 173(2): 89-99.
[12]Aragon I M, Perez-Mendoza D, Moscoso J A, et al. Diguanylate cyclase DgcP is involved in plant and humanPseudomonasspp. infections [J]. Environmental Microbiology,2015,17(11):4332-4351.
[13]Dey A K, Bhagat A, Chowdhury R. Host cell contact induces expression of virulence factors and VieA, a cyclic di-GMP phosphodiesterase inVibriocholerae[J]. Journal of Bacteriology, 2013, 195: 2004-2010.
[14]Roy A B, Petrova O E, Sauer K. The phosphodiesterase DipA (PA5017) is essential forPseudomonasaeruginosabiofilm dispersion [J]. Journal of Bacteriology, 2012, 194: 2904-2915.
[15]Yang Fenghuan, Tian Fang, Sun Lei, et al. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence ofXanthomonasoryzaepv.oryzae[J]. Molecular Plant-Microbe Interactions, 2012, 25(10):1361-1369.
[16]Chou S H, Galperin M Y. Diversity of c-di-GMP-binding proteins and mechanisms [J].Journal of Bacteriology, 2015, doi:10.1128/JB.00333-15.
[17]Hickman J W, Harwood C S. Identification of FleQ fromPseudomonasaeruginosaas a c-di-GMP-responsive transcription factor [J]. Molecular Microbiology, 2008, 69(2):376-389.
[18]Jonas K, Melefors O, Romling U. Regulation of c-di-GMP metabolism in biofilms [J]. Future Microbiology, 2009, 4(3): 341-358.
[19]Krasteva P V, Fong J C, Shikuma N J, et al.VibriocholeraeVpsT regulates matrix production and motility by directly sensing cyclic di-GMP [J]. Science, 2010, 327: 866-868.
[20]Wilksch J J, Yang J, Clements A, et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controlsKlebsiellapneumoniaebiofilm formation by regulating type 3 fimbriae expression [J]. PLoS Pathogens, 2011, 7: e1002204.
[21]Yang J, Wilksch J J, Tan J W, et al. Transcriptional activation of the mrkA promoter of theKlebsiellapneumoniaetype 3 fimbrial operon by the c-di-GMP-dependent MrkH protein [J]. PLoS ONE, 2013, 8:e79038.
[22]Tan J W, Wilksch J J, Hocking D M, et al. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit ofKlebsiellapneumoniae[J]. Journal of Bacteriology, 2015, 197: 1659-1667.
[23]Fazli M, O’Connell A, Nilsson M, et al. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogenBurkholderiacenocepacia[J]. Molecular Microbiology, 2011, 82: 327-341.
[24]管文靜,吳茂森,何晨陽.水稻白葉枯病菌核苷酸信號受體蛋白Clpxoo的分子鑒定及其功能分析 [J].微生物學(xué)報(bào),2009, 49(1): 32-37.
[25]李波,田芳,陳華民,等.c-di-GMP 抑制轉(zhuǎn)錄調(diào)控因子Clpxoo與葡聚糖酶基因啟動子的結(jié)合 [J].微生物學(xué)報(bào),2013, 53(11): 1116-1171.
[26]Amikam D, Galperin M Y. PilZ domain is part of the bacterial c-di-GMP binding protein [J].Bioinformatics, 2006, 22(1):3-6.
[27]Ryjenkov D A, Simm R, Romling U, et al. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria [J].The Journal of Biological Chemistry, 2006, 281(41): 30310-30314.
[28]Merighi M, Lee V T, Hyodo M, et al. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis inPseudomonasaeruginosa[J]. Molecular Microbiology, 2007, 65(4): 876-895.
[29]Whitney J C, Whitfield G B, Marmont L S, et al. Dimeric c-di-GMP is required for post-translational regulation of alginate production inPseudomonasaeruginosa[J]. The Journal of Biological Chemistry, 2015, 290:12451-12462.
[30]Pratt J T, Tamayo R, Tischler A D, et al. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes inVibriocholerae[J]. The Journal of Biological Chemistry, 2007, 282(17): 12860-12870.
[31]Yang Fenghuan, Tian Fang, Chen Huamin, et al. TheXanthomonasoryzaepv.oryzaePilZ-domain proteins function differentially in cyclic di-GMP binding, and regulation of virulence and motility [J]. Applied and Enviromental Microbiology, 2015, 81(13): 4358-4367.
[32]Ozaki S, Schalch-Moser A, Zumthor L, et al. Activation and polar sequestration of PopA, a c-di-GMP effector protein involved inCaulobactercrescentuscell cycle control [J]. Molecular Microbiology, 2014, 94: 580-594.
[33]Beyhan S, Odell L S, Yildiz F H. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity inVibriocholerae[J]. Journal of Bacteriology, 2008, 190: 7392-7405.
[34]Fang X, Ahmad I, Blanka A, et al. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria [J]. Molecular Microbiology, 2014, 93: 439-452.
[35]Newell P D, Monds R D, O’Toole G A. LapD is a bis-cyclic dimeric GMP-binding protein that regulates surface attachment byPseudomonasfluorescensPf0-1 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 3461-3466.
[36]Guzzo C R, Salinas R K, Andrade M O, et al. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis [J].Journal of Molecular Biology, 2009, 393(4): 848-866.
[37]Guzzo C R, Dunger G, Salinas R K, et al. Structure of the PilZ-FimXEAL-c-di-GMP complex responsible for the regulation of bacterial Type IV pilus biogenesis [J]. Journal of Molecular Biology, 2013, 425(12): 2174-2197.
[38]Navarro M V, De N, Bae N, et al. Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX [J]. Structure, 2009, 17(8): 1104-1116.
[39]Yang Fenghuan, Tian Fang, Li Xiaotong, et al. The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence inXanthomonasoryzaepv.oryzae[J]. Molecular Plant-Microbe Interactions, 2014, 6(27): 578-589.
[40]Lee E R, Baker J L, Weinberg Z, et al. An allosteric self-splicing ribozyme triggered by a bacterial second messenger [J]. Science, 2010, 329(5993): 845-848.
[41]Smith K D, Lipchock S V, Livingston A L, et al. Structural and biochemical determinants of ligand binding by the c-di-GMP riboswitch [J]. Biochemistry, 2010, 49:7351-7359.
[42]Smith K D, Lipchock SV, Ames TD, et al. Structural basis of ligand binding by a c-di-GMP riboswitch [J]. Nature Structural & Molecular Biology, 2009, 16:1218-1223.
[43]Bordeleau E, Purcell E B, Lafontaine D A, et al. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation ofClostridiumdifficile[J]. Journal of Bacteriology, 2015, 197: 819-832.
[44]Tuckerman J R, Gonzalez G, Gilles-Gonzalez M A, et al. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing [J]. Journal of Molecular Biology, 2011, 407(5): 633-639.
[45]Wang Y C, Chin K H, Chuah M L, et al. Crystallization and preliminary X-ray diffraction studies ofXanthomonascampestrisPNPase in the presence of c-di-GMP [J]. Acta Crystallographica Section F, 2012, 68(10): 1247-1250.
[46]Lori C, Ozaki S, Steiner S, et al. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication [J]. Nature, 2015, 523(7559): 236-239.
[47]Tsokos C G, Perchuk B S, Laub M T. A dynamic complex of signaling proteins uses polar localization to regulate cell-fate a symmetry inCaulobactercrescentus[J]. Developmental Cell, 2011, 20(3): 329-341.
[48]Barnhart D M, Su S, Farrand S K. A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis inAgrobacteriumtumefaciens[J]. Journal of Bacteriology, 2014, 196: 1257-1274.
(責(zé)任編輯:田 喆)
Cyclic di-GMP signal receptor-mediated regulation of bacterial behaviors
Yang Fenghuan, Tian Fang, Chen Huamin, He Chenyang
(StateKeyLaboratoryforBiologyofPlantDiseasesandInsectPests,InstituteofPlantProtection,ChineseAcademyofAgriculturalSciences,Beijing100193,China)
The bacterial second message c-di-GMP signaling pathways mainly involve signal metabolism, signal recognition by receptor, reception and transduction, and phenotype expression and regulation. The intracellular level of c-di-GMP is precisely controlled by diguanylate cyclases (DGC) and phosphodiesterase (PDE) via biosynthesis or degradation, respectively. Several c-di-GMP receptors have been identified and characterized from various bacterial species, including transcription regulator, PilZ-domain protein, degenerate GGDEF or EAL domain protein, polynucleotide phosphorylase (PNPase), riboswitch and kinase, etc. The c-di-GMP receptors exert their regulatory functions at the transcription, translation, and post-translation levels, and regulate multiple bacterial properties including virulence, biofilm formation, motility and cell division. The recent progresses in c-di-GMP receptor-mediated regulation of bacterial behaviors were here reviewed, in combination with some of our findings on the bacterial blight pathogen of riceXanthomonasoryzaepv.oryzae.
c-di-GMP; signal metabolism; receptor; transduction; regulation
2016-12-18
2016-12-21
國家自然科學(xué)基金(31671990,31400117,31370160,31100947)
Q 78
A
10.3969/j.issn.0529-1542.2017.01.002
* 通信作者 E-mail:hechenyang@caas.cn