国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

長春花萜類吲哚生物堿生物合成與調控研究

2017-02-13 16:59匡雪君王彩霞鄒麗秋朱孝軒孫超
中國中藥雜志 2016年22期
關鍵詞:長春花

匡雪君 王彩霞 鄒麗秋 朱孝軒 孫超

[摘要] 長春花含有多種具有重要藥理活性的萜類吲哚生物堿(TIA)。TIA的生物合成與調控及其合成生物學研究受到廣泛關注。3α (S)異胡豆苷是TIA生物合成的重要節(jié)點,由裂環(huán)馬錢子苷和色胺縮合而成。前者通過環(huán)烯醚萜途徑生成;后者通過吲哚途徑生成。由3α (S)異胡豆苷分別經過多步酶促反應生成文多靈和長春質堿,然后兩者縮合生成α3, 4脫水長春堿,進而生成長春堿和長春新堿。AP2/ERF和WRKY等多種轉錄因子參與了TIA合成的調控。長春花TIA生物合成途徑的逐步解析為其合成生物學研究奠定了基礎。目前已在釀酒酵母實現(xiàn)了3α (S)異胡豆苷和文多靈等的異源合成。長春花TIA生物合成與調控的研究將為TIA類藥物的生產和研發(fā)提供支撐。

[關鍵詞] 長春花; 萜類吲哚生物堿; 代謝調控; 合成生物學

Advance in biosynthesis of terpenoid indole alkaloids and

its regulation in Catharanthus roseus

KUANG Xuejun1, WANG Caixia2, ZOU Liqiu1, ZHU Xiaoxuan1, SUN Chao1*

(1. Institute of Medicinal Plant Development, China Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;

2. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China)

[Abstract] Catharanthus roseus can produce a variety of terpenoid indole alkaloids (TIA), most of which exhibit strong pharmacological activities. Hence, biosynthesis and regulation of TIA have received recent attention. 3α (S)strictosidine is an important node in TIA biosynthesis, which is a condensation product of secologanin and tryptamine. The former is produced in iridoid pathway, and the latter is produced in indole pathway. Vindoline and catharanthine, which are produced respectively by 3α (S)strictosidine via multistep enzymatic reaction, can form α3, 4anhydrovinblastine by the condensation reaction. Then, vinblastine and vincristine are generated from α3, 4anhydrovinblastine. Many transcription factors are involved in the regulation of TIA synthesis, such as AP2/ERF and WRKY. Illumination of biosynthetic pathway has laid a foundation for the study of synthetic biology. Today, 3α (S)strictosidine and vindoline have been synthesized in heterologous hosts Saccharomyces cerevisiae.Research about synthetic biology and the regulation mechanisms will provide a guidance for the production and development of TIA drugs in C. roseus.

[Key words] Catharanthus roseus; terpenoid indole alkaloids (TIAs); metabolic regulation; synthetic biology

doi:10.4268/cjcmm20162208

長春花Catharanthus roseus為夾竹桃科長春花屬多年生草本植物,體內含有130多種生物堿,大多數(shù)為萜類吲哚生物堿(terpenoid indole alkaloids,TIA)[12]。TIA在現(xiàn)代醫(yī)療領域得到了廣泛的應用,如長春堿 (vinblastine) 和長春新堿 (vincristine) 是應用最為廣泛的2種天然植物抗腫瘤藥物,廣泛應用于何杰金氏病、急性淋巴細胞型白血病、惡性淋巴腫瘤等疾病的治療;文多靈和長春質堿由于具有降低血糖的功效,被廣泛用于治療糖尿病等;阿瑪堿和蛇根堿作為高效降壓藥物在臨床中使用[34]。然而,TIA在長春花中含量極其微少,從原植物中提取遠遠不能滿足市場需求;化學合成和半合成成本太高,也不具有商業(yè)前景[5]。隨著長春花 TIA 生物合成途徑中關鍵酶基因的克隆以及代謝途徑的解析,對其進行合成生物學研究,利用底盤細胞實現(xiàn)TIA及其前體的異源合成是解決抗腫瘤 TIA 藥物稀缺的有效方法之一[46]。本文對長春花萜類吲哚生物堿的生物合成途徑與調控及其合成生物學的最新進展進行了綜述,為更好地研究與開發(fā)長春花的藥用價值提供參考。

1 長春花萜類吲哚生物堿的生物合成途徑

長春花TIA生物合成途徑分為上游途徑和下游途徑[7],上游途徑包括生成裂環(huán)馬錢子苷的環(huán)烯醚萜途徑(iridoid pathway)和生成色胺的吲哚途徑(indole pathway),以及由裂環(huán)馬錢子苷和色胺經縮合反應生成3α (S)異胡豆苷的過程[89]。下游合成途徑是指以上游途徑合成的終產物3α (S)異胡豆苷為共同前體,在各自的酶促反應下經過多種不同的代謝途徑最后生成各種TIA的代謝過程(圖1)[1013]。目前已鑒定的長春花萜類吲哚生物堿合成途徑中關鍵酶已超過30個(表1)。

粗箭頭表示多步反應;藍色實線箭頭表示一步反應;紅色虛線箭頭表示沒有被闡明的步驟。

1.1 環(huán)烯醚萜途徑 形成萜類化合物前體的途徑主要有2個:甲羥戊酸途徑(MVA pathway)和非甲羥戊酸途徑(MEP pathway)[8]。經MVA途徑和MEP途徑生成的異戊烯焦磷酸(IPP)可在IPP異構酶(IPP isomerase, IPI)催化作用下生成IPP的同分異構體二甲基丙烯基焦磷酸(DMAPP)[1819]。IPP和DMAPP以頭尾縮合的方式合成十碳化合物GPP,GPP在香葉醇合成酶(geraniol synthase, GES)的催化作用下生成香葉醇(geraniol),隨即便進入環(huán)烯醚萜途徑[22]。長春花中參與環(huán)烯醚萜途徑的IPP的主要來源是MEP途徑,MVA途徑在環(huán)烯醚萜合成中僅提供少量前體[23]。

長春花體內環(huán)烯醚萜途徑由香葉醇到裂環(huán)馬錢子苷的形成總共經過8個酶促反應。首先由香葉醇10脫氫酶(geraniol 10hydroxylase, G10H)催化香葉醇生成10羥基香葉醇(10hydroxygeraniol)[24]。10羥基香葉醇經10羥基香葉醇氧化還原酶 (10hydroxygeraniol oxidoreductase,10HGO)氧化還原生成10羥基香葉酮(10oxogeranial),再由烯醚萜合成酶(iridodial synthase, IRS)環(huán)化生成環(huán)烯醚萜(iridodial)[2526]。IRS是一種NADPH依賴的10羥基香葉酮環(huán)化酶,2012年由GeuFlores等挖掘并進行了功能驗證[26]。7deoxyloganetic acid synthase(7DLS)將環(huán)烯醚萜氧化為7deoxyloganetic acid,7deoxyloganetic acid glucosyltransferase(7DLGT)再將其催化為7脫氧馬錢苷酸(7deoxyloganic acid)[2829]。2013年由Salim等[30]通過病毒介導的基因沉默對催化由7脫氧馬錢苷酸到馬錢苷酸(loganic acid)的7脫氧馬錢苷酸羥化酶(7deoxyloganic acid 7hydroxylase, DL7H)進行了功能分析并證明了其催化功能。馬錢苷酸進一步在馬錢苷酸甲基轉移酶(loganic acid methyltransferase, LAMT)的作用下生成馬錢子苷,2008年,Murata等[31]對長春花中LAMT基因進行了克隆和分析。最后,馬錢子苷在裂環(huán)馬錢子苷合成酶(secologanin synthase, SLS)的催化作用下裂環(huán)生成裂環(huán)馬錢子苷(secologanin)。SLS由Vetter于2000年[3233]在長春花懸浮細胞中分離并進行了功能分析,它是一種與細胞膜相關的對氧氣和NADPH依賴的細胞色素P450單加氧酶,在環(huán)烯醚萜途徑中同樣起著至關重要的調節(jié)作用。

1.2 吲哚途徑 長春花中的吲哚途徑由7步連續(xù)的酶促反應催化完成[34]。參與吲哚途徑的酶均已被報道,其中參與第一步反應的鄰氨基苯甲酸合成酶(anthranilate synthase, AS)和參與最后一步反應的色氨酸脫羧酶(tryptophan decarboxylase,TDC)是該途徑的主要調節(jié)節(jié)點。AS蛋白由2個大亞基和2個小亞基組成,α大亞基與形成鄰氨基苯甲酸有關,β小亞基與形成氨基有關。1984年, Noe等[35]完成了TDC的首次分離純化,該酶存在于植物細胞的細胞質中,只在葉片的上表皮細胞中表達[36]。

由類萜途徑而來的裂環(huán)馬錢子苷(secologanin)和由吲哚途徑而來的色胺(tryptamine),在異胡豆苷合成酶(strictosidine synthase, STR)的催化作用下偶合生成3α (S)異胡豆苷[3α (S)strictosidine][38]。3α (S)異胡豆苷是長春花TIA生物合成中一個重要的中間產物,是形成多種TIA的關鍵前體物質,所以STR是長春花TIA整個代謝合成途徑中最為重要的一個關鍵酶 [39],該酶的活性還受到反應終產物文多靈、長春質堿和阿瑪堿等的反饋抑制[40]。

1.3 文多靈途徑 文多靈途徑(vindoline pathway) 被認為是產生雙吲哚類生物堿的限速步驟,它的合成由3α (S)異胡豆苷經過水甘草堿(tabersonine)及隨后進行的6步連續(xù)的酶促反應催化而成[4748]。首先,水甘草堿在其羥化酶(tabersonine 16hydroxylase 2, T16H2)的酶促作用下芳烴羥化,生成16羥基水甘草堿(16hydroxytabersonine),隨后16羥基水甘草堿在甲基氧化酶(16Omethyltransferase, 16OMT)作用下生成16甲氧基水甘草堿(16methoxytabersonine)[4344]。文多靈生物合成的第3步反應是通過水甘草堿3加氧酶(tabersonine 3oxygenase,T3O)和水甘草堿3還原酶(tabersonine 3reductase,T3R)的協(xié)同作用將16甲氧基水甘草堿轉化為16甲氧基2,3二氫3羥基水甘草堿(16methoxy2,3dihydro3hydroxytabersonine);接下來第3步的產物在N甲基轉移酶 (Nmethyltransferase,NMR)的催化作用下生成去乙酰氧基文多靈(desacetoxyvindoline);第5步反應是去乙酰氧基文多靈在羥化酶(desacetoxyvindoline4hydroxylase, D4H)的作用下生成去乙酰文多靈(deacetylvindoline);最后在去乙酰文多靈4O乙酰轉移酶(deacetylvindoline4Oacetyltransferase, DAT)[45]的作用下進一步生成文多靈(vindoline)[4344]。文多靈途徑中水甘草堿16羥化酶(tabersonine 16hydroxylase2, T16H2)、去乙酰氧基文多靈4羥化酶(desacetoxyvindoline4hydroxylase, D4H)和去乙酰文多靈4O乙酰轉移酶(deacetylvindoline4Oacetyltransferase, DAT)是該途徑中的關鍵酶[4145]。

1.4 長春質堿途徑 在異胡豆苷βD型葡萄糖苷酶(strictosidine βDglucosidase, SGD)的催化下,經TIA上游代謝途徑產生的前體物質3α (S)異胡豆苷可以水解生成葡萄糖和cathenamine[41]。cathenamine化學性質不穩(wěn)定,通過不同的分支途徑,逐漸形成阿瑪堿(ajmalicine)、水甘草堿(tabersonine)[49]和長春質堿(catharanthine),阿瑪堿在過氧化物酶的作用下進一步生成蛇根堿(serpentine)。目前,對長春花體內長春質堿合成的研究還很少,從cathenamine到長春質堿分支途徑中許多酶和基因還沒有被分離和克隆出來,有待進一步研究。

1.5 雙吲哚生物堿(長春堿和長春新堿)的生物合成 雙吲哚生物堿長春堿和長春新堿可由單萜類生物堿長春質堿和文多靈偶合生成中間產物α3,4脫水長春堿(α3,4anhydrovinblastine)[50],然后轉化為長春堿,長春堿再生成長春新堿。2008年Costa等[46]在長春花中克隆到了1個PRX1基因,該基因存在于長春花葉片中,故命名為CrPRX1。CrPRX1與脫水長春堿合成酶基因具有相似性,進一步驗證表明該基因參與長春質堿和文多靈偶合生成長春堿和長春新堿的反應,屬于Class Ⅲ過氧化物酶基因。至今,α3, 4脫水長春堿到長春堿和長春新堿的轉化仍不清楚,有待進一步研究。

2 長春花萜類吲哚生物堿代謝途徑的調控

TIA代謝途徑是一條復雜的,受到高度調控的代謝通路,包含至少35個中間產物,36個催化反應的酶(表1),18個調控基因(表2),以及若干細胞組分[5153]。對于該途徑調控機制的深入研究和解讀能有效利用代謝工程技術提高通路基因的表達及生物堿的產量。盡管TIA合成途徑的調控機制非常復雜,但相關研究已經證實了一些信號分子,諸如真菌誘導子(YE)、茉莉酸(JA)、乙烯、一氧化氮(NO)以及水楊酸等,通過協(xié)同或拮抗的方式介導了TIA生物合成的調控[54]。

關于TIA途徑的最直接的調控發(fā)生在轉錄水平。轉錄因子與特異的元件結合并調控相應基因的表達是TIA生物合成調控的一種主要機制。轉錄因子通常受到信號分子和其他元件的調控。近年,研究者在鑒定調控TIA代謝途徑的轉錄因子及闡明其調控機制方面做了大量的努力。

最著名的轉錄因子是硬脂酸應答的長春花AP2/ERF(octadecanoidresponsive Catharanthus AP2/ERF, ORCA)轉錄因子,包括ORCA1,ORCA2和ORCA3,同屬于AP2/ERF轉錄因子家族。其中, ORCA3轉錄因子的研究最為深入,它的表達受JA和YE的誘導。在長春花毛狀根中過表達ORCA3會提高一些TIA代謝途徑催化酶編碼基因(AS,TDC,DXS,CPR,G10H,SLS,STR,SGD以及D4H)的表達水平,同時也相應的提高了一些TIA的產量[55]。此外,在長春花懸浮細胞中過表達ORCA3同樣會提高AS,TDC,DXS,CPR,STR和D4H等基因的表達水平[56]。

采用STR啟動子進行酵母單雜交篩選的結果表明ORCA2激活STR啟動子,同時在JA和YE的誘導下其表達量迅速提高;相反,ORCA1的表達則不參與受JA和YE誘導的STR啟動子的表達調控[38]。最近的一項研究表明,長春花毛狀根中過表達ORCA2會提高AS,TDC,G10H,SLS,D4H,T16H和PRX1基因的表達水平[57]。除了3個ORCAs轉錄因子以外,其他轉錄因子如長春花box Pbinding factor(CrBPF1)同樣可以結合STR啟動子,但結合部位與ORCAs并不相同。研究表明CrBPF1會在ORCAs已經結合到啟動子區(qū)的基礎上進一步增強STR基因的表達[58]。CrMYC1[41]和CrMYC2[42]是基本的helixloophelix轉錄因子。JA和YE可誘導CrMYC1和STR基因的mRNA水平升高,表明CrMYC1激活了STR基因的表達[59]。CrMYC2被認為作用于ORCA2和ORCA3上游的順式作用元件并激活它們的轉錄[60]。CrMYC1和CrMYC2這2個轉錄因子都受到JA和YE的誘導,然而只有CrMYC1對真菌誘導子做出響應。

ORCA2,ORCA3,CrBPF1,CrMYC1和CrMYC2對于TIA生物合成基因來說都屬于轉錄增強因子,除此之外,一些轉錄抑制因子也受到了關注。長春花中Cys2/His2type鋅指蛋白家族的3個成員ZCT1,ZCT2和ZCT3抑制TDC和STR啟動子的活性,同時受到ORCA2和ORCA3的激活。此外,ZCT蛋白還會抑制ORCAs的AP2/ERF結構域的活性[61]。除了ZCT蛋白,Gbox結合因子(GBF1和GBF2)也是STR基因表達的抑制因子[62]。

CrWRKY1和CrWRKY2是JA應答的WRKY轉錄因子,可以激活TIA合成途徑中若干基因的表達[6364]。長春花毛狀根中過表達CrWRKY1使TDC表達水平上調,同時也使轉錄抑制因子ZCT1,ZCT2和ZCT3的表達水平上調,并下調了轉錄激活因子ORCA2,ORCA3和CrMYC2的表達水平[63]。與此相反,長春花毛狀根中過表達CrWRKY2使TDC,NMT,DAT和MAT的表達水平提高了,同時還提高了轉錄激活因子ORCA2,ORCA3和CrMYC2以及轉錄抑制因子ZCT1,ZCT2和ZCT3的表達水平。

MPK3是長春花細胞內的信號途徑中一個重要的轉錄因子[72],被不同的壓力觸發(fā)。MPK3在長春花葉片中過表達提高了ORCA3和TIA合成途徑中關鍵基因的表達水平,并且使蛇根堿、文多靈、長春質堿和長春新堿的含量增加。

3 TIA合成生物學研究

用植物細胞來生產TIA最大的限制是生長緩慢,采用微生物來異源合成TIA可以解決這一問題,并且相比于植物細胞培養(yǎng)能獲得更高的產量。此外,目的產物在培養(yǎng)基中,使得分離純化也相對容易。然而,長春花中TIA的生物合成途徑很復雜,要實現(xiàn)微生物異源合成TIA,要求途徑中所有的基因都已被鑒定,并且在微生物中有足夠的前體供應和無毒性產物的積累,目前,已有學者完成長春花中部分途徑的構建,完成了3α(S)異胡豆苷、cathenamine、文多靈的異源合成[7379]。

3α (S)異胡豆苷是吲哚生物堿生物合成的共同前體物質。Geerlings等[75]將STR和SGD基因共同導入釀酒酵母細胞,通過前體飼喂色胺和裂環(huán)馬錢子苷,經過2步反應,首次實現(xiàn)了異胡豆苷(主要產物)和cathenamine在釀酒酵母中的生產。裂環(huán)馬錢子苷相對昂貴,故可以使用雪果忍冬Symphoricarpus albus的提取物來提供裂環(huán)馬錢子苷(含有1%裂環(huán)馬錢子苷)、碳源和氮源;色胺相對廉價,故直接添加到培養(yǎng)基中。研究發(fā)現(xiàn)STR在胞內和胞外均有活性,SGD只在細胞內檢測到,通過飼喂色胺和裂環(huán)馬錢子苷,轉基因酵母培養(yǎng)基中異胡豆苷產量在3 d內達到2 g·L-1,胞內3α (S)異胡豆苷也被檢測到,但是含量相對較低(每個細胞達到0.2 mg·g-1),這是由于酵母細胞對底物色胺和裂環(huán)馬錢子苷的通透性低,對酵母細胞做通透化處理后,SGD能將裂環(huán)馬錢子苷完全水解為cathenamine。cathenamine是許多單萜吲哚類生物堿的重要來源,如阿瑪堿。2014年,Brown 等[79]在酵母中成功重構了3α (S)異胡豆苷合成途徑,利用hydroxymethylglutarylCoA與色氨酸為前體物質實現(xiàn)了3α (S)異胡豆苷的合成。在釀酒酵母中引入了TIA途徑相關的基因,它們分別為tHMGR,IDI1,GES,G8H,GOR,ISY,IO,7DLGT,7DLH,LAMT,SLS,STR,TDC,ADH2,ADH1,ALDH1,為了增強途徑酶基因的表達水平,額外引入了7個基因,分別為MAF1,AgGPPS2,mFPS144,SAM2,ZWF1,CPR,CYB5;為了減少途徑中間產物的消耗,刪除了3個基因,分別為ATF1,OYE2,ERG20。盡管3α (S)異胡豆苷的產量很低(0.5 mg·L-1),但是實現(xiàn)3α (S)異胡豆苷在酵母中的從頭合成為接下來下游TIA的合成奠定了堅實的基礎。

長春質堿及文朵靈是長春花堿生物合成途徑中的2個直接前體物質,但是長春質堿的生物合成途徑并不完全清晰,而文朵靈的生物合成路徑以解析較為深入,因此,常利用水甘草堿進行文多靈的合成。文多靈途徑中從16methoxytabersonine到16methoxy2,3dihydro3hydroxytabersonine的步驟是文多靈途徑中唯一未知的反應,隨著T3O (tabersonine 3oxygenase)和T3R(tabersonine 3reductase)基因的鑒定,Qu等[78]完成了從水甘草堿到文多靈7個基因(T16H,16OMT,D4H,DAT,NMT,T3O,T3R)途徑在酵母的組裝,實現(xiàn)了在酵母中生產抗癌藥物前體文多靈。

將長春花中的基因轉入其他植物,也能實現(xiàn)生物堿或其前體的合成,例如Hallard等[73]將長春花中的TDC和STR基因分別轉入煙草細胞和諾麗細胞,通過TDC和STR基因過表達,將3α (S)異胡豆苷的產量分別增加到5.3,21.2 mg·L-1。Chavadej等[74]將長春花TDC基因轉入甘藍型油菜,轉基因植物成熟的種子減少了吲哚類硫苷的產生,增強了經濟學價值。Miettinen等[77]鑒定了長春花馬錢子苷途徑中的4個酶(8HGO,IO,7DLGT,7DLH),證明了香葉醇通過4個不同的細胞色素P450酶、2個不同的氧化還原酶、1個葡萄糖轉移酶和1個甲基轉移酶的連續(xù)反應轉化為裂環(huán)馬錢子苷。結合TDC與STR酶,在異源植物煙草中重構了整個MIA途徑,實現(xiàn)重要前體3α (S)異胡豆苷的合成。

4 展望

長春花TIA類抗腫瘤藥物在腫瘤疾病治療上具有顯著和獨特的療效,已成為抗腫瘤類藥物中不可替代的藥物之一,其生物合成的分子生物學研究一直備受關注。目前,代謝途徑研究雖然取得了一些進展,但是長春花TIA合成途徑路線復雜、步驟繁瑣,至今還未被完全解析。伴隨著本草基因組學(herbgenomics)的發(fā)展,綜合運用各種組學技術,參與各步反應的酶及其基因的表達與調控以及各代謝途徑之間的相互聯(lián)系將逐漸被解析[8081]。同時,隨著合成生物學技術的不斷進步,使得在微生物或其他植物中高效合成 TIA或其重要中間產物成為可能,進而推動TIA類藥物的研發(fā)。

[參考文獻]

[1] Almagro L, FernándezPérez F, Pedreo M A. Indole alkaloids from Catharanthus roseus:bioproduction and their effect on human health [J]. Molecules, 2015, 20(2):2973.

[2] Zhu J, Wang M, Wen W, et al. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus [J].Pharmacogn Rev, 2015, 9(17):24.

[3] Verma P, Mathur A K, Srivastava A, et al. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update [J]. Protoplasma, 2012, 249(2):255.

[4] 盧懿, 侯世祥, 陳彤. 長春花抗癌成分長春新堿研究的進展 [J]. 中國中藥雜志, 2003,28(11):1006.

[5] Pandey S S, Singh S, Babu C S, et al. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis [J]. Sci Rep, 2016, 6:26583.

[6] Benyammi R, Paris C, KhelifiSlaoui M. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots [J]. Pharm Biol, 2016, 54(10):2033.

[7] Liu D H, Jin H B, Chen Y H, et al. Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus [J].J Integr Plant Biol, 2007, 49(7):961.

[8] Liu Y, Wang H, Ye H C, et al. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering [J]. J Integr Plant Biol, 2005, 47(7):769.

[9] 孫敏, 曾建軍. 長春花毛狀根培養(yǎng)及抗癌生物堿產生的研究[J]. 中國中藥雜志, 2005, 30(10):741.

[10] Wang B, Liu L, Chen Y Y, et al. Monoterpenoid indole alkaloids from Catharanthus roseus cultivated in Yunnan[J].Nat Prod Commun, 2015, 10(12):2085.

[11] MaldonadoMendoza I E, Burnett R J, Nessler C L. Nucleotide sequence of a cDNA encoding 3hydroxy3methylglutaryl coenzyme A reductase from Catharanthus roseus [J]. Plant Physiol, 1992, 100(3):1613.

[12] Simkin A J, Guirimand G, Papon N, et al. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta [J]. Planta, 2011, 234(5):903.

[13] Rohdich F, Kis K, Bacher A, et al. The nonmevalonate pathway of isoprenoids:genes, enzymes and intermediates [J]. Curr Opin Chem Biol, 2001, 5(5):535.

[14] Guirimand G, Guihur A, Phillips M A, et al. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus [J]. Plant Mol Biol, 2012, 79(4/5):443.

[15] Han M, Heppel S C, Su T, et al. Enzyme inhibitor studies reveal complex control of methylDerythritol 4phosphate (MEP) pathway enzyme expression in Catharanthus roseus [J]. PLoS ONE, 2013, 8(5):e62467.

[16] Chahed K, Oudin A, Guivarc′h N, et al. 1DeoxyDxylulose 5phosphate synthase from periwinkle:cDNA identification and induced gene expression in terpenoid indole alkaloidproducing cells [J]. Plant Physiol Biochem, 2000, 38(7):559.

[17] Veau B, Courtois M, Oudin A, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus [J]. Biochim Biophys Acta, 2000, 1517(1):159.

[18] Eisenreich W, Bacher A, Arigoni D, et al. Biosynthesis of isoprenoids via the nonmevalonate pathway [J]. Cell Mol Life Sci, 2004, 61(12):1401.

[19] der Heijden R. Isopentenyl diphosphate isomerase:a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function [J]. Nat Prod Rep, 1997, 14(6):591.

[20] Ginis O, Courdavault V, Melin C, et al. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4diphosphate synthase gene promoter from the methyl erythritol phosphate pathway [J]. Mol Biol Rep, 2012, 39(5):5433.

[21] Meijer A H, Lopes Cardoso M I, Voskuilen J T, et al. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P450 reductase, an enzyme essential for reactions catalysed by cytochrome P450 monooxygenases in plants [J]. Plant J, 1993, 4(1):47.

[22] Simkin A J, Miettinen K, Claudel P, et al. Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma [J]. Phytochemistry,2013, 85:36.

[23] Dubey V S, Bhalla R, Luthra R. An overview of the nonmevalonate pathway for terpenoid biosynthesis in plants [J]. J Biosci, 2003, 28(5):637.

[24] Collu G, Unver N, PeltenburgLooman A M, et al. Geraniol 10hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis[J]. FEBS Lett, 2001, 508(2):215.

[25] Krithika R, Srivastava P L, Rani B, et al. Characterization of 10hydroxygeraniol dehydrogenase from catharanthusroseus reveals cascaded enzymatic activity in iridoid biosynthesis [J]. Sci Rep, 2015, 5:8258.

[26] GeuFlores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis [J]. Nature, 2012, 492(7427):138.

[27] Jennifer M, Jacob P, Karel M, et al. Iridoid synthase activity is common among the plant progesterone 5breductase family [J]. Mol Plant, 2015, 8(1):136.

[28] Salim V, Wiens B, MasadaAtsumi S, et al. 7Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis [J]. Phytochemistry, 2014, 101:23.

[29] Asada K, Salim V, MasadaAtsumi S, et al. A 7deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle [J]. Plant Cell, 2013, 25(10):4123.

[30] Salim V, Yu F, Altarejos J, et al. Virusinduced gene silencing identifies catharanthusroseus 7deoxyloganic acid7hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis [J]. Plant J, 2013, 76(5):754.

[31] Murata J, Roepke J, Gordon H, et al. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization [J]. Plant Cell, 2008, 20(3):524.

[32] Vetter H P, Mangold U, Schrder G, et al. Molecular analysis and heterologous expression of an inducible cytochrome P450 protein from periwinkle (Catharanthus roseus L.) [J]. Plant Physiol,1992, 100(2):998.

[33] Irmler S, Schrder G, StPierre B, et al. Indole alkaloid biosynthesis in Catharanthus roseus:new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase [J]. Plant J, 2000, 24(6):797.

[34] Poulsen C, Verpoorte R. Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants [J]. Phytochemistry, 1991, 30(2):377.

[35] Noé W, Mollenschott C, Berlin J. Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures:purification, molecular and kinetic data of the homogenous protein [J]. Plant Molecular Biology, 1984, 3(5):281.

[36] VázquezFlota F A, StPierre B, De Luca V. Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings[J]. Phytochemistry, 2000, 55(6):531.

[37] De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase:comparison with animal dopa decarboxylases [J]. Proc Natl Acad Sci USA, 1989, 86(8):2582.

[38] McKnight T D, Roessner C A, Devagupta R, et al. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus [J]. Nucleic Acids Res, 1990, 18(16):4939.

[39] Yamazaki Y, Sudo H, Yamazaki M, et al. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila:cloning, characterization and differential expression in tissues and by stress compounds [J]. Plant Cell Physiol, 2003, 44(4):395.

[40] Treimer J F, Zenk M H. Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation [J].Eur J Biochem, 1979, 101(1):225.

[41] Geerlings A, Ibaez M M, Memelink J, et al. Molecular cloning and analysis of strictosidine βDglucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. J Biol Chem, 2000, 275(5):3051.

[42] Guirimand G, Guihur A, Poutrain P, et al. Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus [J]. J Plant Physiol, 2011, 168(6):549.

[43] Qu Y, Easson M L, Froese J, et al. Completion of the sevenstep pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast [J]. Proc Natl Acad Sci USA, 2015, 112(19):6224.

[44] Levac D, Murata J, Kim W S, et al. Application of carborundum abrasion for investigating the leaf epidermis:molecular cloning of Catharanthus roseus 16hydroxytabersonine16Omethyltransferase [J]. Plant J, 2008, 53(2):225.

[45] StPierre B, Laflamme P, Alarco A M, et al. The terminal Oacetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme Adependent acyl transfer [J]. Plant J, 1998, 14(6):703.

[46] Costa M M, Hilliou F, Duarte P, et al. Molecular cloning and characterization of a vacuolar class Ⅲ peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus [J]. Plant Physiol, 2008, 146(2):403.

[47] Balsevich J, DeLuca V, Kurz W G W. Altered alkaloid pattern in dark grown seedlings of Catharanthus roseus:the isolation and characterization of 4desacetoxyvindoline:a novel indole alkaloid and proposed precursor of vindoline [J]. Heterocycles, 1986, 24(9):2415.

[48] Murata J, Luca V D. Localization of tabersonine 16hydroxylase and 16OH tabersonine16Omethyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus [J]. Plant J, 2005, 44(4):581.

[49] Hemscheidt T, Zenk M H. Glucosidases involved in indole alkaloid biosynthesis of Catharanthus roseus cell cultures [J]. FEBS Lett, 1980, 110(2):187.

[50] Rischer H, Oresic M, SeppnenLaakso T, et al. Genetometabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells [J]. Proc Natl Acad Sci USA, 2006, 103(14):5614.

[51] van Der Heijden R, Jacobs D I, Snoeijer W, et al. The Catharanthus alkaloids:pharmacognosy and biotechnology [J].Curr Med Chem, 2004, 11(5):607.

[52] Facchini P J, De Luca V. Opium poppy and Madagascar periwinkle:model nonmodel systems to investigate alkaloid biosynthesis in plants [J].Plant J, 2008, 54(4):763.

[53] Burlat V, Oudin A, Courtois M, et al. Coexpression of three MEP pathway genes and geraniol 10hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoidderived primary metabolites [J]. Plant J, 2004, 38(1):131.

[54] ElSayed M, Verpoorte R. Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators [J]. Plant Growth Regul, 2004, 44(1):53.

[55] Peebles C A, Hughes E H, Shanks J V, et al.Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time [J].Metab Eng, 2009, 11(2):76.

[56] van der Fits L, Memelink J. Memelink, ORCA3, a jasmonateresponsive transcriptional regulator of plant primary and secondary metabolism [J]. Science, 2000, 289(5477):295.

[57] Li C Y, Leopold A L, Sander G W, et al. The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway [J]. BMC Plant Biol, 2013, 13:155.

[58] van der Fits L, Zhang H, Menke F L, et al. A Catharanthus roseus BPF1 homologue interacts with an elicitorresponsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JAindependent signal transduction pathway [J]. Plant Mol Biol, 2000, 44(5):675.

[59] Chatel G, Montiel G, Pré M, et al. CrMYC1, a Catharanthus roseus elicitorand jasmonateresponsive bHLH transcription factor that binds the Gbox element of the strictosidine synthase gene promoter [J]. J Exp Bot, 2003, 54(392):2587.

[60] Zhang H, Hedhili S, Montiel G, et al. The basic helixloophelix transcription factor CrMYC2 controls the jasmonateresponsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus [J]. Plant J, 2011, 67(1):61.

[61] Pauw B, Hilliou F A, Martin V S, et al. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus [J]. J Biol Chem, 2004, 279(51):52940.

[62] Sibéril Y, Benhamron S, Memelink J, et al.Catharanthus roseus Gbox binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures [J]. Plant Mol Biol, 2001, 45(4):477.

[63] Suttipanta N, Pattanaik S, Kulshrestha M, et al. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus [J]. Plant Physiol,2011, 157(4):2081.

[64] Yang Z, Patra B, Li R, et al.Promoter analysis reveals cisregulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus [J].Planta, 2013, 238(6):1039.

[65] Menke F L, Champion A, Kijne J W, et al. A novel jasmonateand elicitorresponsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonateand elicitorinducible AP2domain transcription factor, ORCA2 [J]. EMBO J, 1999, 18(16):4455.

[66] Dutta A, Sen J, Deswal R, et al. Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type Crepeat binding factor (CBF) from Catharanthus roseus (L). G. Don [J]. Plant Cell Rep, 2007, 26(10):1869.

[67] Van Moerkercke A, Steensma P, Schweizer F, et al.The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus [J]. Proc Natl Acad Sci USA, 2015, 12(26):8130.

[68] Van Moerkercke A, Steensma P, Gariboldi I. The basic helixloophelix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus [J]. Plant J, 2016, doi:10.1111/tpj.13230.

[69] Li C Y, Leopold A L, Sander G W, et al. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes [J]. Front Plant Sci, 2015, 6:818.

[70] Sibéril Y, Doireau P, Gantet P. Plant bZIP Gbox binding factors. Modular structure and activation mechanisms [J]. Eur J Biochem, 2001, 268(22):5655.

[71] VomEndt D, Soares e Silva M, Kijne J W, et al. Identification of a bipartite jasmonateresponsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with ATHook DNAbinding proteins [J]. Plant Physiol, 2007, 144(3):1680.

[72] Raina S K, Wankhede D P, Jaggi M, et al. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids [J]. BMC Plant Biol, 2012, 12:134.

[73] Hallard D, van der Heijden R, Verpoorte R, et al. Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon feeding of secologanin [J]. Plant Cell Rep, 1997, 17, 50.

[74] Chavadej S, Brisson N, McNeil J N.Redirection of tryptophan leads to production of low indole glucosinolatecanola [J]. Proc Natl Acad Sci USA, 1994, 91:2166.

[75] Geerlings A, Redondo F J, Contin A, et al. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast [J]. Appl Microbiol Biotechnol, 2001, 56:420.

[76] Zhu X, Zeng X, Sun C, et al. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus [J]. Front Med, 2014, 8(3):285.

[77] Miettinen K, Dong L, Navrot N, et al. The secoiridoid pathway from Catharanthus roseus [J]. Nat Commun, 2014, 5:3606.

[78] Qu Y, Easson M L, Froese J, et al.Completion of the sevenstep pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast [J]. Proc Natl Acad Sci USA, 2015, 112(19):6224.

[79] Brown S, Clastre M, Courdavault V, et al. De novo production of the plantderived alkaloid strictosidine in yeast [J]. Proc Natl Acad Sci USA, 2015, 112(11):3205.

[80] 陳士林,宋經元.本草基因組學[J]. 中國中藥雜志, 2016, 41(21):3381.

[81] Chen S L, Song J Y, Sun C, et al. Herbal genomics:examining the biology of traditional medicines [J]. Science, 2015, 347(6219 Suppl):S27.

[責任編輯 孔晶晶]

猜你喜歡
長春花
不同叢枝菌根真菌對長春花生長和養(yǎng)分吸收的影響
一盆長春花
綻放四季的長春花
長春花不同細胞培養(yǎng)物中一氧乙?;伛R地寧的水解過程
長春花之歌
均勻設計實驗對長春花愈傷組織誘導條件的優(yōu)化
長春花組織培養(yǎng)研究進展
6-BA對長春花幼苗生長的影響