肖婷綜述容松審校
(遵義醫(yī)學(xué)院附屬醫(yī)院腎內(nèi)科,貴州遵義563003)
·綜述·
腎缺血再灌注損傷中蛋白激酶C對(duì)巨噬細(xì)胞的影響
肖婷綜述容松審校
(遵義醫(yī)學(xué)院附屬醫(yī)院腎內(nèi)科,貴州遵義563003)
缺血再灌注損傷是器官移植不可避免的反應(yīng)過程,其病理生理機(jī)制包括細(xì)胞凋亡、氧自由基生成、免疫系統(tǒng)活化、微血管功能障礙等。其中先天免疫是機(jī)體防御的第一道防線,也是關(guān)鍵環(huán)節(jié),而巨噬細(xì)胞是腎臟缺血性先天免疫早期重要的起動(dòng)子,在缺血再灌注損傷中發(fā)揮雙劍作用。因此,在早期減輕巨噬細(xì)胞的浸潤是目前的研究熱點(diǎn)。而蛋白激酶C抑制劑能通過多途徑作用減少移植腎內(nèi)的巨噬細(xì)胞浸潤,但目前具體機(jī)制尚不完全清楚。
腎缺血再灌注損傷;先天免疫;巨噬細(xì)胞;蛋白激酶C
缺血再灌注損傷(ischemia-reperfusion injury,IRI)是指組織器官缺血再灌注后其組織細(xì)胞代謝障礙,從而導(dǎo)致結(jié)構(gòu)和功能的破壞,是器官移植后不可避免的反應(yīng)過程,也是移植物失功的主要病理機(jī)制,因此如何減輕這種損傷一直是器官移植研究的熱點(diǎn),也是難點(diǎn)。IRI的病理生理機(jī)制復(fù)雜,影響因素包括能量代謝障礙、胞內(nèi)線粒體及胞膜改變、不同形式的細(xì)胞死亡、趨化因子、細(xì)胞因子等促進(jìn)炎癥反應(yīng)發(fā)生并導(dǎo)致免疫系統(tǒng)活化,而炎癥的持續(xù)存在最終導(dǎo)致移植物進(jìn)行性纖維化[1]。有觀點(diǎn)認(rèn)為先天免疫反應(yīng)是IRI的關(guān)鍵部分[2],了解先天免疫反應(yīng)及器官移植后同種免疫反應(yīng)是優(yōu)化移植物長期結(jié)果的關(guān)鍵[3]。而巨噬細(xì)胞在腎臟缺血再灌注損傷的固有免疫及獲得性免疫中都擁有重要作用[4]。目前認(rèn)為巨噬細(xì)胞至少有兩種表型:經(jīng)典活化M1型參與促炎反應(yīng),選擇性活化M2型參與抗炎反應(yīng)[5]。因此在損傷早期減少巨噬細(xì)胞浸潤,能減輕移植物損傷。查閱相關(guān)文獻(xiàn)及本實(shí)驗(yàn)小組前期實(shí)驗(yàn)均發(fā)現(xiàn),蛋白激酶C(protein kinase C,PKC)抑制劑能阻止巨噬細(xì)胞向腎間質(zhì)浸潤,并進(jìn)一步深入研究發(fā)現(xiàn)PKCβ及ε缺失對(duì)單核巨噬細(xì)胞早期浸潤有阻礙作用[6-7]。但其具體作用機(jī)制及是通過巨噬細(xì)胞何種亞型對(duì)腎損傷產(chǎn)生保護(hù)作用尚不明確,有待進(jìn)一步研究。本文主要將探討PKC對(duì)巨噬細(xì)胞影響。
缺血再灌注損傷主要由器官血流動(dòng)力學(xué)受損引起。目前我國器官移植大部分供體來源于尸體,早在供體腦死亡時(shí)就已經(jīng)發(fā)生血流動(dòng)力學(xué)紊亂,隨后的器官采集、冷儲(chǔ)藏等都將引起器官缺血,從而導(dǎo)致組織缺氧、能量代謝障礙,乳酸堆積、胞內(nèi)ATP消耗,Na+-K+ATP酶失活,水鈉潴留,細(xì)胞腫脹、溶酶體膜破裂、細(xì)胞壞死[2];同時(shí)也導(dǎo)致Ca2+泵失活、鈣超載[8],鈣依賴的蛋白激酶如鈣激活中性蛋白酶活化。但奇怪的是再灌注后,血流恢復(fù)并沒有使之前受損的細(xì)胞得到改善,反而加重細(xì)胞損傷??赡芘c再灌注后活性氧(ROS)生成、線粒體失功、內(nèi)皮功能障礙和免疫系統(tǒng)活化有關(guān)。再灌注后線粒體復(fù)合物受損,導(dǎo)致過度活性氧生成并超出抗氧化清除能力[9]。反過來,活性氧破壞膜脂質(zhì)、蛋白質(zhì)和核酸導(dǎo)致細(xì)胞死亡[10]。此外,線粒體滲透性轉(zhuǎn)換孔(mPTP)接觸活性氧后開放并引起線粒體鈣增加,導(dǎo)致電化學(xué)梯度的中斷,解耦聯(lián)氧化磷酸化和ATP耗竭,滲透壓增加、線粒體腫脹、膜破裂導(dǎo)致細(xì)胞壞死、凋亡[11]。死亡的細(xì)胞刺激免疫系統(tǒng)活化,從而介導(dǎo)中性粒細(xì)胞、NK細(xì)胞、樹突細(xì)胞、巨噬細(xì)胞等活化并浸入組織釋放炎癥因子,同時(shí)模式識(shí)別受體(pattern recognition Receptors,PRRs)識(shí)別病原體相關(guān)分子模式(pathogenassociated molecular patterns,PAMPs)和損傷相關(guān)分子模式(damage-associated molecular patterns,DAMPs)、補(bǔ)體系統(tǒng)激活產(chǎn)生級(jí)聯(lián)放大效應(yīng),誘導(dǎo)移植物失功[1]。
移植物脈管系統(tǒng)對(duì)缺血再灌注損傷也十分敏感[12],事實(shí)上再灌注后缺血組織血流量并不是立即完全恢復(fù),這個(gè)過程稱為“無復(fù)流現(xiàn)象”,主要由于腎缺血缺氧后血管緊張素[13]、內(nèi)皮素等縮血管物質(zhì)生成增加,內(nèi)皮細(xì)胞腫脹及白細(xì)胞、纖維蛋白、血小板等在血管內(nèi)粘附聚集有關(guān)。在IRI中,受損活化的內(nèi)皮細(xì)胞也失去了屏障功能,滲透性增加、白細(xì)胞遷移[14]。此外,血液流動(dòng)停止已被證明由于KLF2的減少會(huì)導(dǎo)致內(nèi)皮功能損傷[15]。
最近有研究證實(shí),在IRI期間補(bǔ)體系統(tǒng)經(jīng)典及凝集素活化途徑均主要發(fā)生在內(nèi)皮細(xì)胞層[16],補(bǔ)體系統(tǒng)的啟動(dòng)及Akt(serine/threonine-specific protein kinase)途徑活化使得內(nèi)皮細(xì)胞獲得間葉細(xì)胞表型,誘導(dǎo)間質(zhì)纖維化并促進(jìn)慢性腎臟病的發(fā)展[17-18]。
缺血再灌注所致?lián)p傷主要有兩個(gè)階段:第一階段在器官移植后迅速發(fā)生,與缺血相關(guān)性損傷有關(guān);第二階段發(fā)生時(shí)間相對(duì)較晚,與IRI所致免疫系統(tǒng)活化并引起抗體介導(dǎo)和細(xì)胞介導(dǎo)的排斥反應(yīng)有關(guān)。而樹突細(xì)胞和巨噬細(xì)胞是腎臟先天免疫早期重要的起動(dòng)子,也銜接了炎癥后缺血再灌注損傷的發(fā)生[4]。它們是腎臟中最豐富的白細(xì)胞,能在再灌注后直接通過促炎因子及其他可溶性炎癥介質(zhì)調(diào)節(jié)因子的產(chǎn)生或直接通過效應(yīng)T淋巴細(xì)胞和自然殺傷T細(xì)胞誘導(dǎo)炎癥反應(yīng)[4]。有研究顯示在再灌注30 min內(nèi)即有中性粒細(xì)胞和巨噬細(xì)胞進(jìn)入腎臟,24~48 h內(nèi)達(dá)高峰[4]。通過免疫組織化學(xué)染色法檢測到在同種異體移植物排斥反應(yīng)中,巨噬細(xì)胞占浸潤白細(xì)胞的38%~60%[19]。
巨噬細(xì)胞有兩種主要表型:經(jīng)典活化M1型和選擇性活化M2型。再灌注24 h后巨噬細(xì)胞浸潤明顯增加[20]。在INF-γ及TNF-α誘導(dǎo)下其表型主要表現(xiàn)為M1型,激活后的M1型巨噬細(xì)胞促進(jìn)IL-1、IL-6、IL-23等促炎因子產(chǎn)生,導(dǎo)致炎癥反應(yīng)及組織損傷[21];同時(shí)高表達(dá)誘導(dǎo)型一氧化氮合酶(iNOS),iNOS分解精氨酸為瓜氨酸和一氧化氮(NO),大量生成的NO引起組織損傷[22]。同時(shí)M1型巨噬細(xì)胞能在IL-6及IL-23刺激下活化輔助性T細(xì)胞17(Th17)[21],Th17是一種新發(fā)現(xiàn)的能夠分泌IL-17的T細(xì)胞亞群,而IL-17可以促進(jìn)T細(xì)胞激活并刺激上皮細(xì)胞、內(nèi)皮細(xì)胞、成纖維細(xì)胞等產(chǎn)生多種細(xì)胞因子從而導(dǎo)致炎癥的產(chǎn)生。
當(dāng)巨噬細(xì)胞受IL-4誘導(dǎo)時(shí)表型轉(zhuǎn)換為M2型。IL-4或者IL-13通過與其受體IL-14Rα結(jié)合激活JAK-STAT6轉(zhuǎn)導(dǎo)通路[23-24],調(diào)節(jié)M2效應(yīng)子如精氨酸酶-1(Arg-1)等表達(dá)上調(diào),而精氨酸酶能與iNOS競爭性結(jié)合精氨酸,裂解精氨酸為多胺和脯氨酸,促進(jìn)細(xì)胞分裂和膠原形成,對(duì)炎癥后期造成的組織損傷進(jìn)行修復(fù)和重塑[25]。同時(shí)M2型巨噬細(xì)胞也能通過IL-4/ IL-13刺激誘導(dǎo)產(chǎn)生甘露糖受體(MMR)及IL-10[26]。MMR屬C型凝集素超家族中多糖識(shí)別域家族成員,在天然免疫防御發(fā)揮重要作用,同時(shí)參與抗原提呈、誘導(dǎo)并調(diào)控獲得性免疫應(yīng)答。
3.1 蛋白激酶C概述PKC是絲氨酸/蘇氨酸蛋白激酶家族主要成員,它與蛋白激酶A(cAMP-dependent protein kinase,PKA)和蛋白激酶G(cGMP-dependent protein kinase,PKG)共同構(gòu)成絲氨酸/蘇氨酸蛋白激酶AGC(PKA、PKG和PKC)超家族。PKC包括至少10個(gè)同工酶(原認(rèn)為12個(gè))[PKCα、βI、βII、γ、δ、ε、η(L)、θ及ζ和λ],由單一多肽鏈組成,其結(jié)構(gòu)由高度同源性的4個(gè)保守區(qū)(C1~C4)和低度同源性的5個(gè)可變區(qū)(V1~V5)組成,可變區(qū)在特定PKC同工酶亞型的識(shí)別和激活中起作用。正常情況下PKC處于非活化狀態(tài),其依賴于Ca2+、乙?;视?、磷脂酰絲氨酸或其類似物佛波酯刺激而激活,催化蛋白質(zhì)內(nèi)絲氨酸/蘇氨酸殘基磷酸化,從而進(jìn)行信息傳導(dǎo),是細(xì)胞肌醇磷脂信號(hào)通路的關(guān)鍵環(huán)節(jié),在細(xì)胞遷移、增殖、凋亡和離子通道調(diào)制上均起著重要的作用[27]。其在各組織、器官中均有廣泛表達(dá),在腎臟中表達(dá)也非常廣泛,有大量研究表明同工酶α、βI、δ、ε、ζ、λ均能在腎臟中檢測到(PKCβII主要表達(dá)于腎間質(zhì)細(xì)胞)[28],并參與調(diào)控腎小球的血流動(dòng)力學(xué)[29]及腎小管[30]、集合管的轉(zhuǎn)運(yùn)機(jī)制[31-32]。
3.2 蛋白激酶C與巨噬細(xì)胞國內(nèi)外相關(guān)文獻(xiàn)及實(shí)驗(yàn)研究結(jié)果,表明PKCβ抑制劑能減少巨噬細(xì)胞浸潤,從而達(dá)到腎保護(hù)效應(yīng)。本課題小組的前期實(shí)驗(yàn)也證實(shí)了此觀點(diǎn),并進(jìn)一步研究發(fā)現(xiàn)PKCβ缺失對(duì)單核巨噬細(xì)胞早期浸潤有阻礙作用[7]。
有報(bào)道在缺血缺氧條件下脂代謝受到阻礙,總膽固醇、二酰甘油增加[33],增加的二酰甘油刺激PKC活化增加。而激活的PKC能在GM-CSF及IL-4的誘導(dǎo)下刺激CD14+單核細(xì)胞分別向巨噬細(xì)胞/樹突細(xì)胞分化[34],并與單核細(xì)胞初始粘附于血管壁和纖維蛋白原有關(guān),而單核細(xì)胞粘附于內(nèi)皮細(xì)胞是血管損傷的第一步。另有研究顯示,巨噬細(xì)胞在趨化因子如MCP-1等的趨化下進(jìn)入腎間質(zhì),從而引起小管間質(zhì)損傷,而骨橋蛋白介導(dǎo)這一趨化作用,PKC則介導(dǎo)骨橋蛋白表達(dá)[35]。Lin等[34]的研究已經(jīng)證實(shí)在高糖條件下微血管系統(tǒng)中主要活化的是PKCβ,而PKCβ抑制劑能阻止單核細(xì)胞向內(nèi)皮細(xì)胞粘附,顯著改善糖尿病微血管并發(fā)癥。同樣Kelly等[35]發(fā)現(xiàn)在高糖條件下PKCβ抑制劑也能減少骨橋蛋白的表達(dá),同時(shí)能降低MCP-1、ED-1表達(dá)[36],從而抑制巨噬細(xì)胞及其他炎性細(xì)胞浸潤。另有報(bào)道發(fā)現(xiàn)巨噬細(xì)胞暴露于細(xì)菌脂多糖(LPS)時(shí)活化PKC,而用各種PKC同工酶抑制劑證實(shí)PKC是巨噬細(xì)胞許多功能(如IL-1、TNF-α、NO產(chǎn)生及抗腫瘤細(xì)胞活性)所必須的,并進(jìn)一步研究發(fā)現(xiàn)主要是PKCβI及βII的活化促進(jìn)了巨噬細(xì)胞中LPS誘導(dǎo)的細(xì)胞毒性作用和一氧化氮產(chǎn)生[37]。而Picinich等[38]的實(shí)驗(yàn)表明IL-8信號(hào)通路可激活PKC,應(yīng)用PKC抑制劑可以明顯抑制IL-8的表達(dá)[39],IL-8主要由巨噬細(xì)胞和上皮細(xì)胞分泌,是一個(gè)非常重要的炎癥趨化因子。
綜上所述,PKC抑制劑對(duì)巨噬細(xì)胞的影響主要有幾個(gè)方面:①阻止單核細(xì)胞向巨噬細(xì)胞分化;②阻止巨噬細(xì)胞粘附于血管壁,從而減輕血管損傷;③減少趨化因子表達(dá),從而減少巨噬細(xì)胞向阻止浸潤;④降低IL-8等巨噬細(xì)胞分泌的炎性因子的表達(dá);⑤直接抑制巨噬細(xì)胞誘導(dǎo)的細(xì)胞毒性作用。
在過去的20年里,已經(jīng)有大量研究表明在進(jìn)行性的腎損傷中巨噬細(xì)胞起著關(guān)鍵作用,在腎缺血再灌注損傷中也不例外。巨噬細(xì)胞主要有兩種表型:經(jīng)典促炎M1型及抗炎M2型。其中M1型的主要損傷機(jī)制包括啟動(dòng)免疫應(yīng)答、釋放氧自由基、炎癥因子及包括TGF-β1在內(nèi)的生長因子,其中TGF-β是腎纖維化的關(guān)鍵致病因子之一;而M2型主要產(chǎn)生精氨酸酶-1、甘露糖受體及胰島素樣生長因子等,從而促進(jìn)損傷組織修復(fù)。因此,在損傷早期阻止單核巨噬細(xì)胞浸潤能顯著改善損傷組織。研究發(fā)現(xiàn)PKC在促進(jìn)單核細(xì)胞向巨噬細(xì)胞分化,并介導(dǎo)其粘附于血管壁及浸潤腎間質(zhì)中均發(fā)揮不小的作用,同時(shí)Wang等[40]研究發(fā)現(xiàn)PKC(主要是βI、βII)高表達(dá)能上調(diào)TGF-β及血管內(nèi)皮生長因子(VEGF)的表達(dá)從而誘導(dǎo)腎間質(zhì)纖維化,而使用PKCβ抑制劑能阻止單核巨噬細(xì)胞的浸潤并下調(diào)TGF-β表達(dá),從而達(dá)到腎保護(hù)效應(yīng);這為移植后缺血再灌注損傷的治療提供了新的思路。但其對(duì)巨噬細(xì)胞的具體影響機(jī)制還有待進(jìn)一步研究。
[1]Salvadori M,Rosso G,Bertoni E.Update on ischemia-reperfusion injury in kidney transplantation:Pathogenesis and treatment[J].World J Transplant,2015,5(2):52-67.
[2]Slegtenhorst BR,Dor FJ,Rodriguez H,et al.Ischemia/reperfusion injury and its consequences on immunity and inflammation[J].Curr Transplant Rep,2014,1(3):147-154.
[3]Denecke C,Tullius SG.Innate and adaptive immune responses subsequent to ischemia-reperfusion injury in the kidney[J].Prog Urol, 2014,24(Suppl 1):S13-19.
[4]Li L,Okusa MD.Macrophages,dendritic cells,and kidney ischemia-reperfusion injury[J].Semin Nephrol,2010,30(3):268-277.
[5]Rowshani AT,Vereyken EJ.The role of macrophage lineage cells in kidney graft rejection and survival[J].Transplantation,2012,94(4): 309-318.
[6]Rong S,Hueper K,Kirsch T,et al.Renal PKC-ε deficiency attenuates acute kidney injury and ischemic allograft injury via TNF-α-dependent inhibition of apoptosis and inflammation[J].Am J Physiol Renal Physiol,2014,307(6):F718-726.
[7]楊旸,楊亦彬,梁國標(biāo),等.蛋白激酶C抑制劑對(duì)小鼠腎移植后炎性細(xì)胞浸潤的影響[J].中華實(shí)驗(yàn)外科雜志,2015,32(1):202-204.
[8]Roberts BN,Christini DJ.NHE inhibition does not improve Na(+)or Ca(2+)overload during reperfusion:using modeling to illuminate the mechanisms underlying a therapeutic failure[J].PLoS Comput Biol, 2011,7(10):e1002241.
[9]Chen Q,Moghaddas S,Hoppel CL,et al.Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria[J].Am J Physiol Cell Physiol,2008,294(2):C460-466.
[10]Jaeschke H,Woolbright BL.Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species[J]. Transplant Rev(Orlando),2012,26(2):103-114.
[11]Halestrap AP.What is the mitochondrial permeability transition pore? [J].J Mol Cell Cardiol,2009,46(6):821-831.
[12]Tuuminen R,Syrj?l? S,Krebs R,et al.Donor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection[J].Circulation,2011, 124(10):1138-1150.
[13]Singh P,Deng A,Weir MR,et al.The balance of angiotensinⅡand nitric oxide in kidney diseases[J].Curr Opin Nephrol Hypertens, 2008,17(1):51-56.
[14]Rezkalla SH,Kloner RA.No-reflow phenomenon[J].Circulation, 2002,105(5):656-662.
[15]Gracia-Sancho J,Villarreal G,Zhang Y,et al.Flow cessation triggers endothelial dysfunction during organ cold storage conditions:strategies for pharmacologic intervention[J].Transplantation,2010,90(2): 142-149.
[16]Carney EF.Acute kidney injury:critical role of complement in End-MT[J].Nat Rev Nephrol,2014,10(4):183.
[17]Kizu A,Medici D,Kalluri R.Endothelial-mesenchymal transition as a novel mechanism for generating myofibroblasts during diabetic nephropathy[J].Am J Pathol,2009,175(4):1371-1373.
[18]Li J,Qu X,Bertram JF.Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice[J].Am J Pathol,2009,175(4): 1380-1388.
[19]Mannon RB.Macrophages:contributors to allograft dysfunction,repair,or innocent bystanders[J].Curr Opin Organ Transplant,2012, 17(1):20-25.
[20]Li L,Huang L,Sung SS,et al.The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury[J].Kidney Int,2008,74(12):1526-1537.
[21]Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.
[22]Choe W,Kim S,Hwang TS,et al.Expression of inducible nitric oxide synthase in thyroid neoplasms:immunohistochemical and molecular analysis[J].Pathol Int,2003,53(7):434-439.
[23]Rauch I,Müller M,Decker T.The regulation of inflammation by interferons and their STATs[J].JAKSTAT,2013,2(1):e23820.
[24]Takeda K,Tanaka T,Shi W,et al.Essential role of Stat6 in IL-4 signalling[J].Nature,1996,380(6575):627-630.
[25]朱琳楠,侯玉柱.精氨酸酶及誘生性一氧化氮合酶在巨噬細(xì)胞中的分子表達(dá)調(diào)控[J].中國免疫學(xué)雜志,2010,26(8):748-753.
[26]Martinez FO,Helming L,Gordon S.Alternative activation of macrophages:an immunologic functional perspective[J].Annu Rev Immunol,2009,27:451-483.
[27]Popp RL,Velasquez O,Bland J,et al.Characterization of protein kinase C isoforms in primary cultured cerebellar granule cells[J]. Brain Res,2006,1083(1):70-84.
[28]Redling S,Pfaff IL,Leitges M,et al.Immunolocalization of protein kinase C isoenzymes alpha,betaⅠ,betaⅡ,delta,and epsilon in mouse kidney[J].Am J Physiol Renal Physiol,2004,287(2): F289-298.
[29]Sekar MC,Yang M,Meezan E,et al.AngiotensinⅡand bradykinin stimulate phosphoinositide breakdown in intact rat kidney glomeruli but not in proximal tubules:glomerular response modulated by phorbol ester[J].Biochem Biophys Res Commun,1990,166(1): 373-379.
[30]Nowicki S,Kruse MS,Brismar H,et al.Dopamine-induced translocation of protein kinase C isoforms visualized in renal epithelial cells[J].Am J Physiol Cell Physiol,2000,279(6):C1812-1818.
[31]Breyer MD,Jacobson HR,Hebert RL.Cellular mechanisms of prostaglandin E2 and vasopressin interactions in the collecting duct[J]. Kidney Int,1990,38(4):618-624.
[32]Dixon BS,Breckon R,Fortune J,et al.Bradykinin activates protein kinase C in cultured cortical collecting tubular cells[J].Am J Physiol, 1989,257(5 Pt 2):F808-817.
[33]馬慧萍,高榮敏,吳金華,等.大苞雪蓮乙醇提取物對(duì)模擬高原缺氧小鼠物質(zhì)代謝的影響[J].解放軍藥學(xué)學(xué)報(bào),2013,29(4):279-282.
[34]Lin YF,Lee HM,Leu SJ,et al.The essentiality of PKCalpha and PKCbetaI translocation for CD14+monocyte differentiation towards macrophages and dendritic cells,respectively[J].J Cell Biochem,2007, 102(2):429-441.
[35]Kelly DJ,Chanty A,Gow RM,et al.Protein kinase Cbeta inhibition attenuates osteopontin expression,macrophage recruitment,and tubulointerstitial injury in advanced experimental diabetic nephropathy [J].JAm Soc Nephrol,2005,16(6):1654-1660.
[36]Fuller TF,Kusch A,Chaykovska L,et al.Protein kinase C inhibition ameliorates posttransplantation preservation injury in rat renal transplants[J].Transplantation,2012,94(7):679-786.
[37]Liu Hui CH,Weimin S.Differential Expression of PKC isoforms and their tumoricidal activity in two macrophage cell lines involvement of nitric oxide-dependent mechanisms[J].The Chinese-German Journal of Clinical Oncology,2004,3(2):101-105.
[38]Picinich SC,Glod JW,Banerjee D.Protein kinase C zeta regulates interleukin-8-mediatedstromal-derivedfactor-1expressionand migration of human mesenchymal stromal cells[J].Exp Cell Res, 2010,316(4):593-602.
[39]畢良寬,林天歆,許可慰,等.IL-8通過激活PKC/ERK信號(hào)通路促進(jìn)腎癌細(xì)胞上皮細(xì)胞-間質(zhì)細(xì)胞轉(zhuǎn)化[J].生物化學(xué)與生物物理進(jìn)展,2012,39(10):981-986.
[40]Wang J,Qin F,Deng A,et al.Different localization and expression of protein kinase C-beta in kidney cortex of diabetic nephropathy mice and its role in telmisartan treatment[J].Am J Transl Res,2015,7(6): 1116-25.
Influence of protein kinase C on macrophages in renal ischemia-reperfusion injury.
XIAO Ting,RONG Song. Department of Nephrology,Affiliated Hospital of Zunyi Medical College,Zunyi 563003,Guizhou,CHINA
Ischemia-reperfusion injury(IRI)is inevitable for organ transplantation,and its pathophysiological mechanisms include apoptosis,generation of reactive oxygen species(ROS),innate immune system activation,microvascular dysfunction.The innate immune system is the first line of defense,also a critical component of organ transplantation.Macrophages are the critical early initiator of innate immunity in the kidney,which play a dual role in renal ischemia-reperfusion injury.Therefore,how to reduce macrophage infiltration is a hotspot of ischemia-reperfusion injury. Protein kinase C inhibitors can reduce macrophage infiltrate in the renal allografts through multiple pathways,but how it works is still unclear.
Renal ischemia-reperfusion injury(IRI);Innate immune system;Macrophage;Protein kinase C (PKC)
10.3969/j.issn.1003-6350.2017.08.034
R692
A
1003—6350(2017)08—1302—04
2016-08-17)
國家自然科學(xué)基金(編號(hào):81160096)
容松。E-mail:songrong@hotmail.com