麥鴻成,陳丹霞,徐炳東,張玉生
(暨南大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,廣東 廣州 510632)
·綜 述·
炎癥反應(yīng)與缺血性腦卒中后出血轉(zhuǎn)換
麥鴻成,陳丹霞,徐炳東,張玉生
(暨南大學(xué)第一附屬醫(yī)院神經(jīng)內(nèi)科,廣東 廣州 510632)
缺血性腦卒中后出血轉(zhuǎn)換(HT)是一種常見腦血管疾病并發(fā)癥,較一般缺血性腦卒中有更高的致殘率及病死率。目前文獻報道,炎癥反應(yīng)是導(dǎo)致HT發(fā)生及加重的原因,其可通過參與氧化應(yīng)激、激活基質(zhì)金屬蛋白酶、堆積炎癥因子及血管異常生成等各方面起作用。本文就炎癥反應(yīng)參與HT發(fā)生的機制進行綜述。
炎癥反應(yīng);缺血;腦卒中;出血轉(zhuǎn)換
炎癥反應(yīng)是由外源性和內(nèi)源性刺激導(dǎo)致機體產(chǎn)生非特異性的抵抗反應(yīng)。缺血性卒中后引發(fā)的炎癥日益引起研究者重視,其或許在腦組織再次損害及梗死程度加深起關(guān)鍵作用[1]。缺血性腦卒中引起的炎癥反應(yīng)是以腦血管內(nèi)白細胞被激活、一系列炎癥介質(zhì)增加與血管異常反應(yīng)為特點的炎癥反應(yīng)[2]。近年來越來越多的證據(jù)表明缺血性腦卒中引起的炎癥反應(yīng)對臨床預(yù)后中有重要價值,尤其與其繼發(fā)性損害——出血轉(zhuǎn)換(hemorrhagic transformation,HT)密切相關(guān)。
HT是缺血性腦卒中的一種常見并發(fā)癥,表現(xiàn)為梗死區(qū)域血管重新恢復(fù)血流灌注后出現(xiàn)繼發(fā)性出血,出血既可在梗死區(qū)內(nèi),也可在遠隔梗死區(qū)的部位發(fā)生,其在缺血性腦卒中患者的發(fā)生率為10%~40%[3]。
目前臨床上針對HT的分型為:小點狀出血(HI1)、多個融合的點狀出血(HI2)、小的腦實質(zhì)出血(PH1)(<30%梗死灶,輕微占位效應(yīng))、大的腦實質(zhì)出血(PH2)(>30%梗死灶,明顯占位效應(yīng))[4]。根據(jù)神經(jīng)功能惡化的表現(xiàn)(National Institutes of Health Stroke Scale,缺血性卒中發(fā)生36 h內(nèi)NIHSS評分增加4分),HT可分為癥狀性顱內(nèi)出血與非癥狀性顱內(nèi)出血[5]。即使是無癥狀性顱內(nèi)出血,也能造成不良的卒中預(yù)后,預(yù)防HT發(fā)生對缺血性腦卒中患者大有裨益[6]。然而,臨床上HT的分型并不能完整體現(xiàn)HT的病理生理學(xué)變化過程,尤其是早期HT的發(fā)生,這給HT的防治增加了困難。
現(xiàn)已證實,血腦屏障(blood-brain barrier,BBB)受到破壞是導(dǎo)致HT發(fā)生,進而影響HT發(fā)生后患者神經(jīng)功能、甚至死亡的主要病理生理學(xué)機制。缺血性腦卒中發(fā)生后引起的炎癥反應(yīng)通過氧化應(yīng)激作用、基質(zhì)金屬蛋白酶作用、炎癥因子堆積及血管異常生成對BBB損傷是導(dǎo)致HT發(fā)生的重要因素[7]。目前為止,不少學(xué)者針對HT發(fā)生過程中可能涉及炎癥反應(yīng)的發(fā)病因素開展了大量研究,本文現(xiàn)就炎癥反應(yīng)參與HT發(fā)生的機制做一綜述,以期為臨床上更好防治HT的提供參考。
相關(guān)報道證實氧化應(yīng)激在HT的發(fā)生起重要作用。缺血性卒腦中后的缺血期及缺血再灌注期均促進炎癥因子的聚集,減少體內(nèi)谷胱甘肽的合成,加劇氧化應(yīng)激反應(yīng)[8]。缺血再灌注過程中氧化應(yīng)激產(chǎn)生活性氧(reactive oxygen species,ROS)等一系列的損傷因子破壞血腦屏障,在HT發(fā)生扮演重要角色[9]。ROS大部分由中性粒細胞及巨噬細胞內(nèi)的吞噬細胞氧化酶復(fù)合體,包括細胞內(nèi)線粒體、NADPH(nicotinamide adenine dinucleotide phosphate,NADPH)[10]、氧化酶、黃嘌呤氧化酶、細胞膜受體等產(chǎn)生[11],且其發(fā)揮損傷作用的時候需要中性粒細胞參與。缺血缺氧性損害時炎癥因子活性增加,ROS產(chǎn)生相應(yīng)增加[12],造成神經(jīng)血管單元的內(nèi)皮細胞、周細胞、平滑肌細胞、星形膠質(zhì)細胞的破壞,進一步導(dǎo)致血腦屏障通透性的增加[13-14]。ROS在激活大腦中動脈栓塞(middle cerebral artery occlusion,MCAO)后大鼠點樣受體蛋白炎癥通路也起一定作用[15]。動物體內(nèi)實驗發(fā)現(xiàn)抑制腦梗死后炎癥因子的表達及中性粒細胞的活化,可減輕ROS的產(chǎn)生,維持血腦屏障完整,從而降低HT的發(fā)生率[16]。
氧化應(yīng)激還可以進一步觸發(fā)其他炎癥通路激活,如核轉(zhuǎn)錄因子kappaB(nuclear factor kappa-light-chain-enhancer of activated B cells,NFκB)、活化蛋白(activator protein,AP-1)等相關(guān)信號通路的激活,從而增加基質(zhì)金屬蛋白酶9(matrix metalloproteinases,MMP9)的表達及影響DNA修復(fù)酶,觸發(fā)凋亡始發(fā)P38-絲裂原(P38-mitogen activated protein kinase,P38-MAPK)通路活化,促進內(nèi)皮細胞凋亡,增加血腦屏障通透性[17-18]。
細胞外基質(zhì)對于維持血腦屏障的穩(wěn)定至關(guān)重要,而缺血性腦卒中后炎癥相關(guān)的免疫系統(tǒng)迅速激活,通過白細胞黏附、聚集及遷移,經(jīng)單核-巨噬系統(tǒng),釋放腫瘤壞死因子α (tumor necrosis factor α,TNF-α)、白介素-1(interleukin-1,IL-1)和IL6等炎性介質(zhì)[19],激發(fā)一系列炎癥相關(guān)信號途徑,促進MMPs分泌,加速機體細胞外基質(zhì)的溶解,進一步外滲白細胞,產(chǎn)生更多炎性介質(zhì),從而形成BBB通透性增加的生化瀑布事件[20-21]。MMPs包括MMP-9、MMP-2和MMP-3,都作為BBB異常開放及HT發(fā)生的基質(zhì)蛋白水解酶[22],可從血管腔側(cè)直接降解緊密連接蛋白或經(jīng)內(nèi)皮細胞吞噬后,作用于血管基膜和BBB相關(guān)基質(zhì)(IV型基膜膠原、纖連蛋白和層黏連蛋白),最終破壞內(nèi)皮細胞、周細胞與星形膠質(zhì)細胞連接,促進HT發(fā)生[23-24]。同時大量活化的白細胞通過破損的BBB滲入到腦實質(zhì)內(nèi),釋放更多炎癥介質(zhì),加速神經(jīng)元的損傷[25-26]。
在缺血性卒中發(fā)生后的2~8 h,人體外周血MMP-9會出現(xiàn)一個短暫高峰,一個重要原因是炎癥反應(yīng)后白細胞數(shù)量增加[27]。實驗發(fā)現(xiàn)敲除嵌合體小鼠的白細胞MMP-9基因后,BBB破壞減輕,而MMP-9裸鼠經(jīng)野生型(MMP-9基因完好)骨髓移植后,經(jīng)過短暫MCAO后,接近野生型小鼠的BBB破損程度及梗死體積[28]。這提示,BBB破損的一個重要因素是白細胞分泌的MMP-9。
在缺血性卒中發(fā)生后的炎癥反應(yīng),MMP-9主要來自中性粒細胞,降低中性粒細胞數(shù)量及減弱其功能可以減輕BBB的破損及HT的發(fā)生率。當(dāng)使用長春新堿、對抗中性粒細胞抗體或CD11b/CD18拮抗劑,發(fā)現(xiàn)在嚙齒類動物HT發(fā)生率降低[29]。通過炎癥誘導(dǎo)劑脂多糖增加及激活中性粒細胞,BBB缺損明顯[30]。來自中性粒細胞MMP-9的兩種形式(95kDa單體與二聚體)與Ⅳ型基膜膠原降解、BBB發(fā)生密切相關(guān)[31]。缺血性腦卒中后外周血單核細胞作用于內(nèi)皮細胞,通過炎癥相關(guān)通路——趨化因子受體-2進入腦內(nèi)分化為巨噬細胞并產(chǎn)生部分MMP-9[32]。
腦缺血卒中后,MMP-9可通過以下炎癥相關(guān)機制活化:(1)ROS[18,33];(2)TNF、IL-1等相關(guān)炎癥介質(zhì)引起MMP-3活化,導(dǎo)致前體MMP-9剪切成MMP-9[34];(3)炎癥因子—高遷移率族蛋白(high-mobility-group-box-1,HMGB1)通過TLR4受體誘導(dǎo)MMP-9活化[35];(4)NF-κB炎癥途徑[36-37]。
缺血性腦卒中后體內(nèi)釋放以TNF-α及IL-6為代表的早期炎癥介質(zhì)[38],刺激腦源性MMP-2合成及分泌[39]。MMP-2在缺血性卒中1~3 h開始升高,持續(xù)數(shù)天高于正常值,其在早期BBB破裂及HT發(fā)生起主要作用[39]。此外,對嚙齒類動物腦部進行MM-2直接注射,可引起腦出血[40]。
有報道提示缺血性腦卒中后相關(guān)炎癥導(dǎo)致MMP-3增加,MMP-3主要誘導(dǎo)前體MMP-9剪切成MMP-9,間接促使HT發(fā)生[34]。tPA結(jié)合LRP或炎癥相關(guān)轉(zhuǎn)錄因子NF-κB增加MMP-3活性[41]。LPS促使小鼠顱腦炎癥后,MMP-3表達增加,BBB破壞明顯[42]。
缺血性腦卒中后細胞來源的炎癥因子也涉及HT的發(fā)生[43-44]。目前報道與HT發(fā)生相關(guān)的有:轉(zhuǎn)化生長因子(transforming growth factor-beta1,TGF-β)、IL-1 β、雙調(diào)蛋白和血管內(nèi)皮生長因子。最近研究表明,炎癥情況下TGF-β協(xié)助維護BBB完整。在大鼠MCAO后rt-PA誘發(fā)出血轉(zhuǎn)換模型,TGF-β可降低MMP-2,MMP-9的表達,減輕基膜的損害,同時提高纖溶酶原抑制受體(plasminogen activator inhibitor type-1,PAI-1)及IV型膠原的表達[45]。輕型缺血性卒中小鼠外周血IL-1β發(fā)生改變,造成顱內(nèi)緊密連接蛋白、claudin-5下降及中性粒細胞來源的MMP-9含量上升,BBB破壞程度加深,進一步誘導(dǎo)HT發(fā)生,從而導(dǎo)致腦組織損害、腦功能缺失及腦水腫[46]。臨床試驗發(fā)現(xiàn),急性期第一天及第二天當(dāng)中,HT患者相對普通缺血性腦卒中患者,外周血IL-1β升高,這一現(xiàn)象有助于預(yù)測HT發(fā)生[47]。雙調(diào)蛋白通過MAP蛋白激酶信號通路,調(diào)節(jié)鈣粘蛋白-E,從而改變內(nèi)皮連接,增強中性粒細胞遷移,增加MMP-9和血管內(nèi)皮生長因子釋放,從而促進HT發(fā)生[43,48]。
炎癥反應(yīng)和血管重塑是兩個相互聯(lián)系及共同發(fā)展的病理過程。新生血管及神經(jīng)血管單元分泌一系列的生長因子促進原有血管形成側(cè)枝及新生血管融入原有血管[49]。在血管異常生成期間,新生血管屏蔽作用及完整性下降,潛在提高HT發(fā)生率。
血管內(nèi)皮生長因子在血管重塑及再生中起重要作用,其表現(xiàn)為雙向作用,早期促使BBB破損,HT增加,晚期恢復(fù)BBB完整及功能[50]。早期降低血管內(nèi)皮生長因子表達,可減少嚙齒類動物HT發(fā)生[5-52]。相反,當(dāng)缺血性腦卒中1 h后,使用血管內(nèi)皮生長因子,可增加梗死體積、BBB受損發(fā)生率。而晚期缺血性腦卒中3~21 h后使用血管內(nèi)皮生長因子,可使神經(jīng)功能好轉(zhuǎn)、周細胞貼附腦毛細血管更緊密及腦血流增加[53]。血管生成素對遲發(fā)性HT起作用。缺血性腦卒中患者血液中血管生成素含量升高,同時tPA相關(guān)HT發(fā)生風(fēng)險增加。其中血管生成素-1對梗死區(qū)域的BBB通透性有影響[54]。高遷移率族蛋白B1(high-mobility-group-box-1,HMGB1)作為一種晚期炎癥因子,是星形膠質(zhì)細胞分泌的損傷相關(guān)模式分子,作用于祖內(nèi)皮細胞的HMGB1受體,涉及缺血性腦卒中后神經(jīng)血管單元修復(fù)及梗死區(qū)域周圍的血管生成,目前認為與HT患者預(yù)后相關(guān)[55]。
綜上所述,炎癥反應(yīng)通過參與氧化應(yīng)激過程、激活基質(zhì)金屬蛋白酶、堆積炎癥因子及血管異常生成等各方面對HT的發(fā)生以及發(fā)展具有重要影響,但其他潛在機制有待進一步研究。炎癥反應(yīng)與HT發(fā)生關(guān)系確切,然而目前臨床醫(yī)學(xué)在該鄰域的藥物開發(fā)偏少,今后的研究還需逐步開展具有治療應(yīng)用價值的相關(guān)藥物。
[1]Mukandala G,Tynan R,Lanigan S,et al.The effects of hypoxia and inflammation on synaptic signaling in the CNS[J].Brain Sci,2016,6(1):E6.
[2] Dziedzic T.Systemic inflammation as a therapeutic target in acute ischemic stroke[J].Expert Rev Neurother,2015,15(5):523-531.
[3]Terruso V,D'Amelio M,Di Benedetto N,et al.Frequency and determinants for hemorrhagic transformation of cerebral infarction[J].Neuroepidemiology,2009,33(3):261-265.
[4]Beslow LA,Smith SE,Vossough A,et al.Hemorrhagic transformation of childhood arterial ischemic stroke[J].Stroke,2011,42(4):941-946.
[5]Hacke W,Kaste M,Bluhmki E,et al.Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke[J].N Engl J Med,2008,359(13):1317-1329.
[6]Dzialowski I,Pexman JH,Barber PA,et al.Asymptomatic hemorrhage after thrombolysis may not be benign:prognosis by hemorrhage type in the Canadian alteplase for stroke effectiveness study registry[J].Stroke,2007,38(1):75-79.
[7]Park JH,Ko Y,Kim WJ,et al.Is asymptomatic hemorrhagic transformation really innocuous?[J].Neurology,2012,78(6):421-426.
[8]Ravindran J,Agrawal M,Gupta N,et al.Alteration of blood brain barrier permeability by T-2 toxin:Role of MMP-9 and inflammatory cytokines[J].Toxicology,2011,280(1-2):44-52.
[9]Tang XN,Zheng Z,Giffard RG,et al.Significance of marrow-derived nicotinamide adenine dinucleotide phosphate oxidase in experimental ischemic stroke[J].Ann Neurol,2011,70(4):606-615.
[10]Tuo YH,Liu Z,Chen JW,et al.NADPH oxidase inhibitor improves outcome of mechanical reperfusion by suppressing hemorrhagic transformation[J].J Neurointerv Surg,2017,9(5):492-498.
[11]Fraser,PA.The role of free radical generation in increasing cerebrovascular permeability[J].Free Radic Biol Med,2011,51(5):967-977.
[12]Pober JS,Min W,Bradley JR.Bradley,Mechanisms of endothelial dysfunction,injury,and death[J].Annu Rev Pathol,2009,4:71-95.
[13]Alluri H,Stagg HW,Wilson RL,et al.Reactive oxygen species-caspase-3 relationship in mediating blood-brain barrier endothelial cell hyperpermeability following oxygen-glucose deprivation and reoxygenation[J].Microcirculation,2014,21(2):187-195.
[14]McLaughlin B,Hartnett KA,Erhardt JA,et al.Caspase 3 activation is essential for neuroprotection in preconditioning[J].Proc Natl Acad Sci U SA,2003,100(2):715-720.
[15]Guo ZN,Xu L,Hu Q,et al.Hyperbaric oxygen preconditioning attenuates hemorrhagic transformation through reactive oxygen species/thioredoxin-interacting protein/Nod-like receptor protein 3 pathway in hyperglycemic middle cerebral artery occlusion rats[J].Crit Care Med,2016,44(6):e403-e411.
[16]Asahi M,Asahi K,Wang X,et al.Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats[J].J Cereb Blood Flow Metab,2000,20(3):452-457.
[17]Sironi L,Banfi C,Brioschi M,et al.Activation of NF-κB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment[J].Neurobiol Dis,2006,22(2):445-451.
[18]Kelly PJ,Morrow JD,Ning M,et al.Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke:the Biomarker Evaluation for Antioxidant Therapies in Stroke(BEAT-Stroke)study[J].Stroke,2008.39(1):100-104.
[19]Watters O,O'Connor JJ.A role for tumor necrosis factor-alpha in ischemiaandischemicpreconditioning[J].J Neuroinflammation,2011,8:87.
[20]Kato H,Duarte S,Liu D,et al.Matrix metalloproteinase-2(MMP-2)gene deletion enhances MMP-9 activity,impairs PARP-1 degradation,and exacerbates hepatic ischemia and reperfusion injury in mice[J].PLoS One,2015,10(9):e0137642.
[21]Fan Z,Yao J,Li Y,et al.Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-κB[J].Int J Clin Exp Pathol,2015,8(4):3451-3459.
[22]Visse R,Nagase H.Matrix metalloproteinases and tissue inhibitors of metalloproteinases:structure,function,and biochemistry[J].Circ Res,2003.92(8):827-839.
[23]Kalela A,P?nni? M,Koivu TA,et al.Association of serum sialic acid and MMP-9 with lipids and inflammatory markers[J].Eur J Clin Invest,2000,30(2):99-104.
[24]Kuyvenhoven JP,Molenaar IQ,Verspaget HW,et al.Plasma MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 during human orthotopic liver transplantation.The effect of aprotinin and the relation to ischemia/reperfusion injury[J].Thromb Haemost,2004,91(3):506-513.
[25]Lu A,Clark JF,Broderick JP,et al.Reperfusion activates metalloproteinases that contribute to neurovascular injury[J].Exp Neurol,2008,210(2):549-559.
[26]Harris AK,Ergul A,Kozak A,et al.Effect of neutrophil depletion on gelatinase expression,edema formation and hemorrhagic transformation after focal ischemic stroke[J].BMC Neurosci,2005,6:49.
[27]Turner RJ,Sharp FR.Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke[J].Front Cell Neurosci,2016,10:56.
[28]Wang G,Guo Q,Hossain M,et al.Bone marrow-derived cells are the major source of MMP-9 contributing to blood-brain barrier dysfunction and infarct formation after ischemic stroke in mice[J].Brain Res,2009,1294:183-192.
[29]Gautier S,Ouk T,Petrault O,et al.Neutrophils contribute to intracerebral haemorrhages after treatment with recombinant tissue plasminogen activator following cerebral ischaemia[J].Br J Pharmacol,2009,156(4):673-679.
[30]Pétrault O,Ouk T,Gautier S,et al.Pharmacological neutropenia prevents endothelial dysfunction but not smooth muscle functions impairment induced by middle cerebral artery occlusion[J].Br J Pharmacol,2005,144(8):1051-1058.
[31]Justicia C,Panés J,Solé S,et al.Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats[J].J Cereb Blood Flow Metab,2003,23(12):1430-1440.
[32]Rosell A,Cuadrado E,Ortega-Aznar A,et al.MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina typeⅣcollagen degradation during hemorrhagic transformation after human ischemic stroke[J].Stroke,2008,39(4):1121-1126.
[33]Yang Y,Rosenberg GA.Blood-brain barrier breakdown in acute and chronic cerebrovascular disease[J].Stroke,2011,42(11):3323-3328.
[34]Hafez S,Abdelsaid M,El-Shafey S,et al.Matrix metalloprotease 3 exacerbates hemorrhagic transformation and worsens functional outcomes in hyperglycemic stroke[J].Stroke,2016,47(3):843-851.
[35]Qiu J,Xu J,Zheng Y,et al.High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia[J].Stroke,2010,41(9):2077-2082.
[36]Wang L,Li Z,Zhang X,et al.Protective effect of shikonin in experimental ischemic stroke:attenuated TLR4,p-p38MAPK,NF-kappaB,TNF-alpha and MMP-9 expression,up-regulated claudin-5 expression,ameliorated BBB permeability[J].Neurochem Res,2014,39(1):97-106.
[37]Shih RH,Wang CY,Yang CM.NF-kappaB signaling pathways in neurological inflammation:a mini review[J].Front Mol Neurosci,2015,8:77.
[38]Dittmar M,Kiourkenidis G,Horn M,et al.Cerebral ischemia,matrix metalloproteinases,and TNF-alpha:MMP inhibitors may act not exclusively by reducing MMPactivity[J].Stroke,2004,35(7):e338-e340.
[39]del Zoppo GJ,Frankowski H,Gu YH,et al.Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation[J].J Cereb Blood Flow Metab,2012,32(5):919-932.
[40]Lo EH,Wang X,Cuzner ML.Extracellular proteolysis in brain injury and inflammation:role for plasminogen activators and matrix metalloproteinases[J].J Neurosci Res,2002,69(1):1-9.
[41]Suzuki Y,Nagai N,Yamakawa K,et al.Tissue-type plasminogen activator(t-PA)induces stromelysin-1(MMP-3)in endothelial cells through activation of lipoprotein receptor-related protein[J].Blood,2009,114(15):3352-3358.
[42]Walker EJ,Rosenberg GA.Rosenberg,TIMP-3 and MMP-3 contribute to delayed inflammation and hippocampal neuronal death following global ischemia[J].Exp Neurol,2009,216(1):122-131.
[43]Jickling GC,Ander BP,Stamova B,et al.RNA in blood is altered prior to hemorrhagic transformation in ischemic stroke[J].Ann Neurol,2013,74(2):232-240.
[44]Gliem M,Mausberg AK,Lee JI,et al.Macrophages prevent hemorrhagic infarct transformation in murine stroke models[J].Ann Neurol,2012,71(6):743-752.
[45]Cai Y,Liu X,Chen W,et al.TGF-beta1 prevents blood-brain barrier damage and hemorrhagic transformation after thrombolysis in rats[J].Exp Neurol,2015,266:120-126.
[46]McColl BW,Rothwell NJ,Allan SM.Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice[J].J Neurosci,2008.28(38):9451-9462.
[47]Nikiforova Postnikova TA,Doronin BM,Peskov SA.Blood serum cytokines as predictors of hemorrhagic transformation of ischemic stroke[J].Zh Nevrol Psikhiatr Im S S Korsakova,2014,114(3 pt 2):20-26.
[48]Zhan L,Zheng L,Hosoi T,et al.Stress-induced neuroprotective effects of epiregulin and amphiregulin[J].PLoS One,2015,10(2):e0118280.
[49]Durukan A,Marinkovic I,Strbian D,et al.Post-ischemic blood-brain barrier leakage in rats:one-week follow-up by MRI[J].Brain Res,2009,1280:158-165.
[50]Zechariah A,ElAli A,Doeppner TR,et al.Vascular endothelial growth factor promotes pericyte coverage of brain capillaries,improves cerebral blood flow during subsequent focal cerebral ischemia,and preserves the metabolic penumbra[J].Stroke,2013,44(6):1690-1697.
[51]Chen C,Ostrowski RP,Zhou C,et al.Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia[J].J Neurosci Res,2010,88(9):2046-2055.
[52]Kanazawa M,Igarashi H,Kawamura K,et al.Inhibition of VEGF signaling pathway attenuates hemorrhage after tPA treatment[J].J Cereb Blood Flow Metab,2011,31(6):1461-1474.
[53]Abumiya T,Yokota C,Kuge Y,et al.Aggravation of hemorrhagic transformation by early intraarterial infusion of low-dose vascular endothelial growth factor after transient focal cerebral ischemia in rats[J].Brain Res,2005,1049(1):95-103.
[54]Zhang ZG,Zhang L,Tsang W,et al.Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia[J].J Cereb Blood Flow Metab,2002,22(4):379-392.
[55]Hayakawa K,Pham LD,Katusic ZS,et al.Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery[J].Proc Natl Acad Sci USA,2012,109(19):7505-7510.
Inflammatory response and hemorrhagic transformation after cerebral ischemic stroke.
MAI Hong-cheng,CHEN Dan-xia,XU Bing-dong,ZHANG Yu-sheng.Department of Internal Neurology,the First Affiliated Hospital of Jinan University,Guangzhou 510632,Guangdong,CHINA
Hemorrhagic transformation(HT)after cerebral ischemic stroke,with higher morbidity and mortality than normal cerebral ischemic stroke,is a common complication of cerebrovascular diseases.At present,literatures report that inflammatory response is a cause of HT aggravation by participating in oxidative stress,matrix metalloproteinases activation,inflammatory mediator accumulation and vessel abnormal growth.Herein,we review the mechanism of inflammatory response in HT.
Inflammatory response;Stroke;Cerebral ischemic;Hemorrhagic transformation
R743.3
A
1003—6350(2017)22—3705—04
10.3969/j.issn.1003-6350.2017.22.029
國家自然科學(xué)基金資助項目(編號:81171084);廣東省自然科學(xué)基金資助項目(編號:2014A030313384);廣東省醫(yī)學(xué)科研基金資助項目(編號:A2014381);廣州市科技計劃資助項目(編號:1561000289,155700029)
張玉生。E-mail:zhangys@jnu.edu.cn
2017-04-13)