揭勇,符策崗,韓慶斌
(1.三峽大學(xué)仁和醫(yī)院,湖北 宜昌 443000;2.三峽大學(xué)第一臨床醫(yī)學(xué)院 宜昌市中心人民醫(yī)院脊柱外科/脊柱微創(chuàng)中心,脊柱醫(yī)學(xué)與創(chuàng)傷研究所,湖北 宜昌 443000)
嗅鞘細(xì)胞和間質(zhì)干細(xì)胞用于治療脊髓損傷的研究進(jìn)展
揭勇1,符策崗2,韓慶斌1
(1.三峽大學(xué)仁和醫(yī)院,湖北 宜昌 443000;2.三峽大學(xué)第一臨床醫(yī)學(xué)院 宜昌市中心人民醫(yī)院脊柱外科/脊柱微創(chuàng)中心,脊柱醫(yī)學(xué)與創(chuàng)傷研究所,湖北 宜昌 443000)
脊髓損傷(SCI)的臨床治療主要以手術(shù)結(jié)合免疫治療為主,但是往往不能收到良好的效果。干細(xì)胞能發(fā)揮神經(jīng)保護(hù)和促進(jìn)神經(jīng)再生的特點(diǎn),因而近年干細(xì)胞治療SCI成為研究的熱點(diǎn)之一,并在基礎(chǔ)和臨床研究中均獲取得一定的進(jìn)展。本文就嗅鞘細(xì)胞和間質(zhì)干細(xì)胞用于治療SCI的研究做一簡要綜述。
嗅鞘細(xì)胞;間質(zhì)干細(xì)胞;脊髓損傷;神經(jīng)保護(hù);神經(jīng)再生
脊髓損傷(spinal cord injury,SCI)對于患者是一種破壞性的損傷,常伴隨運(yùn)動、感覺或自主功能的部分或完全缺失。脊髓局部循環(huán)系統(tǒng)損傷、神經(jīng)聯(lián)絡(luò)的中斷、局部的炎癥反應(yīng)、氧化應(yīng)激等繼發(fā)性損傷也進(jìn)一步加重?fù)p傷的程度。SCI損傷部位的神經(jīng)細(xì)胞會出現(xiàn)壞死和凋亡,物理性的分離和神經(jīng)脫髓鞘阻斷了神經(jīng)的生理學(xué)傳導(dǎo)途徑,在臨床上表現(xiàn)為部分或完全的感覺喪失、運(yùn)動喪失或大小便失禁等[1]。中樞神經(jīng)軸突一旦損傷,想通過生理學(xué)上的自我修復(fù)幾乎是不可能的,因此,SCI功能重建一直是一個極具挑戰(zhàn)性的臨床問題[2]。隨著外科手術(shù)的不斷發(fā)展,早期減壓和固定能起到保護(hù)脊髓并幫助神經(jīng)再生的效果[3]。神經(jīng)保護(hù)主要體現(xiàn)在防治繼發(fā)性SCI引起病情的進(jìn)一步加重,神經(jīng)再生主要致力于修復(fù)破壞了的神經(jīng)通路,以恢復(fù)其喪失或受損的功能[4-5]。前期研究發(fā)現(xiàn),脊髓繼發(fā)性損傷引發(fā)的級聯(lián)反應(yīng)是需要一段相對較長的時間,倘若在這段時間內(nèi)給予恰當(dāng)?shù)耐庠葱陨窠?jīng)保護(hù)治療往往能收到良好的療效[6-7]。
目前發(fā)現(xiàn),于合適時間內(nèi),在SCI損傷部位移植新的神經(jīng)元或神經(jīng)膠質(zhì)細(xì)胞,從而取代丟失的細(xì)胞以幫助構(gòu)建和恢復(fù)功能連接,或者幫助新的軸突再生被視為一種可行的辦法。此外,神經(jīng)康復(fù)性治療(練習(xí)或者理療)也被證實(shí)能從細(xì)胞或者分子水平幫助神經(jīng)功能的恢復(fù)[8]。目前,多種類、多來源的干細(xì)胞被用于治療SCI的研究,以篩選最為理想的干細(xì)胞。移植嗅鞘細(xì)胞(olfactory ensheathing cells,OECs)、施旺細(xì)胞、胚胎組織和外周神經(jīng)都能營造一個良好的微環(huán)境以幫助神經(jīng)再生。此外,神經(jīng)祖細(xì)胞、胚胎干細(xì)胞、多能干細(xì)胞、間質(zhì)干細(xì)胞(mesenchymal stemcells,MSCs)、成纖維干細(xì)胞或者那些能分化為神經(jīng)系細(xì)胞的干細(xì)胞,能幫助軸突的再生和神經(jīng)連接功能的恢復(fù)[9]。目前OECs(刺激軸突再生)和MSCs(通過調(diào)節(jié)免疫系統(tǒng),減少細(xì)胞死亡)用于治療SCI取得了較大進(jìn)展,本文就近期的研究做一簡要的綜述。
OECs能表達(dá)多種神經(jīng)營養(yǎng)因子,對于軸突的再生和延長發(fā)揮重要的作用。OECs實(shí)質(zhì)上是存在于外周及中樞神經(jīng)系統(tǒng)的一種普通神經(jīng)膠質(zhì)細(xì)胞。OECs與其伴隨包膜嗅神經(jīng)成纖維細(xì)胞(olfactory nerve fibroblasts,ONFs)包膜,將嗅神經(jīng)纖維從鼻黏膜一直包裹到嗅球[10-13],與星狀細(xì)胞和施旺細(xì)胞的性質(zhì)相似[14]。OECs幫助神經(jīng)再生主要表現(xiàn)在:它能從周圍神經(jīng)系統(tǒng)遷移到中樞神經(jīng)系統(tǒng)中,并幫助SCI軸突的再生,以此幫助神經(jīng)功能的恢復(fù)。在胚胎嗅覺系統(tǒng)發(fā)育的過程中,OECs細(xì)胞膜上的神經(jīng)細(xì)胞粘附分子(neural cell adhesion molecule,NCAM)和L1/神經(jīng)膠質(zhì)細(xì)胞黏附分子(L1/neuron-glia cell adhesion molecule,L1/Ng-CAM)作為嗅覺軸突生長的營養(yǎng)基質(zhì)促進(jìn)其生長,此外,OECs分泌層黏連蛋白和連接蛋白等黏附基質(zhì)也發(fā)揮促進(jìn)嗅覺軸突的生長的作用[15]。OECs遷移到SCI局部并發(fā)揮促進(jìn)神經(jīng)軸突再生的功能,這取決于OEC所處的環(huán)境。由于OECs不斷再生且刺激軸突再生的特性,近年大量的研究不斷嘗試將OECs注射到SCI局部,以探索其在SCI治療中的潛力。
近來幾年的動物研究表明,將OECs和ONFs移植到SCI局部能促進(jìn)斷裂的軸突再生和神經(jīng)功能恢復(fù)[16-21]。Barbour等[21]在大鼠模型中證實(shí),OECs移植能顯著提高神經(jīng)細(xì)胞的存活率。此外,Witheford等[22]在小鼠模型中發(fā)現(xiàn),OECs能分泌黏附分子L1,并刺激軸突的生長。另有研究指出,移植OECs治療能幫助功能軸突的恢復(fù),OECs治療組3/9的大鼠能移動大腿,對比之下空白組12/12無任何改善[19]。
相比之下,臨床研究并沒有如此順利,但也有小部分研究證實(shí)OECs用于SCI臨床治療是安全且有效的。Lima等[23]證實(shí)55%的SCI患者在接受OECs治療后病情得到了改善,11/20有明顯好轉(zhuǎn),其中5例恢復(fù)了自主運(yùn)動,且1例膀胱功能得到恢復(fù)。但OECs用于治療陳舊SCI患者的療效并不理想,僅1/6的患者有部分神經(jīng)功能改善[24]。Wu等[25]證實(shí)使用胚胎OECs治療SCI患者是安全的,此實(shí)驗(yàn)中的嗅球(用于培養(yǎng)OECs細(xì)胞)是取自16周的胎兒,且所有的實(shí)驗(yàn)者都沒有神經(jīng)學(xué)上的并發(fā)癥。3/5的頸髓損傷患者觀察到損傷平面下的肌力有所提高,而對于陳舊性SCI患者,運(yùn)動能力并沒有得到恢復(fù),但是5/6患者的溫度覺和針刺感覺得到改善[25]。
近期,Tabakow等[26]嘗試從嗅球和嗅黏膜提取的OECs細(xì)胞用于治療SCI患者,6例SCI患者接受了來自自身的OECs細(xì)胞,其中3例患者病情得到顯著改善,另有2例患者美國脊髓損傷協(xié)會評分(American Spinal Injury Association,ASIA)評分從A提高到了B和C(A:損傷平面下的運(yùn)動和感覺功能完全喪失;B:平面下部分感覺喪失;C:平面下超過50%的肌肉不能移動抵擋重力作用;D:平面下超過50%的肌肉能移動抵擋重力作用;E:所有的神經(jīng)功能恢復(fù)[7]),均表現(xiàn)為神經(jīng)功能的改善。接下來一年的隨訪證實(shí),使用自體OECs并沒有不良的感應(yīng),是一種安全的治療方式。此研究還進(jìn)一步證實(shí),OECs改善神經(jīng)功能主要表現(xiàn)在白質(zhì)傳入傳出束的恢復(fù)[26]。也有研究指出,移植自身嗅球細(xì)胞到1例38歲SCI患者,通過MRI發(fā)現(xiàn),注射的細(xì)胞集中在注射的部位,并幫助修復(fù)皮質(zhì)脊髓束的完整性,幫助肌力的恢復(fù)[27]。
MSCs是一種來源于中胚層的干細(xì)胞,可以從骨髓、臍帶、脂肪和胰腺組織等多種組織中獲得[28]。骨髓源性的MSCs(The bone marrow-derived MSCs,BM-MSCs)屬于多能體細(xì)胞,由于其神經(jīng)保護(hù)和旁分泌的功能而作為新的治療方式,用于治療多種疾病[29]。近年的研究也集中于BM-MSCs的神經(jīng)營養(yǎng)特性,主要表現(xiàn)在BM-MSCs能分泌神經(jīng)生長因子和神經(jīng)營養(yǎng)因子3促進(jìn)軸突的生長[30]。MSCs用于治療SCI也有其優(yōu)勢:(1)容易獲得;(2)可以通過體外培養(yǎng)擴(kuò)增;(3)不需要特意的免疫抑制幫助防止免疫排斥;(4)惡化的傾向比較低。一項(xiàng)MSCs用于治療側(cè)索硬化性肌萎縮的研究證實(shí),MSCs能分泌神經(jīng)營養(yǎng)因子幫助神經(jīng)修復(fù),但是MSCs首先要分化成為MSCs神經(jīng)營養(yǎng)(MSC-neurotrophic factors,MSC-NTF)細(xì)胞才能分泌神經(jīng)營養(yǎng)因子,分泌的營養(yǎng)因子包括:膠質(zhì)細(xì)胞源性神經(jīng)營養(yǎng)因子(GDNF)、大腦源性NTF(brain-derived NTF,BDNF)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、肝細(xì)胞生長因子(hepatocyte growth factor,HGF)等[31]。
MSCs治療SCI并幫助運(yùn)動功能恢復(fù),已經(jīng)在動物實(shí)驗(yàn)中得到了證實(shí)。在嚙齒類動物模型的研究中發(fā)現(xiàn),MSCs移植需要按照一定的時間關(guān)系,SCI發(fā)生1周后移植MSCs能取得良好的療效,但是在SCI發(fā)生4個后月再移植MSCs便得不到任何改善,因此最佳的治療期間是SCI發(fā)生后3 d到3周以內(nèi)[32]。在大鼠模型中證實(shí),MSCs能分泌軸突生長因子,幫助軸突長向合適的方向,此外還能抑制T細(xì)胞活性以保護(hù)神經(jīng)元鞘磷脂[33]。MSCs能取代中樞神經(jīng)細(xì)胞的假說還沒被完全的證實(shí),但是已經(jīng)證實(shí)MSCs能發(fā)揮暫時的替代功能。Hofstetter等[34]證實(shí),SCI發(fā)生5周后MSCs能分泌神經(jīng)標(biāo)志物,且與幼稚星狀細(xì)胞緊密關(guān)聯(lián),但遺憾的是,這些細(xì)胞并不具備星狀細(xì)胞的功能。將MSCs移植到SCI局部時,兩周后85%都能分泌神經(jīng)細(xì)胞標(biāo)志物,但是12周后,僅僅只有10%的MSCs還在分泌神經(jīng)標(biāo)志物[35]。
臨床報道指出MSCs用于人體治療SCI是安全且有效的。但是,所涉及的研究都是比較復(fù)雜,由于涉及了外科手術(shù),實(shí)驗(yàn)結(jié)果至今模棱兩可。Bhano等[36]研究報道,陳舊的SCI患者行椎板切除術(shù)后,植入自體源性MSCs,3例患者得到了一定的受益,其中1位運(yùn)動功能得到了明顯的改善,另2例損傷平面下的針刺感有所恢復(fù)。另一個將MSCs用于急性或亞急性SCI患者的研究發(fā)現(xiàn),大約30%的患者至少有一個ASIA神經(jīng)學(xué)評分的恢復(fù)[37]。
SCI顯著影響患者的生活質(zhì)量,并為患者家庭帶來巨大的經(jīng)濟(jì)負(fù)擔(dān)。治療SCI的方式相對有限,但是SCI治療的報道也在不斷更新。就上述OECs和MSCs的特性,證實(shí)它們在SCI治療中的具有一定的潛在價值。前期研究和臨床研究均證實(shí)了OECs和MSCs在改善脊髓損傷局部環(huán)境發(fā)揮著積極的作用。然而,報道中并沒有明確指出將細(xì)胞注射到脊髓損傷部位指導(dǎo),因此,進(jìn)一步的研究并建立一個有效的注射系統(tǒng)是非常有必要的。應(yīng)當(dāng)建立一個微創(chuàng)注射系統(tǒng),固定在患者的脊髓上,能電子控制并穩(wěn)定的將OECs和MSCs注射到損傷的局部。固定穿刺的位置應(yīng)當(dāng)選在經(jīng)皮、椎弓根側(cè)面的部位,此外,系統(tǒng)應(yīng)當(dāng)具備一定的活動度,以接受患者一些不經(jīng)意的活動。固定裝置也應(yīng)當(dāng)和可調(diào)式的微量注射器保持緊密的鏈接。穿刺系統(tǒng)外部也應(yīng)當(dāng)套著鋼管已幫助準(zhǔn)確的穿刺,內(nèi)部應(yīng)當(dāng)是柔軟的套管用于傳輸細(xì)胞。我們相信這樣一個裝置能減少直接椎管內(nèi)注射所帶來的風(fēng)險并提高準(zhǔn)確度。
目前,雖然OECs和MSCs在治療SCI方面所發(fā)揮的作用仍不能完全的被闡明,但是干細(xì)胞治療SCI有效的報道近年層出不窮,多種細(xì)胞因子也為SCI治療帶來了希望[38]。多種治療策略的聯(lián)合,神經(jīng)病學(xué)、神經(jīng)外科、生物工程和干細(xì)胞治療有望為SCI治療帶來新的福音。
[1]Gabison S,Verrier M C,Nadeau S,et al.Trunk strength and function using the multidirectional reach distance in individuals with non-traumatic spinal cord injury[J].J Spinal Cord Med,2014,37(5):537-547.
[2]曹中華,王金光.脊髓損傷治療進(jìn)展[J].海南醫(yī)學(xué),2012,23(6):123-128.
[3]Fehlings MG,Vaccaro A,Wilson JR,et al.Early versus delayed decompression for traumatic cervical spinal cord injury:results of the Surgical Timing in Acute Spinal Cord Injury Study(STASCIS)[J].PLoS One,2012,7(2):e32037.
[4]Kwon BK,Tetzlaff W,Grauer JN,et al.Pathophysiology and pharmacologic treatment of acute spinal cord injury[J].Spine J,2004,4(4):451-464.
[5]Hamid S,Hayek R.Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury:an overview[J].Eur Spine J,2008,17(9):1256-1269.
[6]Hausmann ON.Post-traumatic inflammation following spinal cord injury[J].Spinal Cord,2003,41(7):369-378.
[7]Kirshblum SC,Burns SP,Biering-Sorensen F,et al.International standards for neurological classification of spinal cord injury(revised 2011)[J].J Spinal Cord Med,2011,34(6):535-546
[8]陳星余.針刺療法治療脊髓損傷性尿潴留30例臨床分析[J].海南醫(yī)學(xué),2012,23(8):61-62.
[9]Park DY,Mayle RE,Smith RL,et al.Combined transplantation of human neuronal and mesenchymal stem cells following spinal cord injury[J].Global Spine J,2013,3(1):1-6.
[10]Doucette JR.The glial cells in the nerve fiber layer of the rat olfactory bulb[J].Anat Rec,1984,210(2):385-391.
[11]Lindsay SL,Riddell JS,Barnett SC.Olfactory mucosa for transplant-mediated repair:a complex tissue for a complex injury?[J].Glia,2010,58(2):125-134.
[12]Raisman G.Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons[J].Neuroscience,1985,14(1):237-254.
[13]Ramón-Cueto A,Nieto-Sampedro M.Glial cells from adult rat olfactory bulb:immunocytochemical properties of pure cultures of ensheathing cells[J].Neuroscience,1992,47(1):213-220.
[14]Gudi?o-Cabrera G,Nieto-Sampedro M.Schwann-like macroglia in adult rat brain[J].Glia,2000,30(1):49-63.
[15]Doucette R.Glial influences on axonal growth in the primary olfactory system[J].Glia,1990,3(6):433-449.
[16]Keyvan-Fouladi N,Raisman G,Li Y.Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats[J].J Neurosci,2003,23(28):9428-9434.
[17]Li Y,Decherchi P,Raisman G.Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing.[J].J Neurosci,2003,23(3):727-731.
[18]Li Y,Field PM,Raisman G.Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells[J].J Neurosci,1998,18(24):10514-10524.
[19]Ramón-Cueto A,Cordero MI,Santos-Benito FF,et al.Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia[J].Neuron,2000,25(2):425-435.
[20]Ramón-Cueto A,Plant GW,Avila J,et al.Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants[J].J Neurosci,1998,18(10):3803-3815.
[21]Barbour HR,Plant CD,HarveyAR,et al.Tissue sparing,behavioral recovery,supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion[J].BMC Neurosci,2013,14:106.
[22]Witheford M,Westendorf K,Roskams AJ.Olfactory ensheathing cells promote corticospinal axonal outgrowth by a L1 CAM-dependent mechanism[J].Glia,2013,61(11):1873-1889.
[23]Lima C,Escada P,Pratas-Vital J,et al.Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury[J].Neurorehabil Neural Repair,2010,24(1):10-22.
[24]Mackay-Sim A,Féron F,Cochrane J,et al.Autologous olfactory ensheathing cell transplantation in human paraplegia:a 3-year clinical trial[J].Brain,2008,131(Pt 9):2376-2386.
[25]Wu J,Sun T,Ye C,et al.Clinical observation of fetal olfactory ensheathing glia transplantation(OEGT)in patients with complete chronic spinal cord injury[J].Cell Transplant,2012,21(Suppl 1):S33-37.
[26]Tabakow P,Jarmundowicz W,Czapiga B,et al.Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury[J].Cell Transplant,2013,22(9):1591-1612.
[27]Tabakow P,Raisman G,Fortuna W,et al.Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging[J].Cell Transplant,2014,23(12):1631-1655.
[28]da SML,Chagastelles PC,Nardi NB.Mesenchymal stem cells reside in virtually all post-natal organs and tissues[J].J Cell Sci,2006,119(Pt 11):2204-2213.
[29]Uccelli A,Moretta L,Pistoia V.Mesenchymal stem cells in health and disease[J].Nat Rev Immunol,2008,8(9):726-736.
[30]Lu P,Tuszynski MH.Can bone marrow-derived stem cells differentiate into functional neurons?[J].Exp Neurol,2005,193(2):273-278.
[31]Petrou P,Gothelf Y,Argov Z,et al.Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis:results of phase 1/2 and 2a clinical trials[J].JAMANeurol,2016,73(3):337-344.
[32]Syková E,Jendelová P,Urdzíková L,et al.Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair[J].Cell Mol Neurobiol,2006,26(7-8):1113-1129.
[33]Ankeny DP,McTigue DM,Jakeman LB.Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats[J].Exp Neurol,2004,190(1):17-31.
[34]Hofstetter CP,Schwarz EJ,Hess D,et al.Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery[J].Proc NatlAcad Sci USA,2002,99(4):2199-2204.
[35]Alexanian AR,Fehlings MG,Zhang Z,et al.Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats[J].Neurorehabil Neural Repair,2011,25(9):873-880.
[36]Bhanot Y,Rao S,Ghosh D,et al.Autologous mesenchymal stem cells in chronic spinal cord injury[J].Br J Neurosurg,2011,25(4):516-522.
[37]Yoon SH,Shim YS,Park YH,et al.Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor:Phase Ⅰ/Ⅱ clinical trial[J].Stem Cells,2007,25(8):2066-2073.
[38]符策崗,趙紅衛(wèi),賀露姣,等.半乳糖凝集素1治療脊髓損傷新進(jìn)展[J].海南醫(yī)學(xué),2015(16):2405-2406.
Role of olfactory ensheathing cells and mesenchymal stem cells in treating spinal cord injuries.
JIE Yong1,FU Ce-gang2,HAN Qing-bin1.1.Ren-he Hospital,China Three Gorges University,Yichang 443000,Hubei,CHINA;2.Institute of Spinal Medicine and Trauma,Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery,the First College of Clinical Medical Sciences of China Three Gorges University,Yichang 443000,Hubei,CHINA
The clinical treatment of spinal cord injury(SCI)is mainly based on surgery combined with immunotherapy,but often cannot get desired results.Stem cells can play an important role in neuroprotection and nerve regeneration.Therefore,stem cell therapy for SCI has become one of the focuses in recent years,and has made some progress in basic and clinical research.In this paper,we will make a brief review of the research on the treatment of SCI through olfactory ensheathing cells and mesenchymal stem cells.
Olfactory ensheathing cells;Mesenchymal stem cells;Spinal cord injury;Neuroprotection;Nerve regeneration
R745.4
A
1003—6350(2017)22—3709—03
10.3969/j.issn.1003-6350.2017.22.030
韓慶斌。E-mail:395274474@qq.com
2017-03-28)