陳平喬德才劉曉莉
1 北京師范大學體育與運動學院(北京 100875)
2 呂梁學院體育系(呂梁 830000)
紋狀體中等多棘神經(jīng)元樹突棘形態(tài)結構重塑與帕金森病運動防治研究進展
陳平1,2喬德才1劉曉莉1
1 北京師范大學體育與運動學院(北京 100875)
2 呂梁學院體育系(呂梁 830000)
樹突棘(dendritic spine)是位于神經(jīng)元樹突分支上的微小功能性突起結構,參與神經(jīng)元之間信息傳遞,也被視為中樞神經(jīng)系統(tǒng)突觸結構可塑性的基礎。帕金森病(Parkinson's disease,PD)動物模型紋狀體中等多棘神經(jīng)元(medium spiny neurons,MSNs)樹突棘形態(tài)結構發(fā)生異常改變,且與運動功能障礙的出現(xiàn)具有一致性。運動調節(jié)基底神經(jīng)節(jié)功能紊亂,有效改善PD行為功能障礙的神經(jīng)生物學機制可能與紋狀體MSNs樹突棘形態(tài)結構重塑有關。本文擬從紋狀體神經(jīng)元構筑與樹突棘形態(tài)結構特征、紋狀體MSNs樹突棘形態(tài)結構異常與PD、運動與PD紋狀體MSNs樹突棘形態(tài)結構重塑以及AMPARs介導PD紋狀體MSNs樹突棘運動依賴性重塑四個方面對紋狀體MSNs樹突棘形態(tài)結構可塑性在PD運動防治中的作用進行綜述。
運動 ;帕金森病 ;紋狀體;樹突棘;谷氨酸及其受體
帕金森?。≒arkinson's disease,PD)又名震顫麻痹,由英國醫(yī)師James Parkinson(1817年)首先描述,被認為是以中腦黑質多巴胺(dopamine,DA)能神經(jīng)元丟失及紋狀體DA遞質減少為特征的漸進性神經(jīng)退行性疾病[1]。PD患者及PD動物模型表現(xiàn)出認知和包括運動遲緩、靜止性震顫、肌肉僵直和姿勢步態(tài)異常等在內的運動功能障礙[2,3]。目前針對PD的治療仍以藥物和手術為主,但治愈率低,副作用大,給患者及家庭都帶來難以忍受的痛苦。因此,尋找能夠延緩PD進程或預防PD發(fā)生的有效方法是目前研究所關注的兩個熱點問題。
樹突棘(dendritic spine)是位于神經(jīng)元樹突分支(dendritic branch)上的微小功能性突起結構,包括大腦皮層椎體神經(jīng)元、紋狀體中等多棘神經(jīng)元(medium spiny neurons,MSNs)和小腦的浦肯野細胞等,它以不足0.01~0.8 μm3的總體積,容納了成熟腦組織中90% 以上的興奮性突觸,其高度的形態(tài)多樣性被認為是中樞神經(jīng)系統(tǒng)突觸結構可塑性的基礎[4]。PD動物模型研究發(fā)現(xiàn),紋狀體MSNs樹突棘形態(tài)結構、數(shù)量和密度發(fā)生異常改變,且與運動功能障礙的出現(xiàn)具有一致性[5];而一定強度跑臺或跑輪運動干預可顯著逆轉PD動物模型紋狀體MSNs樹突棘數(shù)量和密度丟失,并改善其運動功能[6]。提示運動防治PD的神經(jīng)生物學機制可能與紋狀體MSNs樹突棘形態(tài)結構重塑有關。
1.1 紋狀體神經(jīng)元構筑
紋狀體神經(jīng)元由約95%的MSNs組成[7],基于腦區(qū)之間聯(lián)系和化學表型,可將MSNs分為2個亞群,即直接通路(direct pathway)上的MSNs(dMSNs)和間接通路(indirect pathway)上的MSNs(iMSNs)。dMSNs發(fā)出軸突直接投射到基底神經(jīng)節(jié)的輸出核團,即蒼白球內側部/黑質網(wǎng)狀部復合體(GPi/SNr),主要表達Golf蛋白偶聯(lián)的多巴胺1型受體(D1DR)及P物質(SP)和強啡肽(DYN);相比之下,iMSNs先投射到蒼白球外側部(GPe),主要表達Gi蛋白偶聯(lián)的多巴胺2型受體(D2DR)和腦啡肽(ENK)[8]。此外,紋狀體還有一少部分MSNs不僅投射到GPe,還投射到GPi/SNr,并且共表達D1DR和D2DR亞型[9]。
紋狀體MSNs樹突棘不僅是大腦皮層和丘腦的谷氨酸(Glutamic acid,Glu)能神經(jīng)元軸突輸入的主要靶點[10],同時也接受中腦DA能神經(jīng)元軸突輸入。在大多數(shù)情況下,大腦皮層Glu神經(jīng)元軸突末梢與紋狀體MSNs樹突棘頭部形成突觸聯(lián)系,是皮層-紋狀體Glu突觸長時程可塑性發(fā)生與維持的關鍵[11-13];DA能神經(jīng)元的軸突末梢則與紋狀體MSNs樹突棘頸部或樹突干近段相突觸,從而在樹突棘水平為Glu和DA能突觸之間的相互作用提供了解剖學基礎[14]。盡管表達D2DR的iMSNs通常具有更強的興奮性,表達D1DR的dMSNs具有更多的樹突分枝,但兩類投射神經(jīng)元之間一些基本參數(shù)卻發(fā)生高度重疊,很難根據(jù)其大體形態(tài)或基本電生理特性進行可靠區(qū)分[15,16]。
紋狀體內無棘中間神經(jīng)元在數(shù)量上遠較MSNs少,僅占紋狀體神經(jīng)元總數(shù)的5%[17]。在解剖學上,這些無棘中間神經(jīng)元可以被分為中等大小的γ-氨基丁酸(γaminobutyric acid,GABA)能神經(jīng)元和大膽堿能神經(jīng)元[18]。中等大小的GABA能中間神經(jīng)元在組織化學上又可進一步分類為不同的亞型:(a)小清蛋白-陽性;(b)共表達生長抑素(SOM)、神經(jīng)肽-Y(NPY)和一氧化氮合酶(NOS)陽性;(c)鈣結合蛋白陽性[19];(d)酪氨酸羥化酶(TH)陽性[20]的中間神經(jīng)元。
1.2 紋狀體MMSSNNss樹突棘形態(tài)特征
1899年,西班牙著名神經(jīng)生物學家Cajal采用Golgi染色方法,利用光學顯微鏡在小腦浦肯野神經(jīng)元的樹突上第一次觀察到小樹枝狀附屬物,認為它們可能是神經(jīng)元樹突與軸突末端之間的連接位點,并將其命名為樹突棘[21,22]。20世紀50年代末,Gray利用電子顯微鏡技術證實了樹突棘與突觸超微結構之間的關聯(lián)。樹突棘不僅在密度上具有動態(tài)性,在形態(tài)上還呈現(xiàn)多樣性,且在體條件下90% 的樹突棘是興奮性突觸的突觸后位點,通常作為突觸后成分與投射來的軸突共同構成完整的突觸連接[23]。樹突棘長度一般在0.5~2.0 μm之間(但海馬CA3區(qū)椎體神經(jīng)元上可觀察到長度達6 μm的樹突棘),體積介于0.01~0.8 μm3之間。一般來說,一個理想、成熟的樹突棘通常由兩部分組成,一個較細長的、與樹突小分支相連的棘頸(spine neck)和一個小的膨大的、與棘頸相連的球狀棘頭(spine head)。在電子顯微鏡下看到的樹突棘形態(tài)不盡相同,依照它們的大小和形狀可分為蘑菇型(mushroom)、短粗型(stubby)、細長型(thin)和分叉型(branched)4種類型[24](圖1A)。蘑菇型或短粗型樹突棘具有較大的棘頭和較長的棘頸,棘頭通過樹突棘頸部與樹突干相連,形成穩(wěn)固且成熟的突觸連接,又被稱為成熟的樹突棘;分叉型和細長型樹突棘通常沒有突觸的超微結構,故也缺乏穩(wěn)固且成熟的突觸連接,因此稱之為不成熟的樹突棘[25]。
1.3 紋狀體MMSSNNss樹突棘超微結構
樹突棘超微結構主要由Actin細胞骨架、突觸后致密物(postsynaptic density,PSD)和細胞器組成[26](圖1B)。在活細胞內,Actin以球型和纖維型(F-actin)兩種形式存在,是細胞的骨架成分。在樹突棘頭部和頸部,F(xiàn)-actin分別以網(wǎng)狀和束狀方式構成復雜的網(wǎng)絡束來維持樹突棘的結構。PSD由許多與信號轉導相關的蛋白質組裝而成,是突觸后信號轉導與整合的結構基礎。電子顯微鏡下觀察發(fā)現(xiàn),PSD呈電子密度較大的半圓形帶狀區(qū)域。經(jīng)過離心分離、電泳等技術對其組成鑒定發(fā)現(xiàn),PSD組成包含神經(jīng)遞質受體(如Glu受體)、細胞支架蛋白(如PSD-95)、細胞骨架蛋白(如鈣結合蛋白)及調節(jié)蛋白等多種組分。此外,樹突棘還含有許多細胞器,如多聚核糖體、滑面內質網(wǎng)和胞體小泡等[27]。多聚核糖體通常位于樹突棘底部,參與記憶存儲的重要神經(jīng)生理過程[28],并作為一個半獨立的隔室,具有局部的轉化能力[29]。而滑面內質網(wǎng)在突觸傳遞過程中調節(jié)和優(yōu)化鈣離子信號[30],神經(jīng)元的大部分蘑菇型樹突棘均包含有大量滑面內質網(wǎng)并形成被稱為棘器的層狀結構[31]。相比之下,作為細胞能量工廠的線粒體卻很少能夠在樹突棘上觀察到,這表明樹突棘信號傳導所需要的能量可能是由胞體的線粒體通過擴散作用來提供的[32]。
圖1 樹突棘類型及超微結構示意圖
PD狀態(tài)下紋狀體MSNs樹突棘丟失的證據(jù)首次來源于Ingham等[33]的研究,他們發(fā)現(xiàn)6-羥基多巴胺(6-OHDA)偏側損毀黑質紋狀體DA能系統(tǒng)后,紋狀體樹突棘丟失約20%。后續(xù)的研究進一步發(fā)現(xiàn),樹突棘丟失與紋狀體非對稱性Glu能突觸總數(shù)量相應減少的現(xiàn)象并存,說明PD狀態(tài)下與丟失的樹突棘相連接的Glu能突觸前膜可能發(fā)生皺縮或變性[34]。Nishijima等[35]利用免疫電鏡觀察發(fā)現(xiàn),6-OHDA偏側損毀大鼠紋狀體去DA神經(jīng)支配后樹突棘數(shù)量、密度也顯著降低;Zhang等[36]研究發(fā)現(xiàn),6-OHDA偏側損毀大鼠紋狀體MSNs胞體遠端和近端樹突上樹突棘約丟失40%;Soderstorm等[37]利用高爾基染色的方法得到了同樣的結果。Suarez[38]和Antzoulatos[39]等利用免疫電鏡和高爾基染色的方法對1-甲級-4苯基-1,2,3,6-四氫吡啶(MPTP)誘導的PD小鼠模型的觀察發(fā)現(xiàn),紋狀體樹突長度、分枝數(shù)量及樹突棘密度均顯著降低;Villalba[40]和Smith[41]等利用高爾基染色技術結合3D電子顯微鏡觀察發(fā)現(xiàn),MPTP誘導的非人類靈長類PD模型紋狀體樹突棘丟失30~50%。Stephens等[42,43]對PD患者紋狀體組織尸檢也進一步發(fā)現(xiàn)紋狀體MSNs樹突棘丟失現(xiàn)象存在,且樹突分枝數(shù)量、樹突長度及樹突棘密度均顯著降低。
然而,Day等[44,45]利用細菌人工染色體(BACs)作為克隆載體,建立增強型綠色熒光蛋白(eGFP)標記D1DR和D2DR的轉基因小鼠模型,在給予利魯平處理后發(fā)現(xiàn),DA耗竭后紋狀體MSNs樹突棘丟失主要發(fā)生于iM?SNs,而dMSNs樹突棘并未發(fā)生顯著變化,這一研究結果與 Villalba等[40]從6-OHDA模型大鼠上所獲得的研究結果一致。Suarez等[46]通過電子顯微鏡非體視學樹突棘計數(shù)法對MPTP處理的PD猴模型研究表明,iMSN樹突棘數(shù)量相對減少,同時伴隨dMSN樹突棘數(shù)量增加。但這些研究結果又與Lee等[47]用高爾基染色方法觀察到的PD病人和PD動物模型紋狀體dMSNs、iM?SNs樹突棘數(shù)量均丟失的結果不同。另有研究表明,PD病人和PD動物模型紋狀體MSNs樹突棘丟失的程度具有明顯的區(qū)域性特征,背側紋狀體樹突棘丟失超50%,而腹側紋狀體樹突棘的丟失僅為 20%~25%[48,49]。造成上述結果差異的原因可能與實驗使用的動物模型、神經(jīng)毒素、定量方法以及紋狀體檢測區(qū)域不同有關。
有關PD紋狀體MSNs樹突棘超微結構改變的研究較少。在PD動物模型上發(fā)現(xiàn),紋狀體MSNs樹突棘超微結構發(fā)生改變,表現(xiàn)為PSD厚度增加,穿通型突觸數(shù)量及比例增多[50];體積顯著增加[51];棘器的長度和體積大幅度增加,呈片段化,并顯著延伸到樹突棘的頭部,直至到達PSD[52-54]。樹突棘超微結構的變化已經(jīng)被認為是鈣濃度改變和蛋白合成增加的證據(jù)之一。
在生命的整個階段,運動或者豐富環(huán)境對脊椎動物大腦的形態(tài)結構產(chǎn)生積極的影響。Petzinger等[55]研究表明,大強度跑臺運動可以使健康小鼠紋狀體MSNs樹突棘密度、數(shù)量、分枝顯著增加;Stranahan等[56,57]發(fā)現(xiàn),自主跑輪運動使健康動物紋狀體及以外腦區(qū)樹突棘密度增加;Takamatsu等[58]研究發(fā)現(xiàn),腦出血模型大鼠14天跑臺運動干預后紋狀體樹突長度、分枝、數(shù)量及樹突棘密度均顯著增加。關于運動對PD病人或動物模型紋狀體MSNs樹突棘形態(tài)結構重塑的影響研究較少。William等[59]研究表明,4周大強度跑臺運動干預可增加MPTP誘導的PD小鼠模型紋狀體樹突分枝的長度、數(shù)量及樹突棘的數(shù)量和密度;Shin等[60]研究發(fā)現(xiàn),4周大強度跑臺運動可顯著增加PD小鼠模型紋狀體樹突棘數(shù)量和密度,與William等研究結果一致;陳巍等[61]采用高爾基染色的方法觀察到4周中等強度跑臺運動干預可顯著增加PD大鼠模型紋狀體MSNs樹突棘數(shù)量和密度,并利用透射電子顯微鏡觀察發(fā)現(xiàn),運動還可使PD大鼠模型紋狀體MSNs不對稱性突觸中穿通型突觸的比例顯著降低,且MSNs樹突棘丟失與PD大鼠運動功能障礙呈正相關。這提示運動可能引起PD動物模型紋狀體MSNs樹突、樹突棘形態(tài)結構和功能的重塑。
近年來的研究表明,PD病人或毒素誘導的PD動物模型黑致-紋狀體DA耗竭引起皮層-紋狀體Glu通路過度激活,突觸前Glu大量釋放,激活突觸后膜上的受體門控離子通道,使大量的Ca2+內流及胞內鈣超載[62]。而Ca2+又可作為第二信使,激活Ca2+依賴性蛋白酶,啟動胞內一系列信號級聯(lián)反應,致使細胞骨架蛋白的結構與功能改變,最終通過不同的方式引起樹突棘丟失[63]。 因此,Glu的興奮性毒作用被認為是導致紋狀體MSNs樹突棘脫落的主要因素之一。
基底神經(jīng)節(jié)內Glu的重要靶點是α-氨基-3-羥基-5-甲基-4-異惡咗丙酸受體(a-amino-3-hydroxy-5-methy1-4-isoxa-zoleppropionate receptors,AMPARs),它是一種介導快速興奮性神經(jīng)傳遞的Glu受體,其在谷氨酸的興奮毒作用中越來越被人們重視[64]。AMPARs由4種亞基(GluR1、GluR2、GluR3和GluR4)選擇性組裝構成同源或異源四聚體,其中GluR2亞基對AMPARs的特性有重要影響。包含GluR2亞基(GluR2-containing)的AMPARs對Ca2+不通透,相反,缺失GluR2亞基(GluR2-lacking)的AMPARs對Ca2+具有較好的通透性[65]。神經(jīng)元內AMPARs亞基表達和它們之間構成關系的改變可能是精神分裂癥、自閉癥、成癮、阿爾茨海默?。ˋD)和PD等許多神經(jīng)系統(tǒng)疾病的病理基礎[66]。VanLeeuwen[67]等在PD小鼠模型上發(fā)現(xiàn),DA耗竭后紋狀體MSNsGluR2亞基缺失的AMPARs顯著增加,且與Glu濃度升高相一致;Kintz等[68]研究表明,4周大強度跑臺運動干預使PD小鼠模型皮層-紋狀體通路突觸前Glu釋放顯著降低,紋狀體包含GluR2亞基的AM? PARs蛋白表達、mRNA轉錄及其絲氨酸880位點磷酸化程度顯著增高;陳巍等[69]研究發(fā)現(xiàn),4周中等強度跑臺運動使PD大鼠模型紋狀體 GluR2亞基表達顯著增高。這些研究結果表明,PD狀態(tài)下紋狀體缺乏GluR2亞基的AMPARs表達增加可能會增強Glu信號通路,或許是DA耗竭后紋狀體MSNs過度興奮的原因之一。運動通過增加PD模型動物紋狀體包含GluR2亞基的AM?PARs表達,起到降低Ca2+內流和抑制Glu驅動的作用。因此,AMPARs亞基構成可能與紋狀體MSNs樹突棘形態(tài)結構重塑有關(圖2)。
圖2 AMPARs和Ca2+調節(jié)紋狀體MSNs樹突棘形態(tài)變化示意圖
樹突棘是接受信息、形成突觸聯(lián)系的重要部位。樹突棘形態(tài)、大小和數(shù)量的動態(tài)變化與突觸可塑性密切相關。PD紋狀體MSNs樹突棘形態(tài)結構可塑性發(fā)生異常改變。運動可使PD動物模型紋狀體MSNs樹突棘數(shù)量、密度以及包含Glu2的AMPARs表達增高。運動可能通過增加紋狀體包含GluR2亞基的AMPARs表達,降低Ca2+內流和抑制Glu驅動的作用,達到逆轉紋狀體MSNs樹突棘丟失和改善PD病人行為功能障礙的治療效果。探索運動對PD紋狀體MSNs樹突棘形態(tài)結構可塑性的影響及參與樹突棘形態(tài)結構可塑性調控的運動依賴性機制可能是今后PD防治研究的新關注點。
[1]Kim SN,Doo AP,Park JY,et al.Combined treatment with acupunctuncture reduces effective dose and allevi?ates adverse effect of L-dopa by normalizing Parkinsons diease induced neurochemicalimbalance[J].BrainRes,2014,1544:33-44.
[2]Lamotte G,Rafferty MR,Prodoeh IJ,et al.Effects of en?durance exercise training on the motor and non-motor features of parkinson’s disease:a review[J].J Parkinson’s Dis,2015,5(1):21-41.
[3]Jose AO,Maria CR,Maria S.The expanding universe of disorders of the basal ganglia[J].Lancet,2014,384:523-531.
[4]Bian W,Miao W,Yu X,et al.Coordinated spine pruning and maturatiion mediated by inter-spine competition for cadherin/catenin complexes[J].Cell,2015,162:808-822.
[5]Wonju K,Mi JI,Cheol HP,et al.Remodeling of the den?dritic structure of the striatal medium spiny neurons ac?companies behavioral recovery in a mouse model of Par?kinson's disease[J].Neurosci Lett,2013,557:95-100.
[6]William AT,Giselle M,Brian J,et al.Treadmill exercise reverses dendritic spine loss in direct and indirect stria?tal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)mouse model of Parkin?son's disease[J].Neurobiol Dis,2014,63:201-209.
[7]Oorschot DE.Total number of neurons in the neostriatal,pallidal,subthalamic and substantia nigral nuclei of the rat basal ganglia:a stereological study using the cavalieri and optical dissector methods[J].J Comp Neurol,1996,366:580-599.
[8]Michael W,Shiflett,Balleine BW.Molecular substrates ofaction control in cortico-striatal circuits[J].Prog Neurobi?ol,2011,95(1):1-13.
[9]Wu Y,Richard S,Parent AZ.The organization of the stri?ataloutputsystem:asingle-celljuxtacellularlabeling study in the rat[J].Neurosci Res,2000,38:49-62.
[10]WichmannT,DelongMR.Anatomyandphysiologyof the basal gangglia:relevance to Parkinson’s disease and related disorders[J].Handb Clin Neurol,2007,83:1-18.
[11]Moss J,Bolam JP.A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals[J].J Neurosci,2008,28:11221-11230.
[12]Surmeier DJ,Shen W,Day M,et al.The role of dopa?mine in modulating the structure and function of striatal circuits[J].Prog Brain Res,2010,183:149-167.
[13]Gerfen CR,Surmeier DJ.Modulation of striatal projection systems by dopamine[J].Annu Rev Neurosci,2011,34:441-466.
[14]Picconi B,Piccoli G,Calabresi P.Synaptic dysfunction in Parkinson’s disease[J].Adv Exp Med Biol,2012,970:553-572.
[15]Gertler TS,Chan CS,Surmeier DJ.Dichotomous anatomi?cal properties of adult striatal medium spiny neurons[J].J Neurosci,2008,28:10814-10824.
[16]Kreitzer AC.Physiology and pharmacology of striatal neu?rons[J].Annu Rev Neurosci,2009,32:127-147.
[17]Bernacer J,Prensa L,Gimenez-Amaya JM.Cholinergic in?terneurons are differentially distributed in the human stri?atum[J].PLoS One,2007,2:1160-1174.
[18]Bernacer J,Prensa L,Gimenez-Amaya JM.Distribution of GABAergic interneurons and dopaminergic cells in the functional territories of the human striatum[J].PLoS One,2012,7:3039-3054.
[19]Bernacer J,Prensa L,Gimenez-Amaya JM.Morphological features,distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced?diaphorase interneurons in the human striatum[J].J Comp Neurol,2005,489:311-327.
[20]Tepper JM,Tecuapetla F,Koós T,et al.Heterogeneity and diversity of striatal GABAergic interneurons[J].Front Neuroanat,2010,4(150):1-18.
[21]Sala C,Segal M.Dendritic spines:the locus of structural and functional plasticity[J].Physiol Rev,2014,94(1):141-188.
[22]CajalSR.Surla structure de l’ecorce cerebrale de quelques mammiferes[J].La Cellule,1891,7:125-176.
[23]Gray EG.Axo-somatic and axo-dendritic synapses of the cerebral cortex:an electron microscope study [J].J Anat,1959,93,420-33.
[24]Jeomil B,Bong H,Seon MK,et al.NESH Regulates Den?dritic Spine Morphology and Synapse Formatio[J].PLos One,2012,7:346-377.
[25]邊文杰,于翔.樹突棘的動態(tài)變化與調控機制[J].生命科學,2015,27(3):294-305.
[26]Krasnov IB,Diachkova LN,Burtseva TD,et al.Ultrastruc?ture of dendritic spines in the somatosensory cortex of rat,s brain following 5-and 33-dayhypergravity[J].Avia?kosm Ekolog Med,2012,46(5):46-151.
[27]Spacek J.Three-dimensional analysis of dendritic spines.II.Spine apparatusand other cytoplasmic compo?nents[J].Anat.Embryol(Berl.),1985,171:235-243.
[28]Linnaea,EO,John CF,Brenda A,et al.Polyribosomes re?distribute from dendritic shafts intospines with enlarged synapses during LTP in developing rat hippocampalslices [J].Neuron,2002,35:535-545.
[29]Spacek J,Harris KM.Three-dimensional organization of smoothendoplasic reticulum in hippocampalCA1 den?drites and dendritic spines of the immature and mature rat[J].Neurosci,1997,17:190-203.
[30]Sala C,Segal M.Dendritic spines:the locus of structural and functional plasticity[J].Physiol Rev,2013,94(1):141-188.
[31]Fiala JC,Spacek J,Harris KM.Dendritic spine pathology:cause orconsequence ofneurologicaldisorders[J].Brain Res Rev,2002,39:29-54.
[32]Panchanan M,Jayeeta M,Julien R,et al.Molecuar regula?tion of dendritic spine dynamics and their potential im?pact on synaptic plasticity and neurological diseases[J].NeurosciBiobehav Rev,2015,59:208-237.
[33]Ingham CA,Hood SH,Arbuthnott GW.Spine density on neostriatal neurones changes with 6-hydroxydopamine le?sions and with age[J].Brain Res,1989,503:334-338.
[34]Ingham CA,Hood SH,Taggart P,et al.Plasticity of syn?apses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway[J].J Neurosci,1998,18:4732-4743.
[35]Nishijima H,Arai A,Kimura T,et al.Drebrin immunore?activity in the striatumof a rat model of levodopainduced dyskinesia[J].Neuropathology,2013,33:391-396.
[36]Zhang Y,Meredith GE,Mendoza-Elias N,et al.Aberrant restoration of spines and their synapses in L-DOPA-in?duced dyskinesia:Involvement of corticostriatal but not thalamostriatal synapses[J].J Neurosci,2013,33:11655-11667.
[37]Soderstrom KE,Sortwell CE,Levine ND,et al.Impact of dendritic spine preservation in kedium spiny neurons on dopamine graft efficacy and the expression of dyskine?sias in parkinsonian rats[J].Eur J Neurosci,2010,31:478-490.
[38]Suarez LM,Solis O,Carames JM,et al.L-DOPA treat?ment selectively restores spine density in dopamine recep?tor D2-expressing projection neurons in dyskinetic mice [J].Biol Psychiatry,2014,75(9):711-722.
[39]Antzoulatos E,Michael WJ,Petzinger GM,et al.MPTP neurotoxicity and testosterone Induce Dendritic Remodel?ing of Striatal Medium Spiny Neurons in the C57Bl/6 Mouse[J].Parkinsons Dis,2011,10:1-10.
[40]Villalba RM,Smith Y.Differential structural plasticity of corticostriataland thalamostriatalaxo-spinoussynapses in MPTP-treated Parkinsonian monkeys[J].J Comp Neu?rol,2011,519:989-1005.
[41]Smith Y,Villalba RM,Raju DV.Striatal spine plasticity in Parkinsons disease:pathological or not?[J].Parkinson?ism Relat Disorders,2009,15:156-161.
[42]Stephens B,Mueller AJ,Shering AF,et al.Evidence of a breakdown of corticalstriatal connections in Parkinson’s disease[J].Neuroscience,2005,132:741-754.
[43]Zaja-Milatovic S,Milatovic D,Schantz AM,et al.Dendrit?ic degeneration in neostriatal medium spiny neurons in Parkinson disease[J].Neurology,2005,64:545-547.
[44]Day M,Wang Z,Ding J,et al.Selective elimination of glutamatergic synapses on striatopallidal neurons in Par?kinson disease models[J].Nat Neurosci,2006,9:251-259.
[45]Speelman AD,Nimwegen M,Petzinger GM,et al.How might physical activity benefit patients with Parkinson?disease[J].Nat Rev Neurol,2011,7:528-534.
[46]Suarez LM,Solis O,Carames JM,et al.L-DOPA treat?ment selectively restores spine density in dopamine recep?tor D2-expressing projection neurons in dyskinetic mice [J].Biol Psychiatry,2014,75:711-722.
[47]Villalba RM,Lee H,Smith Y.Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys [J].Exp Neurol,2009,215:220-227.
[48]Zaja-Milatovic S,Milatovic D,Schantz AM,et al.Dendrit?ic degeneration in neostriatal medium spiny neurons in Parkinson disease[J].Neurology,2005,64:545-547.
[49]Villalba RM,Smith Y.Striatal spine plasticity in Parkin?sons disease[J].Front Neuroanat,2010,4:133.
[50]Smith Y,Villalba RM,Raju DV.Striatal spine plasticity in Parkinsons disease:pathological or not[J].Parkinson?ism Relat Disord,2009b,15(Suppl.3):S156-S161.
[51]Villalba1 RM,Smith Y.Neuroglial Plasticity at Striatal Glutamatergic Synapses in Parkinson's Disease[J].Front Syst Neurosci,2011b,5:68.
[52]Villalba RM,Smith Y.Differential structural plasticity of corticostriataland thalamostriatalaxo-spinoussynapses in MPTP-treated Parkinsonian monkeys[J].J Comp Neu?rol,2011a,519:989-1005.
[53]Burgoyne RD,Barron J,Geisow MJ.Cytochemical localisa?tion of calcium binding sites in adrenal chromaffin cells and their relation to secretion[J].Cell Tissue Res,1983,229:207-217.
[54]Bourne JN,Harris KM.Balancing structure and function at hippocampal dendritic spines[J].Annu Rev Neurosci, 2008,31:47-67.
[55]Petzinger GM,Walsh JP,Akopian G,et al.Effects of treadmill exercise tetrahydropyridine-lesioned mouse mod?el of basal ganglia injury[J].J Neurosci,2007,27:5291-5300.
[56]Stranahan AM,Khalil D,Gould E.Running induces wide?spread structural alterations in the hippocampus and ento?rhinal cortex[J].Hippocampus,2007,17:1017-1022.
[57]Lee KJ,Jung JG,Arii T,et al.Morphological changes in dendritic spines of purkinje cells associated with motor learning[J].Neurobiol Learn Mem,2007,88:445-450.
[58]Takamatsu Y,Ishida A,Hamakawa M,et al.Treadmill running improves motor function and alters dendritic mor?phology in the striatum after collagenase-induced intrace?rebral hemorrhage in rats[J].Brain Res,2010,1355:165-173.
[59]William AT,Giselle MP,Brian JL,et al.Treadmill exer?cise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)mouse model of Par?kinson's disease[J]Neurobiology of Disease,2014,63:201-209.
[60]Shin MS,Jeong,HY,An DI,et al.Treadmill exercise facil?itates synaptic plasticity on dopaminegic neurons and fi?bersin the mouse modelwith Parkinson'sdisease[J].NeurosciLett,2016,621:28-33.
[61]劉曉莉,時凱旋,喬德才.運動對帕金森模型大鼠紋狀體神經(jīng)元電活動的影響[J].北京體育大學學報,2014,37(5):57-61.
[62]WichmannT,DelongMR.Anatomyandphysiologyof the basal ganglia:relevance to Parkson’s disease and re?lated disorders[J].Handb Clin.Neuro,2007,83:1-18.
[63]Martellaa G,Madeoa G,Schirinzia T.Altered profile and D2-dopamine receptor modulation of high voltage-activat?ed calcium currentin striatalmedium spiny neurons from animal models of Parkinson's disease[J].Neurosci?ence,2011,177:240-251.
[64]Gu X,Mao X,Lussier MP,et al.GSG1L suppresses AM?PA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neu?rons[J].Nat Commun,2016,6:1-53.
[65]Rossmann M,Sukumaran M,Penn AC,et al.Subunit-se?lective N-terminal domain associations organize the forma?tion of AMPA receptor heteromers[J].EMBO J,2011,30(5):959-971.
[66]Chang PK,Verbich D,McKinney RA.AMPA receptors as drug targets in neurological disease advantages,cave?ats,and future outlook[J].Eur J Neurosci,2012,35:1908-1916.
[67]VanLeeuwen JE,Petzinger GM,Walsh JP,et al.Altered AMPA receptor expression with treadmill exercise in the1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury[J].J Neurosci Res,2010,88(3):650-668.
[68]Kintz N,Petzinger GM,Akopian G,et al.Exercise modi?fies alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropion?ic acid receptor expression in striatopallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-le?sioned mouse[J].J Neurosci Res,2013,91(11):1492-1507.
[69]陳巍,時凱旋,劉曉莉.運動干預通過紋狀體MSNs結構可塑性改善PD模型大鼠行為功能[J].中國運動醫(yī)學雜志,2015,34(3):228-234.
2016.07.30
國家自然科學基金資助(編號:31571221)
劉曉莉,Email:xiaolil@bnu.edu.cn