吳俊成, 徐銘益
(上海交通大學(xué)附屬第一人民醫(yī)院 消化科, 上海 200080)
外泌體與肝臟疾病的關(guān)系
吳俊成, 徐銘益
(上海交通大學(xué)附屬第一人民醫(yī)院 消化科, 上海 200080)
外泌體是細(xì)胞經(jīng)過“內(nèi)吞-融合-外排”等過程形成的直徑在30~100 nm的胞外囊泡。多種細(xì)胞均可以釋放外泌體,這些外泌體可攜帶脂質(zhì)、蛋白質(zhì)和核酸等重要的生物分子,參與細(xì)胞間的信號轉(zhuǎn)導(dǎo)及物質(zhì)交換,調(diào)節(jié)體內(nèi)多個系統(tǒng)的生理病理過程,其在多種肝臟疾病中發(fā)揮至關(guān)重要的作用,如肝癌、病毒性肝炎、肝纖維化、酒精性及非酒精性脂肪肝等。對外泌體在肝臟疾病中的研究進(jìn)展作一綜述。
外泌體; 肝疾??; 綜述
1987年,Johnstone等[1]在研究網(wǎng)織紅細(xì)胞成熟的過程中發(fā)現(xiàn)了一種納米級的囊泡,并提出了外泌體的概念。起初外泌體被認(rèn)為是一種排出代謝產(chǎn)物的細(xì)胞結(jié)構(gòu)。隨著人們的深入研究,發(fā)現(xiàn)外泌體有豐富的功能,如介導(dǎo)細(xì)胞信號轉(zhuǎn)導(dǎo)、物質(zhì)傳遞和調(diào)節(jié)免疫反應(yīng)等[2]。近年研究表明,外泌體在肝臟的生理和肝臟疾病中發(fā)揮著重要的作用。外泌體參與肝癌、病毒性肝炎、肝纖維化、酒精性及非酒精性脂肪肝等疾病的發(fā)生發(fā)展,是肝臟疾病診斷的潛在生物標(biāo)志物,也是肝臟疾病治療的新靶點(diǎn)。本文主要就外泌體在肝臟疾病中的研究進(jìn)展作一總結(jié)。
外泌體是直徑為30~100 nm的雙層膜結(jié)構(gòu)的囊泡,由細(xì)胞內(nèi)多囊泡體形成。首先,細(xì)胞膜內(nèi)陷形成內(nèi)吞小體,內(nèi)吞小體相互融合后形成早期內(nèi)體;早期內(nèi)體的微粒膜內(nèi)陷,包裹細(xì)胞內(nèi)液或生物分子,形成含有多個腔內(nèi)小囊泡的晚期內(nèi)體即多囊泡體;之后,多囊泡體與細(xì)胞膜融合,將內(nèi)含的多個腔內(nèi)小囊泡釋放至細(xì)胞外,形成外泌體[3]。Caby等[4]首次在正常人的血漿中檢測到外泌體,隨后研究[5]發(fā)現(xiàn)外泌體廣泛分布于血清(或血漿)、尿液、膽汁、唾液、精液、腦脊液及乳汁中。
外泌體的外層是脂質(zhì)雙分子層結(jié)構(gòu),表面有供體細(xì)胞來源的膜性分子,如蛋白、酶等[5]。外泌體含有豐富的內(nèi)容物,Exocarta數(shù)據(jù)庫最新數(shù)據(jù)顯示,已經(jīng)確定有9769種蛋白質(zhì)、3408種mRNA和2838種microRNA(miRNA)存在于不同細(xì)胞來源的外泌體中(http://www.exocarta.org/)。
外泌體作為細(xì)胞間信號轉(zhuǎn)導(dǎo)和物質(zhì)傳遞的載體,可以和靶細(xì)胞特異性結(jié)合,將其內(nèi)容物傳遞給靶細(xì)胞,并且可以調(diào)節(jié)靶細(xì)胞的多種生理功能,如蛋白表達(dá)、細(xì)胞增殖分化及免疫反應(yīng)等[6]。其作用于靶細(xì)胞主要有3種方式:一是外泌體表面的蛋白直接與靶細(xì)胞受體結(jié)合;二是外泌體膜上蛋白被水解后,可溶性成分與靶細(xì)胞受體結(jié)合;三是外泌體被靶細(xì)胞內(nèi)吞后,將內(nèi)含物轉(zhuǎn)運(yùn)到靶細(xì)胞內(nèi)發(fā)揮生物學(xué)作用[3]。
肝臟中多種細(xì)胞均可以分泌外泌體,或做為外泌體的靶細(xì)胞,如肝細(xì)胞、膽管上皮細(xì)胞、肝星狀細(xì)胞(HSC)、單核巨噬細(xì)胞、自然殺傷T淋巴細(xì)胞及淋巴細(xì)胞等。不同細(xì)胞分泌的外泌體有著不同的功能,如來自肝細(xì)胞的外泌體能調(diào)節(jié)肝細(xì)胞的增殖[7],來自HSC的外泌體參與肝纖維化的形成[8],單核細(xì)胞分泌的外泌體可調(diào)節(jié)肝臟的炎癥反應(yīng)[9]。
生理情況下,肝細(xì)胞來源的外泌體能向肝外細(xì)胞傳遞藥物代謝相關(guān)的酶,如細(xì)胞色素P450酶、UDP-葡萄糖醛酸基轉(zhuǎn)移酶及谷胱甘肽S-轉(zhuǎn)移酶等,參與藥物代謝及靶細(xì)胞內(nèi)源性毒物的解毒,維持機(jī)體內(nèi)環(huán)境的穩(wěn)定[10]。此外,Nojima等[7]研究發(fā)現(xiàn),肝細(xì)胞能分泌含有鞘氨醇激酶2的外泌體,增加靶肝細(xì)胞中鞘氨醇-1-磷酸(sphingosine-1-phosphate, S1P)的表達(dá),加強(qiáng)肝細(xì)胞的增殖能力。因此,外泌體能調(diào)節(jié)肝臟的解毒和肝細(xì)胞的增殖,對肝臟生理有重要的作用。
外泌體與多種肝臟疾病的發(fā)生發(fā)展密切相關(guān),如肝癌、病毒性肝炎、肝纖維化、酒精性和非酒精性脂肪肝等。外泌體在這些疾病的病理生理、診斷、預(yù)后判斷及治療方面日益顯現(xiàn)出重要作用。
3.1 外泌體與肝臟疾病的發(fā)生發(fā)展
3.1.1 原發(fā)性肝癌 外泌體是肝癌細(xì)胞與靶細(xì)胞交流的重要方式,其不僅能夠調(diào)節(jié)腫瘤的微環(huán)境,增加腫瘤細(xì)胞的增殖、轉(zhuǎn)移和浸潤能力,還能調(diào)節(jié)腫瘤細(xì)胞對缺氧和化療的抗性。
外泌體含有豐富的RNA和蛋白,可通過外泌體的傳遞作用,影響周邊細(xì)胞和組織的生理功能,改變腫瘤的微環(huán)境,影響癌細(xì)胞增殖、轉(zhuǎn)移和浸潤能力。Conigliaro等[11]研究發(fā)現(xiàn),CD90+腫瘤干細(xì)胞樣肝細(xì)胞(CD90+Huh7)分泌的外泌體含有l(wèi)ncRNA-H19,這種外泌體被轉(zhuǎn)運(yùn)到人臍靜脈內(nèi)皮細(xì)胞,上調(diào)血管內(nèi)皮生長因子和內(nèi)皮生長因子受體1的表達(dá),促進(jìn)血管生成,增加CD90+Huh7和內(nèi)皮細(xì)胞的黏附,促進(jìn)腫瘤的轉(zhuǎn)移。Huang等[12]發(fā)現(xiàn),人肝癌細(xì)胞株Hep G2分泌的含有VASN蛋白的外泌體,能將VASN轉(zhuǎn)運(yùn)到人臍靜脈內(nèi)皮細(xì)胞,促進(jìn)內(nèi)皮細(xì)胞的遷移,從而加快腫瘤的進(jìn)展。He等[13]研究發(fā)現(xiàn),有轉(zhuǎn)移潛能的肝癌細(xì)胞來源的外泌體中含有致癌基因的mRNA和蛋白質(zhì),如原癌基因Met、S-100蛋白家族和小窩蛋白等,這些成分可被轉(zhuǎn)運(yùn)到正常肝細(xì)胞中,作用于磷脂酰肌醇-3激酶(PI3K)/蛋白激酶B(Akt)和MAPK通路,促進(jìn)肝細(xì)胞分泌基質(zhì)金屬蛋白酶(MMP)2和MMP-9,提高肝癌細(xì)胞的轉(zhuǎn)移和侵襲能力。Qu等[14]研究發(fā)現(xiàn)肝癌細(xì)胞來源的外泌體,能通過激活肝細(xì)胞生長因子/肝細(xì)胞生長因子受體(c-Met)/Akt信號通路,加強(qiáng)肝癌細(xì)胞對索拉非尼的抗性。此外,有研究[15-16]表明外泌體能在腫瘤細(xì)胞間傳遞lincRNA-ROR和lincRNA-VLDLR,參與調(diào)節(jié)肝癌細(xì)胞對缺氧損傷和化療藥物的抵抗。
3.1.2 病毒性肝炎 外泌體在病毒性肝炎的病程中起到了雙刃劍的作用,一方面,外泌體能影響機(jī)體的免疫反應(yīng);另一方面,其可成為病毒傳播的有效途徑。
Kouwaki等[17]在樹鼩HBV感染的研究中發(fā)現(xiàn),感染HBV的肝細(xì)胞能釋放含有病毒核酸的外泌體,通過骨髓細(xì)胞分化基因88、TICAM-1和線粒體抗病毒信號蛋白依賴的通路,刺激巨噬細(xì)胞表達(dá)自然殺傷細(xì)胞(NK細(xì)胞)活化性受體的配體,使NK細(xì)胞活化,進(jìn)而在病毒感染早期產(chǎn)生IFNγ,促進(jìn)胞質(zhì)中HBV核酸的降解,起到抗病毒作用。然而另一項(xiàng)研究[18]表明,慢性乙型肝炎患者的血清中內(nèi)含HBV組分的外泌體則起到了相反的作用。這種外泌體能損傷NK細(xì)胞的功能,減少IFNγ的生成,抑制NK細(xì)胞的增殖和存活,是病毒逃逸宿主固有免疫的機(jī)制。
HCV感染的肝細(xì)胞能分泌攜帶HCV的RNA和蛋白的外泌體,并且能將內(nèi)容物傳遞給其他肝細(xì)胞。由于外泌體的保護(hù)作用,這種傳播途徑能在一定程度上減弱抗病毒抗體的作用,是病毒傳播的有效途徑[19]。Bukong等[20]發(fā)現(xiàn)HCV感染肝細(xì)胞的外泌體中含有Ago2蛋白、熱休克蛋白90和miRNA-122,這些物質(zhì)能穩(wěn)定外泌體中的HCV RNA,促進(jìn)HCV傳播。Harwood等[21]發(fā)現(xiàn),HCV感染的肝細(xì)胞來源的外泌體,能增加單核細(xì)胞中半乳凝素9的表達(dá),影響單核細(xì)胞的分化,從而抑制機(jī)體的免疫反應(yīng)。此外,肝竇內(nèi)皮細(xì)胞也能識別HCV,增加細(xì)胞內(nèi)Ⅰ型和Ⅲ型IFN的表達(dá),并分泌含有抗病毒分子的外泌體,發(fā)揮抑制HCV復(fù)制的作用[22]。
3.1.3 酒精性和非酒精性脂肪肝 在酒精性和非酒精性肝病的發(fā)病過程中,外泌體調(diào)節(jié)肝細(xì)胞與炎癥細(xì)胞間的信號交流及物質(zhì)傳遞,影響肝臟中單核巨噬系統(tǒng)的活性,調(diào)節(jié)肝臟的炎癥反應(yīng)。
Saha等[9]研究發(fā)現(xiàn),乙醇能刺激人單核細(xì)胞釋放富含miRNA-27a的外泌體,使原始單核細(xì)胞分化為M2巨噬細(xì)胞,促進(jìn)炎癥因子的分泌,增加巨噬細(xì)胞的吞噬性。另一項(xiàng)研究[23]表明,乙醇通過激活半胱天冬酶3依賴的通路,刺激肝細(xì)胞分泌含有CD40配體的外泌體,促進(jìn)巨噬細(xì)胞的活化,加重肝臟的炎癥。
Ibrahim等[24]發(fā)現(xiàn),棕櫚酸或溶血軟磷脂能通過激活肝細(xì)胞的混合譜系激酶3,使肝細(xì)胞釋放含有趨化因子CXCL10的外泌體,調(diào)節(jié)巨噬細(xì)胞的活化,加速肝臟的損傷。另一項(xiàng)研究[25]表明,脂質(zhì)能激活肝細(xì)胞的死亡受體5,促使肝細(xì)胞釋放外泌體,進(jìn)而激活巨噬細(xì)胞的炎癥表型。此外,脂質(zhì)還能通過內(nèi)質(zhì)網(wǎng)跨膜激酶1α途徑,刺激肝細(xì)胞釋放含有神經(jīng)酰胺的外泌體,進(jìn)而通過S1P依賴的途徑調(diào)節(jié)巨噬細(xì)胞的趨化性,招募大量巨噬細(xì)胞,加重肝臟的炎癥[26]。
3.1.4 肝纖維化 肝纖維化是肝損傷后修復(fù)的一種病理狀態(tài),涉及HSC、肝細(xì)胞、內(nèi)皮細(xì)胞及炎癥細(xì)胞的相互作用。其中外泌體是這些細(xì)胞間交流的載體,能調(diào)節(jié)HSC的激活和遷移性,在肝纖維化過程中發(fā)揮著重要的作用。
Seo等[27]研究發(fā)現(xiàn),肝細(xì)胞損傷后可以分泌含有Toll樣受體3配體的外泌體,激活HSC的Toll樣受體3,進(jìn)而刺激γδT淋巴細(xì)胞分泌大量的IL-17A,促進(jìn)肝纖維化的形成。Charrier等[28]發(fā)現(xiàn),活化的HSC能分泌含有結(jié)締組織生長因子(connective tissue growth factor, CTGF)2的外泌體,并在HSC之間傳遞,增加α-平滑肌肌動蛋白和膠原的表達(dá),促進(jìn)肝纖維化的形成。Chen等[29]研究表明,HSC能分泌含有miRNA-214的外泌體,并傳遞給其鄰近的肝細(xì)胞或HSC,抑制CTGF2及其下游靶分子的表達(dá)。該研究者還發(fā)現(xiàn),活化的HSC來源的外泌體中轉(zhuǎn)錄調(diào)控因子Twist1和miRNA-214的表達(dá)下調(diào),減弱了miRNA-214對CTGF2表達(dá)的抑制作用[8]。這種HSC之間外泌體的相互傳遞過程,可能受整合素αγβ3、整合素α5β1及硫酸乙酰肝素蛋白聚糖調(diào)節(jié)[30]。此外,外泌體還能調(diào)節(jié)HSC的遷移性。內(nèi)皮細(xì)胞來源的外泌體含有鞘氨醇激酶1,通過纖連蛋白和整合素依賴的外泌體黏附以及動力蛋白2依賴的外泌體內(nèi)吞,激活靶HSC的Atk信號通路,增加HSC的遷移性[31]。
3.1.5 繼發(fā)性肝癌 肝臟是胃腸道瘤和胰腺癌等腫瘤轉(zhuǎn)移的重要靶器官,這些癌細(xì)胞分泌的外泌體能改變靶器官轉(zhuǎn)移前的微環(huán)境,參與調(diào)節(jié)腫瘤的肝轉(zhuǎn)移。
Wang等[32]研究發(fā)現(xiàn),高轉(zhuǎn)移性大腸癌細(xì)胞系(HT-29)分泌的外泌體,能在肝臟中招募趨化因子受體CXCR4高表達(dá)的間質(zhì)細(xì)胞,形成有利于腫瘤轉(zhuǎn)移的微環(huán)境,增加低轉(zhuǎn)移性的Caco-2結(jié)腸癌細(xì)胞在小鼠肝臟中的分布。Costa-Silva等[33]發(fā)現(xiàn),胰導(dǎo)管腺癌來源的外泌體中含有大量的遷移抑制因子,其能被肝Kupffer細(xì)胞攝取,刺激TGFβ的產(chǎn)生,活化HSC,促進(jìn)肝臟中纖維連接蛋白的表達(dá),招募大量骨髓源性巨噬細(xì)胞進(jìn)入肝臟,為胰導(dǎo)管腺癌的肝轉(zhuǎn)移創(chuàng)造一個適宜的微環(huán)境。此外,外泌體包含內(nèi)容物的不同能夠影響腫瘤轉(zhuǎn)移的親器官性,研究[34]表明外泌體中含有的整合素αVβ5與腫瘤的肝臟轉(zhuǎn)移有關(guān)。
3.2 外泌體在肝臟疾病診斷中的作用 外泌體廣泛存在于機(jī)體的體液中,其內(nèi)容物與機(jī)體疾病相關(guān),并且可無創(chuàng)獲得,是疾病潛在的生物標(biāo)記。大量研究表明,外泌體中的蛋白和miRNA可以作為肝臟疾病診斷的標(biāo)志物。血清外泌體中miRNA-18a、miRNA-221、miRNA-222、miRNA-224可將肝癌患者和慢性乙型肝炎患者及慢性乙型肝炎肝硬化患者區(qū)分開[35];血清外泌體中miRNA-494、miRNA-519d、miRNA-595和miRNA-939可將肝癌患者和肝硬化患者區(qū)分開[36];血清外泌體中miRNA-718可作為肝癌移植后復(fù)發(fā)預(yù)測的指標(biāo)[37];血漿外泌體中miRNA-30a、miRNA-192和CD40配體有助于診斷酒精性肝炎[23,38];血漿外泌體中miRNA-122、miRNA-192、CXCL10、神經(jīng)酰胺和S1P有助于診斷非酒精性脂肪性肝炎[24,26,39];血清外泌體中CTGF有助于診斷肝纖維化[29]。以上結(jié)果表明,外泌體有望成為肝病診斷和預(yù)后判斷的重要生物標(biāo)志物。
3.3 外泌體在肝臟疾病中的治療作用 外泌體參與多種肝臟疾病的發(fā)生發(fā)展,越來越多的實(shí)驗(yàn)表明外泌體可作為肝臟疾病治療的潛在靶點(diǎn),特別是間質(zhì)干細(xì)胞來源的外泌體為肝臟疾病的治療提供了新方向。
在肝癌的治療中,Rao等[40]發(fā)現(xiàn)肝細(xì)胞癌來源的外泌體能攜帶腫瘤抗原,引起強(qiáng)烈的樹突狀細(xì)胞介導(dǎo)的免疫反應(yīng),使腫瘤部位T淋巴細(xì)胞和IFNγ增加,IL-10和TGFβ降低,從而加強(qiáng)腫瘤免疫,改善腫瘤的微環(huán)境。另一項(xiàng)研究[41]表明,脂肪源性間充質(zhì)干細(xì)胞分泌的外泌體能增強(qiáng)自然殺傷T淋巴細(xì)胞的抑癌作用。此外,Wei等[42]發(fā)現(xiàn)液泡蛋白分選蛋白4A能調(diào)節(jié)外泌體中miRNA的種類,使肝癌細(xì)胞中PI3K/AKT信號通路失活,抑制腫瘤的生長和侵襲。
在肝纖維化的治療中,Li等[43]在研究CCl4致小鼠肝纖維化的實(shí)驗(yàn)中發(fā)現(xiàn),人臍帶間充質(zhì)干細(xì)胞來源的外泌體能通過抑制TGFβ/Smad信號通路,抑制肝細(xì)胞的上皮-間充質(zhì)轉(zhuǎn)化,最終減輕CCl4導(dǎo)致的肝損傷。此外,Hyun等[44]發(fā)現(xiàn),絨毛膜板源性的間質(zhì)干細(xì)胞分泌的外泌體中含有miRNA-125b,能抑制肝臟中Hedghog信號通路,促進(jìn)肝纖維化的逆轉(zhuǎn)。
在肝臟再生和肝損傷的治療中,Nong等[45]發(fā)現(xiàn),人誘導(dǎo)多能干細(xì)胞源性間充質(zhì)干細(xì)胞分泌的外泌體能抑制大鼠肝臟缺血再灌注后的炎癥反應(yīng)、氧化應(yīng)激和細(xì)胞凋亡,進(jìn)而減輕肝臟的缺血再灌注損傷。此外,在肝臟缺血再灌注損傷后,外泌體能在肝細(xì)胞之間傳遞神經(jīng)酰胺和鞘氨醇激酶2,促進(jìn)肝細(xì)胞的再生和修復(fù),減輕肝臟的損傷[7]。Tan等[46]在研究CCl4致小鼠肝損傷的實(shí)驗(yàn)中發(fā)現(xiàn),間質(zhì)干細(xì)胞來源的外泌體能增加肝細(xì)胞中增殖細(xì)胞核抗原、細(xì)胞周期蛋白D1和細(xì)胞周期蛋白E的表達(dá),加強(qiáng)肝細(xì)胞的增殖能力,減輕肝臟的損傷。
綜上所述,外泌體是細(xì)胞間信號交流及物質(zhì)傳遞的重要載體。診斷方面,外泌體中特異miRNA或蛋白質(zhì)的診斷效能需要通過大樣本臨床研究進(jìn)行驗(yàn)證。治療方面還存在以下問題:外泌體中生物分子的作用機(jī)制;大量制備、分離、純化及保存外泌體的方法等??傊?,外泌體在肝臟疾病診斷、治療和預(yù)后判斷方面有著巨大的潛力,為肝臟疾病的診斷、治療提供了新思路。
[1] JOHNSTONE RM, ADAM M, HAMMOND JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
[2] NATASHA G, GUNDOGAN B, TAN A, et al. Exosomes as immunotheranostic nanoparticles[J]. Clin Ther, 2014, 36(6): 820-829.
[3] URBANELLI L, MAGINI A, BURATTA S, et al. Signaling pathways in exosomes biogenesis, secretion and fate[J]. Genes (Basel), 2013, 4(2): 152-170.
[4] CABY MP, LANKAR D, VINCENDEAU-SCHERRER C, et al. Exosomal-like vesicles are present in human blood plasma[J]. Int Immunol, 2005, 17(7): 879-887.
[6] MASYUK AI, MASYUK TV, LARUSSO NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases[J]. J Hepatol, 2013, 59(3): 621-625.
[7] NOJIMA H, FREEMAN CM, SCHUSTER RM, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate[J]. J Hepatol, 2016, 64(1): 60-68.
[8] CHEN L, CHEN R, KEMPER S, et al. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(6): g491-g499.
[9] SAHA B, MOMEN-HERAVI F, KODYS K, et al. MicroRNA cargo of extracellular vesicles from alcoholexposed monocytes signals naive monocytes to differentiate into M2 macrophages[J]. J Biol Chem, 2016, 291(1): 149-159.
[10] CONDE-VANCELLS J, GONZALEZ E, LU SC, et al. Overview of extracellular microvesicles in drug metabolism[J]. Expert Opin Drug Metab Toxicol, 2010, 6(5): 543-554.
[11] CONIGLIARO A, COSTA V, LO DICO A, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA[J]. Mol Cancer, 2015, 14: 155.
[12] HUANG A, DONG J, LI S, et al. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells[J]. Int J Biol Sci, 2015, 11(8): 961-969.
[13] HE M, QIN H, POON TC, et al. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs[J]. Carcinogenesis, 2015, 36(9): 1008-1018.
[14] QU Z, WU J, WU J, et al. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro[J]. J Exp Clin Cancer Res, 2016, 35(1): 159.
[15] TAKAHASHI K, YAN I K, HAGA H, et al. Modulation of hypoxia-signaling pathways by extracellular linc-RoR[J]. J Cell Sci, 2014, 127(Pt 7): 1585-1594.
[16] TAKAHASHI K, YAN IK, WOOD J, et al. Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy[J]. Mol Cancer Res, 2014, 12(10): 1377-1387.
[17] KOUWAKI T, FUKUSHIMA Y, DAITO T, et al. Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection[J]. Front Immunol, 2016, 7: 355.
[18] YANG Y, HAN Q, HOU Z, et al. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction[J]. Cell Mol Immunol, 2016, 13: 1-11.
[19] LIU Z, ZHANG X, YU Q, et al. Exosome-associated hepatitis C virus in cell cultures and patient plasma[J]. Biochem Biophys Res Commun, 2014, 455(3-4): 218-222.
[20] BUKONG TN, MOMEN-HERAVI F, KODYS K, et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90[J]. PLoS Pathog, 2014, 10(10): e1004424.
[21] HARWOOD NM, GOLDEN-MASON L, CHENG L, et al. HCV-infected cells and differentiation increase monocyte immunoregulatory galectin-9 production [J]. J Leukoc Biol, 2016, 99(3): 495-503.
[22] GIUGLIANO S, KRISS M, GOLDEN-MASON L, et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication[J]. Gastroenterology, 2015, 148(2): 392-402.
[23] VERMA VK, LI H, WANG R, et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles[J]. J Hepatol, 2016, 64(3): 651-660.
[24] IBRAHIM SH, HIRSOVA P, TOMITA K, et al. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes[J]. Hepatology, 2016, 63(3): 731-744.
[25] HIRSOVA P, IBRAHIM SH, KRISHNAN A, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes[J]. Gastroenterology, 2016, 150(4): 956-967.
[26] KAKAZU E, MAUER AS, YIN M, et al. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner[J]. J Lipid Res, 2016, 57(2): 233-245.
[27] SEO W, EUN HS, KIM SY, et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis[J]. Hepatology, 2016, 64(2): 616-631.
[28] CHARRIER A, CHEN R, CHEN L, et al. Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver[J]. Surgery, 2014, 156(3): 548-555.
[29] CHEN L, CHARRIER A, ZHOU Y, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells [J]. Hepatology, 2014, 59(3): 1118-1129.
[30] CHEN L, BRIGSTOCK DR. Integrins and heparan sulfate proteoglycans on hepatic stellate cells (HSC) are novel receptors for HSC-derived exosomes[J]. FEBS Lett, 2016, 590(23): 4263-4274.
[31] WANG R, DING Q, YAQOOB U, et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration[J]. J Biol Chem, 2015, 290(52): 30684-30696.
[32] WANG X, DING X, NAN L, et al. Investigation of the roles of exosomes in colorectal cancer liver metastasis[J]. Oncol Rep, 2015, 33(5): 2445-2453.
[33] COSTA-SILVA B, AIELLO NM, OCEAN AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver[J]. Nat Cell Biol, 2015, 17(6): 816-826.
[34] HOSHINO A, COSTA-SILVA B, SHEN TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578): 329-335.
[35] SOHN W, KIM J, KANG SH, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma[J]. Exp Mol Med, 2015, 47: e184.
[36] FORNARI F, FERRACIN M, TRERD, et al. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC[J]. PLoS One, 2015, 10(10): e0141448.
[37] SUGIMACHI K, MATSUMURA T, HIRATA H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation[J]. Br J Cancer, 2015, 112(3): 532-538.
[38] MOMEN-HERAVI F, SAHA B, KODYS K, et al. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis[J]. J Transl Med, 2015, 13: 261.
[39] POVERO D, EGUCHI A, LI H, et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease[J]. PLoS One, 2014, 9(12): e113651.
[40] RAO Q, ZUO B, LU Z, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro[J]. Hepatology, 2016, 64(2): 456-472.
[41] KO SF, YIP HK, ZHEN YY, et al. Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features[J]. Stem Cells Int, 2015, 2015: 853506.
[42] WEI JX, LV LH, WAN YL, et al. Vps4A functions as a tumor suppressor by regulating the secretion and uptake of exosomal microRNAs in human hepatoma cells[J]. Hepatology, 2015, 61(4): 1284-1294.
[43] LI T, YAN Y, WANG B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis[J]. Stem Cells Dev, 2013, 22(6): 845-854.
[44] HYUN J, WANG S, KIM J, et al. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells[J]. Sci Rep, 2015, 5: 14135.
[45] NONG K, WANG W, NIU X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats[J]. Cytotherapy, 2016, 18(12): 1548-1559.
[46] TAN CY, LAI RC, WONG W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models[J]. Stem Cell Res Ther, 2014, 5(3): 76.
引證本文:WU JC, XU MY. Research advances in the association between exosomes and liver diseases[J]. J Clin Hepatol, 2017, 33(9): 1815-1819. (in Chinese) 吳俊成, 徐銘益. 外泌體與肝臟疾病的關(guān)系[J]. 臨床肝膽病雜志, 2017, 33(9): 1815-1819.
(本文編輯:葛 俊)
Researchadvancesintheassociationbetweenexosomesandliverdiseases
WUJuncheng,XUMingyi.
(DepartmentofGastroenterology,ShanghaiFirstPeople′sHospital,ShanghaiJiaoTongUniversity,Shanghai200080,China)
Exosomes are extracellular vesicles with a diameter of 30-100 nm formed during the processes of “endocytosis-fusion-exocytosis”. Exosomes can be released by various types of cells and may carry important biological molecules, such as lipids, proteins, and nucleic acids. They are also involved in signal transduction and exchange of substances between cells and can regulate the physiological and pathological processes in various systems. They also play an important role in liver diseases, including liver cancer, viral hepatitis, liver fibrosis, and alcoholic and non-alcoholic fatty liver disease. This article reviews the research advances in exosomes in liver diseases.
exosomes; liver diseases; review
10.3969/j.issn.1001-5256.2017.09.042
2017-02-04;
:2017-02-20。
國家自然科學(xué)基金(81570547);國家科技部“十二五”重大專項(xiàng)(2012ZX10002007-001-040,2013ZX10002004-002-003);院優(yōu)秀青年人才計劃(061405)
吳俊成(1992-),男,主要從事肝纖維化方面的研究。
徐銘益,電子信箱:xumingyi2014@163.com。
R575
:A
:1001-5256(2017)09-1815-05