国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

JAK2-STAT3信號(hào)通路在肝細(xì)胞癌中的研究進(jìn)展

2017-03-29 21:30:16廖明媚王成志楊滿意潘一峰綜述趙勁風(fēng)審校
中國普通外科雜志 2017年1期
關(guān)鍵詞:結(jié)構(gòu)域磷酸化靶向

廖明媚,王成志,楊滿意,潘一峰 綜述 趙勁風(fēng) 審校

(中南大學(xué)湘雅醫(yī)院 衛(wèi)生部納米生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,湖南 長(zhǎng)沙 410008)

肝癌是世界排名第五的惡性腫瘤,也是第三大致死率腫瘤,同時(shí)還是中國第二大導(dǎo)致死亡的癌癥。肝細(xì)胞癌(hepatocellular carcinoma,HCC)是最常見的一種肝癌,腫瘤的發(fā)生發(fā)展與原癌基因的過度表達(dá)和抑癌基因的沉默相關(guān),在多種惡性腫瘤中,JAK2-STAT3持續(xù)性激活,使下游原癌基因過度表達(dá)。

Janus激酶(JAK)-信號(hào)轉(zhuǎn)導(dǎo)子與轉(zhuǎn)錄激活子(STAT)信號(hào)通路早在90年代就被發(fā)現(xiàn)了[1],該通路能快速將膜外信號(hào)轉(zhuǎn)導(dǎo)進(jìn)入細(xì)胞核內(nèi),調(diào)控下游相關(guān)基因survivin、c-Myc、JunB、clAP2、cyclin D1、MMP-2、ICAM-1、VEGF和Bcl-2基因家族的表達(dá)。隨著分子生物學(xué)的發(fā)展,JAK2-STAT3通路成為研究熱點(diǎn),大量研究表明JAK2-STAT3通路的持續(xù)性激活與腫瘤的發(fā)生發(fā)展密切相關(guān),JAK2-STAT3通路的持續(xù)性激活也與腫瘤的耐藥相關(guān)。索拉非尼作為分子靶向藥物現(xiàn)已經(jīng)用于晚期HCC的治療,可以改善晚期HCC患者的生存期,針對(duì)JAK2-STAT3和其下游基因設(shè)計(jì)小分子藥物,可以精確的靶向腫瘤細(xì)胞,減少對(duì)正常細(xì)胞的毒副作用。本文就JAK2-STAT3在HCC中的研究做一綜述,為HCC的靶向治療提供新思路。

1 JAK2-STAT3信號(hào)通路的組成與調(diào)控

1.1 JAK蛋白酪氨酸激酶

JAK家族現(xiàn)在已經(jīng)發(fā)現(xiàn)4個(gè)成員,包括JAK1、JAK2、JAK3、TYK2。它們的蛋白質(zhì)都超過1 000個(gè)氨基酸,分子量在120~140 kDa左右,都有著相似的同源結(jié)構(gòu)域,包括FERM結(jié)構(gòu)域、SH2結(jié)構(gòu)域、JAK假激酶區(qū)和蛋白質(zhì)酪氨酸激酶(PTK)結(jié)構(gòu)域[2]。JAK1、JAK2、TYK2幾乎在所有細(xì)胞中表達(dá),而JAK3則主要在造血細(xì)胞中表達(dá)[3]。在急性骨髓性白血病中,p-JAK2過表達(dá),與總體生存率相關(guān),AZ960能抑制JAK2磷酸化,有一定療效[4]。在骨髓增生性疾病中,JAK2在V617F位點(diǎn)發(fā)生突變,G6[5-6]、AG490能選擇性抑制JAK2[7],Ruxolitinib、Fedratinib[8]、BMS-911543[9]等能選擇性抑制JAK2,對(duì)骨髓瘤都有一定的療效。TG101348也能抑制JAK2,能克服非小細(xì)胞肺癌對(duì)埃羅替尼耐藥[10]。miR-135a抑制JAK2蛋白的表達(dá)[11],阻止下游STAT3的磷酸化。

1.2 STATs家族

STAT信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子是JAKs的下游底物,它能將信號(hào)帶到細(xì)胞核,調(diào)節(jié)基因的表達(dá)。STATs家族有7個(gè)成員STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b、STAT6。STAT蛋白質(zhì)約800個(gè)氨基酸,分子量在89~97 kDa左右。根據(jù)功能STATs蛋白家族可分為兩類[12],STAT2,STAT4,STAT6這一類主要被一小部分細(xì)胞因子激活,在IFN信號(hào)和T細(xì)胞的發(fā)育中起作用。另一類由STAT1、STAT3、STAT5組成,它們由一系列配體激活,在不同的組織中均發(fā)揮作用,如乳腺的發(fā)育,生長(zhǎng)激素的反應(yīng),胚胎發(fā)育等等。STATs家族有著相似的6個(gè)同源結(jié)構(gòu)域,從氨基酸到羧基端依次為:氨基末端結(jié)構(gòu)域、coiled-coiled結(jié)構(gòu)域(CCD)、DNA結(jié)合結(jié)構(gòu)域(DBD)、linker結(jié)構(gòu)域、SH2結(jié)構(gòu)域、羧基末端轉(zhuǎn)錄活化結(jié)構(gòu)域(TAD)。STAT3可發(fā)生賴氨酸乙?;痆13](Lys685),發(fā)生絲氨酸(Ser727)磷酸化[14],還可以發(fā)生酪氨酸磷酸化(Tyr705),在Tyr705磷酸化促進(jìn)其核轉(zhuǎn)移,提高轉(zhuǎn)錄活性。SHP-1是SH2同源結(jié)構(gòu)域酪氨酸磷酸酶,可以抑制STAT3(T705)磷酸化,阻止STAT3的激活[15]。葫蘆素(JSI-124)[16]、LLL12[17]、SC-2001[18]、Niclosamide等能抑制STAT3,抑制下游基因的表達(dá) 。 MiR-125a[19], MiR-143[20]靶 向 STAT3 mRNA的3'-UTR區(qū)抑制STAT3的蛋白表達(dá)水平,能抑制腫瘤細(xì)胞的增殖、侵襲與轉(zhuǎn)移。

1.3 JAK2-STAT3信號(hào)通路的過程及調(diào)控

細(xì)胞外信號(hào)或細(xì)胞因子通過特異性與細(xì)胞膜上受體結(jié)合使受體構(gòu)像變化,使JAK向膜受體移動(dòng),JAK發(fā)生酪氨酸磷酸化而被激活,JAK招募STATs,使STATs磷酸化,形成同源或異源化磷酸二聚體,磷酸化的二聚體迅速進(jìn)入細(xì)胞核調(diào)控基因表達(dá)或與核內(nèi)的其他轉(zhuǎn)錄因子相互作用調(diào)控基因表達(dá)。

JAK2-STAT3信號(hào)通路的調(diào)節(jié)有多種機(jī)制共同參與,通常發(fā)生在JAK激活階段、STAT進(jìn)人細(xì)胞核過程以及負(fù)反饋途徑等多個(gè)環(huán)節(jié)進(jìn)行。STAT的翻譯后的修飾極大的影響了其轉(zhuǎn)錄活性,當(dāng)配體和受體相結(jié)合并使其活化后,其鄰近的受體可發(fā)生交互磷酸化或下調(diào)非特異抑制因子的作用,而使通路得以加強(qiáng)。JAK2-STAT3信號(hào)通路還被細(xì)胞因子信號(hào)抑制物(SOCSs)、含SH2的磷酸酶(SHPs)以及STATs蛋白抑制子(PIASs)3個(gè)蛋白家族迅速終止。SOCSs通過結(jié)合并抑制JAKs或與STAT競(jìng)爭(zhēng)細(xì)胞因子受體的磷酸結(jié)合位點(diǎn)而終止JAK2-STAT3信號(hào)轉(zhuǎn)導(dǎo),SHPs通過抑制STAT3的磷酸化而阻斷STAT3進(jìn)入細(xì)胞核。高水平的cAMP能抑制JAK1-STAT3信號(hào)通路[21]。多種抑制劑可以抑制JAK2-STAT3信號(hào)通路的進(jìn)程,調(diào)控基因的表達(dá),調(diào)節(jié)細(xì)胞生長(zhǎng),增殖,分化等。

2 JAK2-STAT3信號(hào)通路與HCC

JAK2-STAT3信號(hào)通路是細(xì)胞內(nèi)的一條重要信號(hào)通路,與細(xì)胞的生長(zhǎng)、分化、增殖、凋亡有密切關(guān)系,也與很多疾病的發(fā)生發(fā)展密切相關(guān)。有研究[22]表明JAK蛋白和STAT蛋白在HCC細(xì)胞中過表達(dá),JAK1蛋白和STAT3蛋白與HCC患者的預(yù)后相關(guān),預(yù)示著它可能與HCC的發(fā)生發(fā)展有關(guān)。LLL12能抑制STAT3的T705位點(diǎn)磷酸化,阻止其核轉(zhuǎn)移,抑制抗凋亡蛋白的表達(dá),引起HCC細(xì)胞的凋亡[17]。B7-H3(免疫球蛋白)能促進(jìn)JAK2和STAT3的磷酸化,能促進(jìn)HCC細(xì)胞轉(zhuǎn)移的侵襲[23],而對(duì)細(xì)胞的生長(zhǎng)和增殖無影響。Ruxolitinib(INCB018424)是JAK2(V617F突變)抑制劑,初步臨床效果表明對(duì)骨髓瘤有較好的療效[24-25],目前被FDA批準(zhǔn)用于治療該病的晚期治療。ruxolitinib對(duì)JAK有非常高的特異性,而對(duì)非JAK信號(hào)不敏感,在體外HCC實(shí)驗(yàn)[26]中,ruxolitinib有效抑制JAK,顯著減少其下游產(chǎn)物p-STAT1和p-STAT3,顯著減少HCC的增殖和克隆形成。ruxolitinib還能減輕CCL4引起的肝損傷和壞死性炎癥[27]。Ruxolitinib特異性的抑制JAK1、JAK2酪氨酸磷酸化,可能成為靶向治療HCC有較藥物。

在HCC中STAT3主要在SH2結(jié)構(gòu)域發(fā)生突變[28],在T705位點(diǎn)磷酸化,影響著STAT3的二聚化作用和向核轉(zhuǎn)移運(yùn)動(dòng)。索拉非尼能抑制STAT3在T705位點(diǎn)和S727位點(diǎn)磷酸化而抑制STAT3的活性[29],而在索拉非尼耐藥的HCC細(xì)胞中,p-STAT3和p-JAK1和p-JAK2顯著高表達(dá),SC-2001能增強(qiáng)SHP-1的活性,抑制STAT3的磷酸化,SC-2001與索拉菲尼聯(lián)合治療能顯著抑制對(duì)索拉菲尼耐藥的HCC細(xì)胞的克隆形成,抑制腫瘤的生長(zhǎng)[18],索拉菲尼與mapatumumab,lexatumumab(TRAIL受體激動(dòng)劑)聯(lián)合治療抑制JAK2-STAT3通路,下調(diào)mcl-1表達(dá),在體內(nèi)外均能引起HCC細(xì)胞其他實(shí)體瘤細(xì)胞凋亡[30]。NSC74859(S3I-201)能抑制p-STAT3,單獨(dú)作用對(duì)HCC細(xì)胞的活性影響不大,但它與cetuximab(表皮生長(zhǎng)因子受體抑制劑)聯(lián)合治療對(duì)HCC細(xì)胞的治療效果比cetuximab單獨(dú)作用效果更顯著[31]。

乙型肝炎病毒(HBV)和丙型肝炎病毒(HCV)的感染是HCC發(fā)生發(fā)展的一個(gè)重要因素[32]。在HBV與HCV相關(guān)的HCC中,STAT3與己糖激酶II高表達(dá),且STAT3與己糖激酶II的表達(dá)具有相關(guān)性[33]。HBV可以激活STAT3信號(hào)通路[34],促進(jìn)HBV病毒的復(fù)制,阻斷STAT3信號(hào)可以抑制HBV陽性的HCC細(xì)胞的生長(zhǎng)[35],抑制STAT3可以減少HBV的表達(dá)[36]?;罨腟TAT3上調(diào)LncRNA(長(zhǎng)鏈非編碼RNA Lethe、lncIGF2AS、lnc7SK)的表達(dá)[37-38],促進(jìn)HCV的復(fù)制。Stat3調(diào)整微管動(dòng)力學(xué)影響HCV的復(fù)制,抑制STAT3可以抑制HCV的復(fù)制[39]。HCV核心蛋白通過STAT3通路調(diào)節(jié)NANOG的表達(dá),促進(jìn)細(xì)胞生長(zhǎng)和細(xì)胞周期進(jìn)程[40]。

瘦素(leptin)通過JAK2-STAT3信號(hào)通路引起ERK和AKT磷酸化,促進(jìn)HCC細(xì)胞遷移。通過JAK2-STAT3抑制劑或ERK和PI3K抑制劑能阻斷瘦素引起的HCC細(xì)胞侵襲[41],對(duì)肥胖的HCC患者的治療具有潛在的臨床意義。有研究[42]表明CIMO能抑制JAK1、JAK2和STAT3 T705磷酸化,阻礙STAT3向核轉(zhuǎn)移,影響其與DNA結(jié)合,下調(diào)STAT3下游的靶基因(Bcl-2、Bxl-xL、cyclin D、survivin、ICAM-1、Bid)表達(dá),使癌細(xì)胞停留在G1期,抑制HCC細(xì)胞的增殖、生存、侵襲與轉(zhuǎn)移,促進(jìn)細(xì)胞凋亡。

SOCS3是信號(hào)轉(zhuǎn)導(dǎo)器gp130生理上的抑制劑,能夠競(jìng)爭(zhēng)性的抑制JAK2-STAT3信號(hào)通路,有研究[43]表明,相對(duì)臨近的非腫瘤組織,HCC組織中SOCS3表現(xiàn)出高甲基化,甲基化程度與SOCS3的表達(dá)呈負(fù)相關(guān),而SOCS3的甲基化預(yù)示著JAK2-STAT3信號(hào)通路的過度活化。甲基化沉默SOCS3,增強(qiáng)JAK2-STAT3和FAK信號(hào)通路活性,因此促進(jìn)HCC細(xì)胞的生長(zhǎng)和轉(zhuǎn)移[44],在伊馬替尼耐藥的細(xì)胞中,SOCS3基因甲基化程度升高,SOCS3蛋白表達(dá)下調(diào),STAT3過度活化,細(xì)胞過度增殖[45]。在HCC細(xì)胞中,信號(hào)轉(zhuǎn)導(dǎo)器gp130在SOCS3連接位點(diǎn)(Y186/Y759F)上發(fā)生雙突變[46],通過特異性激活JAK1使STAT3過度活化。使用Ras和JAK2-STAT3抑制劑或SOCS3去甲基化藥物zebularine引起HCC細(xì)胞的強(qiáng)烈凋亡[47]。miRNA-155能下調(diào)SOCS1的表達(dá)[48],使STAT3過度活化。

全基因組測(cè)序[49-50]顯示,在HCC中,Wnt/β-catenin和JAK2-STAT3信號(hào)通路是兩個(gè)主要的致癌通路。許多植物化學(xué)物質(zhì)[51](白藜蘆醇、葫蘆素、姜黃色素等)對(duì)JAK2-STAT3信號(hào)通路表現(xiàn)出較好的抑制性,從而抑制腫瘤的發(fā)生和發(fā)展。

JAK2-STAT3信號(hào)通路在HCC的發(fā)生發(fā)展中起重要作用,明確JAK2-STAT3的上游物質(zhì)和下游底物,找到其激活劑或抑制劑,從而調(diào)節(jié)JAK2-STAT3信號(hào)通路和它的底物,從而調(diào)控基因表達(dá),靶向治療HCC。

3 JAK2-STAT3信號(hào)通路和其他信號(hào)通路的聯(lián)系

細(xì)胞內(nèi)的信號(hào)通路是極其復(fù)雜的,縱橫交錯(cuò)(圖1)。細(xì)胞內(nèi)的信號(hào)通路不是單獨(dú)作用,而是與其他信號(hào)通路共同協(xié)調(diào),調(diào)控細(xì)胞的各種生命活動(dòng)。細(xì)胞內(nèi)各信號(hào)通路協(xié)調(diào)作用與腫瘤的發(fā)生發(fā)展密切相關(guān)。Wnt/beta-catenin和JAK2-STAT3信號(hào)通路在HCC發(fā)生突變最高[49-50],可能是主要的致癌通路?;罨腏AK1也可以激活PI3K信號(hào)通路,PI3K信號(hào)通路也可以作用于STAT3,調(diào)控基因表達(dá)。在許多疾病中PI3K信號(hào)通路和JAK2-STAT3信號(hào)通路都存在相互協(xié)調(diào)作用[52-54]。STATs還可以直接被受體酪氨酸激酶(RTK)激活,如表皮生長(zhǎng)因子受體(EGFR)可以通過Src而使STAT3/5酪氨酸磷酸化[55]。環(huán)腺苷酸(cAMP)高水平表達(dá)能夠抑制JAK2-STAT3信號(hào)通路,從而在轉(zhuǎn)錄水平上下調(diào)MCL-1的表達(dá)[21],可導(dǎo)致多發(fā)性骨髓瘤細(xì)胞凋亡。細(xì)胞內(nèi)的信號(hào)通路不是單獨(dú)作用,細(xì)胞內(nèi)的信號(hào)通路如一張縱橫交錯(cuò)的網(wǎng),它們相互聯(lián)系,相互影響,形成復(fù)雜的網(wǎng)絡(luò)體系,控制著細(xì)胞的各種生命活動(dòng)。

圖1 JAK2-STAT3信號(hào)通路與調(diào)控Figure 1 JAK2-STAT3 signaling pathway and its regulation

4 展 望

晚期HCC的手術(shù)治療并無太大收益,分子靶向治療將是未來治療HCC的主要手段,而JAK2-STAT3信號(hào)通路在HCC的發(fā)生發(fā)展中扮演者重要角色,針對(duì)JAK2-STAT3信號(hào)通路的靶向治療將具有巨大的應(yīng)用潛力。明確JAK2-STAT3信號(hào)通路的組成及其調(diào)控機(jī)制,將更有利于理解HCC的發(fā)病的分子機(jī)理。找到JAK2-STAT3信號(hào)通路上游及其下游分子,可以找到更多的靶位點(diǎn)調(diào)節(jié)細(xì)胞的生命活動(dòng)。JAK2-STAT3信號(hào)通路持續(xù)性激活通過調(diào)節(jié)下游靶基因包括c-Myc、JunB、clAP2、Mcl-1、survivin、Bcl-2、Cyclin D1、MMP-2、Bcl-xl、ICAM-1、Bid和VEGF(血管內(nèi)皮生長(zhǎng)因子)等的表達(dá)[17,42],來促進(jìn)細(xì)胞增殖和生存,抑制凋亡,促進(jìn)腫瘤侵襲與轉(zhuǎn)移,促進(jìn)血管生成的。找到IL-6受體、信號(hào)轉(zhuǎn)導(dǎo)器gp130、JAK家族、STAT家族、SOCS3、PIAS、CIS及其它相關(guān)分子的激活劑或抑制劑,有效的調(diào)節(jié)JAK2-STAT3信號(hào)通路過程,JAK2-STAT3信號(hào)通路與Wnt/beta-catenin通路,Ras信號(hào)通路,PI3K信號(hào)通路,cAMP介導(dǎo)的第二信使通路等也存在著聯(lián)系。對(duì)JAK2-STAT3信號(hào)通路的調(diào)控可能成為調(diào)控細(xì)胞生命活動(dòng)的關(guān)鍵點(diǎn),可能成為治療HCC的靶向位點(diǎn)。分子靶向藥物聯(lián)合起來抑制癌細(xì)胞的各種存活通路,抑制HCC細(xì)胞的增殖和侵襲,促進(jìn)HCC細(xì)胞凋亡,達(dá)到有效的靶向治療HCC。

[1] Darnell JJ, Kerr IM, Stark GR. JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science, 1994, 264(5164):1415–1421.

[2] Cai B, Cai JP, Luo YL, et al. The Specific Roles of JAK/STAT Signaling Pathway in Sepsis[J]. Inflammation, 2015, 38(4):1599–1608. doi: 10.1007/s10753–015-0135-z.

[3] Musso T, Johnston JA, Linnekin D, et al. Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4, and 7[J]. J Exp Med, 1995, 181(4):1425–1431.

[4] Ikezoe T, Kojima S, Furihata M, et al. Expression of p-JAK2 predicts clinical outcome and is a potential molecular target of acute myelogenous leukemia[J]. Int J Cancer, 2011, 129(10):2512–2521.doi: 10.1002/ijc.25910.

[5] Kirabo A, Park SO, Wamsley HL, et al. The small molecule inhibitor G6 significantly reduces bone marrow fibrosis and the mutant burden in a mouse model of JAK2-mediated myelofibrosis[J]. Am J Pathol, 2012, 181(3):858–865. doi: 10.1016/j.ajpath.2012.05.033.

[6] Kirabo A, Park SO, Majumder A, et al. The JAK2 inhibitor, G6,alleviates JAK2-V617F-mediated myeloproliferative neoplasia by providing significant therapeutic efficacy to the bone marrow[J].Neoplasia, 2011, 13(11):1058–1068.

[7] Yoshikawa H, Matsubara K, Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity[J]. Nat Genet, 2001, 28(1):29–35.

[8] Debeurme F, Lacout C, Moratal C, et al. JAK2 inhibition has different therapeutic effects according to myeloproliferative neoplasm development in mice[J]. J Cell Mol Med, 2015,19(11):2564–2574. doi: 10.1111/jcmm.12608.

[9] Wan H, Schroeder GM, Hart AC, et al. Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms[J]. ACS Med Chem Lett, 2015,6(8):850–855. doi: 10.1021/acsmedchemlett.5b00226.

[10] Zhang FQ, Yang WT, Duan SZ, et al. JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non- small cell lung carcinoma cells with mutated EGF receptor[J]. Oncotarget, 2015, 6(16):14329–14343.

[11] Wu H, Huang M, Cao P, et al. MiR-135a targets JAK2 and inhibits gastric cancer cell proliferation[J]. Cancer Biol Ther, 2012,13(5):281–288. doi: 10.4161/cbt.18943.

[12] Subramaniam A, Shanmugam MK, Perumal E, et al. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma[J]. Biochim Biophys Acta, 2013,1835(1):46–60. doi: 10.1016/j.bbcan.2012.10.002.

[13] Hung MH, Tai WT, Shiau CW, et al. Downregulation of signal transducer and activator of transcription 3 by sorafenib: A novel mechanism for hepatocellular carcinoma therapy[J]. World J Gastroenterol, 2014, 20(41):15269–15274. doi: 10.3748/wjg.v20.i41.15269.

[14] Yang E, Henriksen MA, Schaefer O, et al. Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant[J]. J Biol Chem, 2002, 277(16):13455–13462.

[15] Kim DJ, Tremblay ML, Digiovanni J. Protein tyrosine phosphatases,TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation[J]. PLoS One,2010, 5(4):e10290. doi: 10.1371/journal.pone.0010290.

[16] Qi J, Xia G, Huang C R, et al. JSI-124 (Cucurbitacin I) Inhibits Tumor Angiogenesis of Human Breast Cancer Through Reduction of STAT3 Phosphorylation[J]. Am J Chin Med, 2015, 43(2):337–347. doi: 10.1142/S0192415X15500226.

[17] Zuo M, Li C, Lin J, et al. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy[J]. Oncotarget, 2015,6(13):10940–10949.

[18] Su JC, Tseng PH, Wu SH1, et al. SC-2001 overcomes STAT3-mediated sorafenib resistance through RFX-1/SHP-1 activation in hepatocellular carcinoma[J]. Neoplasia, 2014, 16(7):595–605. doi:10.1016/j.neo.2014.06.005.

[19] Fan Z, Cui H, Xu X, et al. MiR-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting STAT3[J]. Oncotarget, 2015, 6(28):25266–25280. doi: 10.18632/oncotarget.4457.

[20] Liu J, Mao Y, Zhang D, et al. MiR-143 inhibits tumor cell proliferation and invasion by targeting STAT3 in esophageal squamous cell carcinoma[J]. Cancer Letters, 2016, 373(1):97–108.doi: 10.1016/j.canlet.2016.01.023.

[21] Follin-Arbelet V, Torgersen ML, Naderi EH, et al. Death of multiple myeloma cells induced by cAMP-signaling involves downregulation of Mcl-1 via the JAK/STAT pathway[J]. Cancer Lett, 2013, 335(2):323–331. doi: 10.1016/j.canlet.2013.02.042.

[22] 張斌, 鐘德玝, 王群偉, 等. JAK/STAT信號(hào)通路與肝細(xì)胞性肝癌的腫瘤進(jìn)展和預(yù)后的相關(guān)性研究[J]. 細(xì)胞與分子免疫學(xué)雜志,2010, 26(4):368–370.Zhang B, Zhong DW, Wang QW, et al. Study on correlation of JAK/STAT signal pathway with progression and prognosis in hepatocellular carcinoma[J]. Chinese Journal of Cellular and Molecular Immunology, 2010, 26(4):368–370.

[23] Kang F, Wang L, Jia H, et al. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelialto-mesenchymal transition via JAK2/STAT3/Slug signaling pathway[J]. Cancer Cell Int, 2015, 15:45. doi: 10.1186/s12935–015-0195-z.

[24] Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424:therapeutic implications for the treatment of myeloproliferative neoplasms[J]. Blood, 2010, 115(15):3109–3117. doi: 10.1182/blood-2009–04-214957.

[25] Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis[J].N Engl J Med, 2010, 363(12):1117–1127. doi: 10.1056/NEJMoa1002028.

[26] Wilson GS, Tian A, Hebbard L, et al. Tumoricidal effects of the JAK inhibitor Ruxolitinib (INC424) on hepatocellular carcinoma in vitro[J]. Cancer Lett, 2013, 341(2):224–230. doi: 10.1016/j.canlet.2013.08.009.

[27] Hazem SH, Shaker ME, Ashamallah SA, et al. The novel Janus kinase inhibitor ruxolitinib confers protection against carbon tetrachloride-induced hepatotoxicity via multiple mechanisms[J].Chem Biol Interact, 2014, 220:116–127. doi: 10.1016/j.cbi.2014.06.017.

[28] Raft MB, J?rgensen EN, Vainer B. Gene mutations in hepatocellular adenomas[J]. Histopathology, 2015, 66(7):910–921. doi: 10.1111/his.12539.

[29] Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma[J]. World J Hepatol, 2013, 5(7):345–352. doi: 10.4254/wjh.v5.i7.345.

[30] Abdulghani J, Allen JE, Dicker DT, et al. Sorafenib sensitizes solid tumors to Apo2L/TRAIL and Apo2L/TRAIL receptor agonist antibodies by the JAK2-Stat3-Mcl1 axis[J]. PLoS One, 2013,8(9):e75414. doi: 10.1371/journal.pone.0075414.

[31] Chen W, Shen X, Xia X, et al. NSC 74859-mediated inhibition of STAT3 enhances the anti-proliferative activity of cetuximab in hepatocellular carcinoma[J]. Liver Int, 2012, 32(1):70–77. doi:10.1111/j.1478–3231.2011.02631.x.

[32] Zhu Q, Li N, Zeng X, et al. Hepatocellular carcinoma in a large medical center of China over a 10-year period: evolving therapeutic option and improving survival[J]. Oncotarget, 2015, 6(6):4440–4450.

[33] Li M, Wang W, Jin R, et al. Differential association of STAT3 and HK-II expression in hepatitis B virus- and hepatitis C virus-related hepatocellular carcinoma[J]. J Med Virol, 2016, 88(9):1552–1559.doi: 10.1002/jmv.24498.

[34] Choudhari SR, Khan MA, Harris G, et al. Deactivation of Akt and STAT3 signaling promotes apoptosis, inhibits proliferation, and enhances the sensitivity of hepatocellular carcinoma cells to an anticancer agent, Atiprimod[J]. Mol Cancer Ther, 2007, 6(1):112–121.

[35] Yang Y, Zheng B, Han Q, et al. Targeting blockage of STAT3 inhibits hepatitis B virus-related hepatocellular carcinoma[J]. Cancer Biol Ther, 2016, 17(4):449–456. doi: 10.1080/15384047.2016.1156257.

[36] Hong Y, Zhou L, Xie H, et al. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression[J]. Biochem Biophys Res Commun, 2015, 461(3):513–518. doi: 10.1016/j.bbrc.2015.04.058.

[37] Xiong Y, Yuan J, Zhang C, et al. The STAT3-regulated long non-coding RNA Lethe promote the HCV replication[J].Biomed Pharmacother, 2015, 72:165–171. doi: 10.1016/j.biopha.2015.04.019.

[38] Xiong Y, Jia M, Yuan J, et al. STAT3-regulated long non-coding RNAs lnc-7SK and lnc-IGF2-AS promote hepatitis C virus replication[J]. Mol Med Rep, 2015, 12(5):6738–6744. doi: 10.3892/mmr.2015.4278.

[39] McCartney EM, Helbig KJ, Narayana SK, et al. Signal transducer and activator of transcription 3 is a proviral host factor for hepatitis C virus[J]. Hepatology, 2013, 58(5):1558–1568. doi: 10.1002/hep.26496.

[40] Zhou JJ, Chen RF, Deng XG, et al. Hepatitis C virus core protein regulates NANOG expression via the STAT3 pathway[J]. FEBS Lett, 2014, 588(4):566–573. doi: 10.1016/j.febslet.2013.11.041.

[41] Saxena NK, Sharma D, Ding X, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptinmediated promotion of invasion and migration of hepatocellular carcinoma cells[J]. Cancer Res, 2007, 67(6):2497–2507.

[42] Mohan CD, Bharathkumar H, Bulusu KC, et al. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo[J]. J Biol Chem, 2014,289(49):34296–34307. doi: 10.1074/jbc.M114.601104.

[43] Zhang X, You Q, Zhang X, et al. SOCS3 Methylation Predicts a Poor Prognosis in HBV Infection-Related Hepatocellular Carcinoma[J]. Int J Mol Sci, 2015, 16(9):22662–22675. doi:10.3390/ijms160922662.

[44] Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma[J].Oncogene, 2005, 24(42):6406–6417.

[45] Al-Jamal HA, Jusoh SA, Yong AC, et al. Silencing of suppressor of cytokine signaling-3 due to methylation results in phosphorylation of STAT3 in imatinib resistant BCR-ABL positive chronic myeloid leukemia cells[J]. Asian Pac J Cancer Prev, 2014, 15(11):4555–4561.

[46] Poussin K, Pilati C, Couchy G, et al. Biochemical and functional analyses of gp130 mutants unveil JAK1 as a novel therapeutic target in human inflammatory hepatocellular adenoma[J].Oncoimmunology, 2013, 2(12):e27090.

[47] Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and JAK/Stat pathways in human HCC[J]. Gastroenterology, 2006,130(4):1117–1128.

[48] Yan XL, Jia YL, Chen L, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis[J]. Hepatology, 2013,57(6):2274–2286. doi: 10.1002/hep.26257.

[49] Tong HV, Bock CT, Velavan TP. Genetic insights on host and hepatitis B virus in liver diseases[J]. Mutat Res Rev Mutat Res,2014, 762:65–75. doi: 10.1016/j.mrrev.2014.06.001.

[50] Kan Z, Zheng H, Liu X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma[J]. Genome Res,2013, 23(9):1422–1433. doi: 10.1101/gr.154492.113.

[51] Arumuggam N, Bhowmick NA, Rupasinghe HP. A Review:Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer[J]. Phytother Res, 2015, 29(6):805–817. doi:10.1002/ptr.5327.

[52] Cokic VP, Bhattacharya B, Beleslin-Cokic BB, et al. JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny[J]. J Transl Med, 2012, 10:116. doi: 10.1186/1479–5876-10–116.

[53] Luo JM, Cen LP, Zhang XM, et al. PI3K/akt, JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury[J]. Eur J Neurosci, 2007,26(4):828–842.

[54] Jung IH, Choi JH, Chung Y, et al. Predominant Activation of JAK/STAT3 Pathway by Interleukin-6 Is Implicated in Hepatocarcinogenesis[J]. Neoplasia, 2015, 17(7):586–597. doi:10.1016/j.neo.2015.07.005.

[55] Coskun M, Salem M, Pedersen J, et al. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease[J].Pharmacol Res, 2013, 76:1–8. doi: 10.1016/j.phrs.2013.06.007.

猜你喜歡
結(jié)構(gòu)域磷酸化靶向
如何判斷靶向治療耐藥
MUC1靶向性載紫杉醇超聲造影劑的制備及體外靶向?qū)嶒?yàn)
毛必靜:靶向治療,你了解多少?
肝博士(2020年5期)2021-01-18 02:50:18
ITSN1蛋白磷酸化的研究進(jìn)展
蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線服務(wù)綜述
重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
組蛋白甲基化酶Set2片段調(diào)控SET結(jié)構(gòu)域催化活性的探討
MAPK抑制因子對(duì)HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
靶向超聲造影劑在冠心病中的應(yīng)用
泛素結(jié)合結(jié)構(gòu)域與泛素化信號(hào)的識(shí)別
常德市| 萨嘎县| 睢宁县| 长垣县| 容城县| 彰化市| 姚安县| 黄冈市| 青河县| 神农架林区| 金乡县| 日喀则市| 颍上县| 镇沅| 泊头市| 桦南县| 蕲春县| 东平县| 长岛县| 淮北市| 神池县| 泰州市| 玉环县| 盐山县| 察隅县| 浦城县| 定南县| 尚志市| 城固县| 化州市| 万载县| 榆林市| 晋江市| 囊谦县| 宁海县| 平武县| 论坛| 偏关县| 石景山区| 绥芬河市| 拜泉县|