李建寧,馬立榮,楊怡
(1寧夏醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,銀川 750004;2寧夏醫(yī)科大學(xué)內(nèi)分泌研究所)
脂肪酸對(duì)胰腺β細(xì)胞功能及凋亡影響的研究進(jìn)展
李建寧1,2,馬立榮1,2,楊怡1,2
(1寧夏醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院,銀川 750004;2寧夏醫(yī)科大學(xué)內(nèi)分泌研究所)
脂肪酸特別是高濃度脂肪酸對(duì)胰腺β細(xì)胞存在脂毒性作用,通過(guò)細(xì)胞內(nèi)外的多種機(jī)制與途徑的介入(細(xì)胞外可通過(guò)受體、激素等作用;細(xì)胞內(nèi)可通過(guò)線粒體功能障礙、內(nèi)質(zhì)網(wǎng)應(yīng)激、氧化應(yīng)激、神經(jīng)酰胺合成、自噬等;細(xì)胞核內(nèi)可通過(guò)細(xì)胞核受體與細(xì)胞周期),導(dǎo)致胰島β細(xì)胞凋亡與功能障礙。
脂肪酸;胰腺β細(xì)胞;功能障礙;細(xì)胞凋亡
肥胖是糖尿病重要的發(fā)病危險(xiǎn)因素,常被作為代謝綜合征的一部分,同時(shí)伴隨著血脂紊亂和血液循環(huán)中瘦素及其他細(xì)胞因子(如腫瘤壞死因子α、IL-6、IL-1等)的變化。這些變化不僅與胰島素敏感性有關(guān),還影響著胰腺β細(xì)胞的存活和功能。脂肪酸與胰腺β細(xì)胞的凋亡及胰島素再生、降解、分泌關(guān)系的研究都證明了脂毒性的存在[1,2]?,F(xiàn)就脂肪酸在胰腺β細(xì)胞細(xì)胞外、胞質(zhì)及胞核三個(gè)方面的作用,綜述脂肪酸對(duì)胰腺β細(xì)胞功能及凋亡的影響。
脂肪酸對(duì)胰腺β細(xì)胞的作用需要很多細(xì)胞外因素的介導(dǎo),包括受體、生長(zhǎng)因子與激素、細(xì)胞炎性介質(zhì)等。
G蛋白偶聯(lián)受體(GPRs)家族已經(jīng)成為治療糖尿病的一大類新靶點(diǎn)。GPR40也稱為游離脂肪酸(FFA)受體1(FFAR1),在胰腺β細(xì)胞中表達(dá)并介導(dǎo)中長(zhǎng)鏈FFA引起的胰島素分泌[3]。已有研究[4]發(fā)現(xiàn),GPR40在2型糖尿病(T2DM)患者胰腺β細(xì)胞中表達(dá)下降。GPR40的激動(dòng)劑CNX-011-67在鏈脲佐菌素誘導(dǎo)的糖尿病模型大鼠中能夠增加葡萄糖的應(yīng)答反應(yīng)、胰島素分泌和含量[5]。GPR40被認(rèn)為是T2DM的治療靶點(diǎn),成為未來(lái)治療T2DM的新藥[6]。有研究發(fā)現(xiàn),在內(nèi)源性長(zhǎng)鏈FFA和一系列合成配體偶聯(lián)激活GPR40的過(guò)程中,會(huì)導(dǎo)致腸促胰島素的分泌,而腸促胰島素具有保護(hù)胰腺β細(xì)胞對(duì)抗脂毒性的功能,同時(shí)對(duì)葡萄糖穩(wěn)態(tài)有益處[7]。除了GPR40外,脂肪酸還通過(guò)GPR78、GPR119、GPR120等受體作用于胰腺β細(xì)胞[3]。
催乳素、雌激素、腸促胰島素等具有保護(hù)胰腺β細(xì)胞對(duì)抗脂毒性的功能;而炎性介質(zhì)與脂毒性協(xié)同作用損傷胰腺β細(xì)胞,這些因素影響下的脂毒性效應(yīng)通常在高血糖情況下表現(xiàn)更充分。已有研究表明,催乳素通過(guò)激活Jak-Stat通路保護(hù)脂毒作用下的β細(xì)胞[8]。在人類胰島中,腸促胰島素激素[主要包括胰高血糖素樣肽-1(GLP-1)、糖依賴性胰島素釋放肽(GIP)]被發(fā)現(xiàn)可以促進(jìn)胰腺β細(xì)胞網(wǎng)絡(luò)的聯(lián)結(jié),而脂質(zhì)的出現(xiàn)會(huì)終斷這種聯(lián)結(jié),并影響胰島素分泌[9]。糖尿病小鼠在應(yīng)用GLP-1拮抗劑與低脂聯(lián)合治療中發(fā)現(xiàn):二者聯(lián)合應(yīng)用比單一應(yīng)用更能增強(qiáng)胰腺β細(xì)胞功能,并增加β細(xì)胞數(shù)量[10]。雌二醇可以調(diào)節(jié)胰島的脂質(zhì)合成,敲除內(nèi)質(zhì)網(wǎng)雌激素α受體后的小鼠β細(xì)胞容易在脂毒條件下發(fā)生功能障礙[11]。炎癥會(huì)通過(guò)多種機(jī)制影響胰腺β細(xì)胞的生存與功能,F(xiàn)FA可以直接激活炎癥通路,產(chǎn)生促進(jìn)炎癥的毒性作用。有研究[12]發(fā)現(xiàn),棕櫚酸處理β細(xì)胞后,通過(guò)TLR4-Myd88通路增加細(xì)胞因子水平并促進(jìn)炎性巨噬細(xì)胞聚集。在胰島的體外實(shí)驗(yàn)中發(fā)現(xiàn),高脂喂養(yǎng)并應(yīng)用棕櫚酸處理后,胰島中M1型巨噬細(xì)胞的遷移抑制因子數(shù)量增加,去除M1型巨噬細(xì)胞后會(huì)減少胰腺β細(xì)胞的脂毒性[13]。也有研究發(fā)現(xiàn),阻斷INS-1細(xì)胞系的棕櫚酸化可以減少胰腺β細(xì)胞中細(xì)胞因子誘導(dǎo)的氧化應(yīng)激與氮化應(yīng)激[14]。由此可見(jiàn),脂毒性可以促進(jìn)與增強(qiáng)胰島的炎癥過(guò)程,通過(guò)調(diào)控胰腺胰島β細(xì)胞的炎癥過(guò)程可能是糖尿病治療的又一個(gè)途徑。
脂肪酸在胰腺β細(xì)胞胞質(zhì)中通過(guò)線粒體功能障礙、內(nèi)質(zhì)網(wǎng)應(yīng)激、氧化應(yīng)激、神經(jīng)酰胺合成及自噬等因素發(fā)揮影響凋亡及功能障礙的作用,5種因素相互聯(lián)系、制約,共同作用于胰腺β細(xì)胞功能損傷過(guò)程中,其中自噬作為一種新的細(xì)胞質(zhì)脂毒性機(jī)制受到越來(lái)越多的重視。
2.1 線粒體功能障礙 FFA誘導(dǎo)的β細(xì)胞凋亡與Akt磷酸化水平下調(diào)有關(guān)。有研究發(fā)現(xiàn)激活A(yù)kt磷酸化可以下調(diào)Bad表達(dá)、減少Cyt C釋放、抑制Caspase-9的活化,從而抑制β細(xì)胞的凋亡[15]。有研究[16]發(fā)現(xiàn),棕櫚酸處理會(huì)降低Bcl-2表達(dá),同時(shí)增加Bax表達(dá),最終導(dǎo)致線粒體通透性增加、半胱氨酸蛋白酶激活和細(xì)胞核去斷裂。已經(jīng)證實(shí)Bax作為FoxO1的一個(gè)下游靶基因,介導(dǎo)FoxO1在脂毒性細(xì)胞凋亡中的作用[17]。
2.2 內(nèi)質(zhì)網(wǎng)應(yīng)激 飽和脂肪酸在胰腺β細(xì)胞內(nèi)具有誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激的作用。內(nèi)質(zhì)網(wǎng)應(yīng)激通常會(huì)通過(guò)3種膜蛋白引起信號(hào)通路激活,比如飽和脂肪酸作用于肌醇依賴性激酶1α(IRE1α)后通過(guò)磷酸化而激活c-Jun氨基末端激酶(JNK),繼而引起細(xì)胞凋亡[18]。在人類胰島中,棕櫚酸可以通過(guò)激活JNK促進(jìn)胰腺β細(xì)胞凋亡[19]。在與內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)的眾多因子中,CHOP和JNK的激活一直被視為是脂毒性的關(guān)鍵調(diào)節(jié)靶點(diǎn)。
2.3 氧化應(yīng)激 棕櫚酸在胰腺β細(xì)胞內(nèi)可以通過(guò)轉(zhuǎn)錄因子2(TCF2)介導(dǎo)PI3K/AKT和MEK/ERK的激活,繼而誘導(dǎo)ROS生成[15]。高濃度ROS會(huì)觸發(fā)細(xì)胞內(nèi)的氧化應(yīng)激,造成氧化損傷導(dǎo)致線粒體功能喪失,最終引發(fā)細(xì)胞凋亡。例如H2O2等形式的ROS可以直接氧化修飾Bax蛋白上第62位和126位的半胱氨酸殘基,激活Bax并使其向線粒體轉(zhuǎn)位,引發(fā)胰腺β細(xì)胞凋亡[20]。FFA也可以誘導(dǎo)一氧化氮合酶(NOS)的表達(dá),引起NO的生成增多,導(dǎo)致細(xì)胞分泌胰島素功能障礙,而應(yīng)用誘導(dǎo)型NOS(iNOS)抑制劑可以減輕胰島素分泌缺陷[21]。
2.4 神經(jīng)酰胺合成 血漿FFA水平持續(xù)升高,可導(dǎo)致胞質(zhì)內(nèi)脂酰CoA升高,進(jìn)而促進(jìn)軟脂酰CoA及神經(jīng)酰胺生成。神經(jīng)酰胺由軟酯酰CoA與絲氨酸在絲氨酸棕櫚酰轉(zhuǎn)移酶(SPT)的催化下生成。神經(jīng)鞘磷脂(主要為神經(jīng)酰胺)通過(guò)SAPK/JNK信號(hào)轉(zhuǎn)導(dǎo)途徑引起細(xì)胞凋亡已經(jīng)得到了共識(shí)。有研究報(bào)道神經(jīng)酰胺可激活p53,其轉(zhuǎn)錄調(diào)節(jié)作用抑制Bcl-2的表達(dá),啟動(dòng)Bax、p21/wafl、GADD45等下游基因的表達(dá),誘導(dǎo)和增加胰腺β細(xì)胞凋亡[22]。
2.5 自噬 棕櫚酸在大鼠與人類的胰腺β細(xì)胞中能夠增強(qiáng)自噬,并且與內(nèi)質(zhì)網(wǎng)腫脹相關(guān)[23]。另有研究發(fā)現(xiàn),在大鼠及小鼠胰腺β細(xì)胞中Atg 7過(guò)表達(dá)會(huì)增加細(xì)胞對(duì)棕櫚酸引起的自噬的敏感性,而敲除Atg 7顯示出胰腺β細(xì)胞具有內(nèi)質(zhì)網(wǎng)損傷適應(yīng)性,同時(shí)增強(qiáng)對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激的敏感性[24,25]。盡管脂肪酸會(huì)增加自噬小體,繼而增加自噬,但相關(guān)動(dòng)力學(xué)研究[26]發(fā)現(xiàn),用油酸或棕櫚酸處理后,自噬流動(dòng)性是減少的。有研究[27]發(fā)現(xiàn)脂肪酸還可能通過(guò)JNK在胰腺β細(xì)胞中引起自噬過(guò)程。自噬作為一種新的細(xì)胞質(zhì)脂毒性機(jī)制正在受到越來(lái)越多的關(guān)注。
細(xì)胞核內(nèi)的脂肪酸毒性效應(yīng)常通過(guò)細(xì)胞核受體與細(xì)胞周期體現(xiàn)。過(guò)氧化物酶體增殖激活受體(PPAR)是細(xì)胞核受體,也是分化、發(fā)育與代謝中調(diào)控多種基因的轉(zhuǎn)錄因子。如PPARγ激活通過(guò)增加FFAR1的表達(dá)促進(jìn)胰島素分泌,后者屬于β細(xì)胞分化基因,還會(huì)激活包括通路上的葡萄糖轉(zhuǎn)運(yùn)體、磷脂酶C等。肥胖小鼠中PPARα過(guò)表達(dá)可以在不影響β細(xì)胞數(shù)量的情況下維持胰島素的分泌[28]。有一種假說(shuō)認(rèn)為,脂毒性通過(guò)抑制胰腺β細(xì)胞增殖,阻止細(xì)胞數(shù)量擴(kuò)增,繼而導(dǎo)致胰島素分泌受損和β細(xì)胞死亡。還有研究[29]發(fā)現(xiàn),增加甘油三酯在血循環(huán)中的濃度,可以減少葡萄糖誘導(dǎo)的小鼠β細(xì)胞增殖。在進(jìn)行小鼠胰腺β細(xì)胞原代培養(yǎng)時(shí),F(xiàn)FA也可以減少其增殖[30]。另有研究結(jié)果則相反,胰腺β細(xì)胞增殖在高脂喂養(yǎng)的小鼠中是增加的,但這種增加是直到β細(xì)胞增殖開(kāi)始后FFA才開(kāi)始的,胰腺β細(xì)胞增殖也許是由其他相關(guān)過(guò)剩營(yíng)養(yǎng)物質(zhì)的改變所導(dǎo)致的。體內(nèi)(血液與細(xì)胞內(nèi))脂質(zhì)的出現(xiàn)通過(guò)細(xì)胞核作用促進(jìn)還是阻止β細(xì)胞增殖仍然是未知的。
脂肪酸,特別是高濃度脂肪酸對(duì)胰腺β細(xì)胞存在脂毒性作用,通過(guò)細(xì)胞內(nèi)外的多種機(jī)制與途徑的介入,導(dǎo)致胰島β細(xì)胞凋亡與功能障礙。不同的損傷因子會(huì)通過(guò)不同的通路導(dǎo)致胰腺β細(xì)胞凋亡,意味著在糖尿病等疾病的發(fā)生與發(fā)展中阻止進(jìn)行性胰腺β細(xì)胞損失是困難的。鑒于胰腺β細(xì)胞的特殊結(jié)構(gòu)與功能,了解脂肪酸與其之間的分子機(jī)制有著重要意義,同時(shí)也可為臨床針對(duì)肥胖、糖尿病等篩選出更有效的治療。
[1] Hao F, Kang JS, Cao YJ, et al. Curcumin attenuates palmitate-induced apoptosis in pancreatic b-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways[J]. Apoptosis, 2015,20(11):1420-1432.
[2] Kuehnen P, Laubner K, Raile K, et al. Protein phosphatase 1 (PP-1)-dependent inhibition of insulin secretion by leptin in INS-1 pancreatic β-cells and human pancreatic islets[J]. Endocrinology, 2011,152(5):1800-1808.
[3] Reimann F, Gribble FM. G protein-coupled receptors as new therapeutic targets for type 2 diabetes[J]. Diabetologia, 2016,59(2):229-233.
[4] Del Guerra S, Bugliani M, D′Aleo V, et al. G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids[J]. Nutr Metab Cardiovasc Dis, 2010,20(1):22-25.
[5] Hauge M, Vestmar MA, Husted AS, et al. GPR40(FFAR1)-combined Gs and Gqsignalling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo[J]. Mol Metab, 2014,4(1):3-14.
[6] Negoro N, Sasaki S, Ito M, et al. Identification fused-ring alkanoic acids with improved pharmacokinetic profiies that act as G protein-coupled receptor 40/free fatty acid receptor 1 agonists[J]. J Med Chem, 2012,55(4):1538-1552.
[7] Sunil V, Verma MK, Oommen AM, et al. CNX-011-67, a novel GPR40 agonist, enhances glucose responsiveness, insulin secretion and islet insulin content in n-STZ rats and in islets from type 2 diabetic patients[J]. BMC Pharmacol Toxicol, 2014,15:19.
[8] Kondegowda NG, Mozar A, Chin C, et al. Lactogens protect rodent and human beta cells against glucolipotoxicity-inducedcell death through Janus Kinase-2 (Jak2)/signal transducer and activator of transcription-5 (Stat5) Signaling[J]. Diabetologia, 2012,55(6):1721-1732.
[9] Hodson DJ, Mitchell RK, Bellomo EA, et al. Lipotoxicity disrupts incretin-regulated human beta cell connectivity[J]. J Clin Invest, 2013,123(10):4182-4194.
[10] Kang ZF, Deng Y, Zhou Y, et al. Pharmacological reduction of Nefa restores the efficacy of incretin-based therapies through Glp-1 receptor signalling in the beta cell in mouse models of diabetes[J]. Diabetologia, 2013,56(2):423-433.
[11] Tiano JP, Delghingaro-Augusto V, Le May C, et al. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes[J]. J Clin Invest, 2011,121(8):3331-3342.
[12] Eguchi K, Manabe I, Oishi-Tanaka Y, et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation[J]. Cell Metab, 2012,15(4):518-533.
[13] Saksida T, Stosic-Grujicic S, Timotijevic G, et al. Macrophage migration inhibitory factor deficiency protects pancreatic islets from palmitic acid-induced apoptosis[J]. Immunol Cell Biol, 2012,90(7):688-698.
[14] Mohammed AM, Syeda K, Hadden T, et al. Upregulation of phagocyte-like NADPH oxidase by cytokines in pancreatic beta-cells: attenuation of oxidative and nitrosative stress by 2-bromopalmitate[J]. Biochem Pharmacol, 2013,85(1):109-114.
[15] Wang W, Zhang D, Zhao H, et al. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line[J]. Regul Pept, 2010,161(1-3):43-50.
[16] Gurzov EN, Eizirik DL.Bcl-2 proteins in diabetes: mitochondrial pathways of beta-cell death and dysfunction[J]. Trends Cell Biol, 2011,21(7):424-431.
[17] Biden TJ, Boslem E, Chu KY, et al. Lipotoxic endoplasmic reticulum stress, beta cell failure, and type 2 diatetes mellitus[J]. Trends Endocrinol Metab, 2014,25(8):389-398.
[18] Natalicchio A, Labarbuta R, Tortosa F, et al. Exendin-4 protects pancreatic β cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway[J]. Diabetologia, 2013,56(11):2456-2466.
[19] Quan XJ, Zhang L, Li YN, et al.TCF2 attenuates FFA-induced damage in islet β-cells by regulating production of insulin and ROS[J]. Int J Mol Sci, 2014,15(8):13317-13332.
[20] Nie C, Tian C, Zhao L, et al. Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis[J]. J Biol Chem, 2008,283(22):15359-15369.
[21] Las G, Shirihai OS. The role of autophagy in beta-cell lipotoxicity and type 2 diabetes[J]. Diabetes Obes Metab, 2010, 12 Suppl 2:15-19.
[22] Yun SH, Shin SW, Stonik VA, et al. Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia[J]. Mar Drugs, 2016,14(11). pii: E205.
[23] Martino L, Masini M, Novelli M, et al. Palmitate activates autophagy in Ins-1e beta-cells and in isolated rat and human pancreatic islets[J]. PLoS One, 2012,7(5):e36188.
[24] Li S, Du L, Zhang L, et al. Cathepsin B contributes to autophagy-related 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line[J]. J Biol Chem, 2013,288(42):30094-30104.
[25] Quan W, Hur KY, Lim Y, et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice[J]. Diabetologia, 2012,55(2):392-403.
[26] Komiya K, Uchida T, Ueno T, et al. Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway[J]. Biochem Biophys Res Commun, 2010,401(4):561-567.
[27] Kim HS, Hwang YC, Koo SH, et al. PPAR-gamma activation increases insulin secretion through the upregulation of the free fatty acid receptor Gpr40 in pancreatic beta-cells[J]. PLoS One, 2013,8:e50128.
[28] Layden BT, DuraiV, Newman MV, et al. Regulation of pancreatic islet gene expression in mouse islets by pregnancy[J]. J Endocrinol, 2010,207(3):265-279.
[29] Pascoe J, Hollern D, Stamateris R, et al. Free fatty acids block glucose-induced beta-cell proliferation in mice by inducing cell cycle inhibitors P16 and P18[J]. Diabetes, 2012,61(3):632-641.
[30] Stamateris RE, Sharma RB, Hollern DA, et al. Adaptive beta cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet Cyclin D2 expression[J]. Am J Physiol Endocrinol Metab, 2013,305(1):E149-159.
國(guó)家自然科學(xué)基金資助項(xiàng)目(81670798)。
楊怡(E-mail: yangyi74322@163.com)
10.3969/j.issn.1002-266X.2017.22.039
R587.1
A
1002-266X(2017)22-0106-03
2016-10-08)