国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于區(qū)間數(shù)的直覺模糊多屬性決策研究

2017-04-10 06:25:09
關(guān)鍵詞:模糊集直覺排序

段 傳 慶

(1.合肥工業(yè)大學(xué) 管理學(xué)院, 安徽 合肥 230009; 2.合肥工業(yè)大學(xué) 數(shù)學(xué)學(xué)院, 安徽 合肥 230009)

基于區(qū)間數(shù)的直覺模糊多屬性決策研究

段 傳 慶1,2

(1.合肥工業(yè)大學(xué) 管理學(xué)院, 安徽 合肥 230009; 2.合肥工業(yè)大學(xué) 數(shù)學(xué)學(xué)院, 安徽 合肥 230009)

研究一類屬性權(quán)重未知的直覺模糊多屬性決策問題. 將直覺模糊數(shù)的屬性值轉(zhuǎn)由雙區(qū)間數(shù)表示,根據(jù)決策方案屬性值間的離差確定屬性權(quán)重. 根據(jù)各方案屬性加權(quán)綜合值及區(qū)間直覺模糊數(shù)的得分函數(shù),對2套方案分別進(jìn)行排序和比較, 并通過實(shí)例說明了該方法的有效性.

直覺模糊數(shù);區(qū)間數(shù);多屬性決策;權(quán)重

0 引 言

1965年,ZADEH[1]提出了模糊集理論,在此基礎(chǔ)上,ATANASSOV[2]又提出了直覺模糊集概念. 直覺模糊集在模糊集理論的基礎(chǔ)上提出了隸屬度、非隸屬度及猶豫度3個概念,從而更準(zhǔn)確地反映事物的本質(zhì).但是決策者提供的信息有時很難用隸屬度、非隸屬度及猶豫度的精確數(shù)值來表達(dá),而用區(qū)間數(shù)可以更方便、準(zhǔn)確地描述其意圖及想法.

受時間、空間等客觀因素及自身知識結(jié)構(gòu)和專業(yè)水平等主觀因素的限制,決策者無法給予決策方案精確的信息. 對于屬性權(quán)重的描述更是如此. 因此,如何確定屬性權(quán)重一直是模糊多屬性決策的熱點(diǎn). 熵權(quán)法是一種客觀賦權(quán)法,不少學(xué)者對其進(jìn)行過研究[3-8].文獻(xiàn)[9]根據(jù)屬性值的均值、方差及屬性間的關(guān)聯(lián)度,建立模型描述屬性. 文獻(xiàn)[10]通過集成主、客觀權(quán)重求得屬性綜合權(quán)重. 文獻(xiàn)[11]利用熵和離差確定屬性權(quán)重,既考慮了數(shù)據(jù)本身的重要性,又兼顧到數(shù)據(jù)間的聯(lián)系.關(guān)于區(qū)間數(shù)權(quán)重的確定問題, 文獻(xiàn)[12]引入了偏差的概念,利用偏差和最小建立目標(biāo)規(guī)劃模型計(jì)算屬性權(quán)重. 文獻(xiàn)[13]依據(jù)主客觀信息偏差最小化原則,通過構(gòu)造線性模型求得屬性最大、最小值,從而得到屬性權(quán)重區(qū)間信息. 文獻(xiàn)[14]運(yùn)用誤差傳遞公式確定屬性的權(quán)重. 文獻(xiàn)[15]依據(jù)相對優(yōu)勢度的概念對屬性權(quán)重進(jìn)行兩兩比較,從而得到了屬性權(quán)重排序向量. 文獻(xiàn)[16]將區(qū)間數(shù)轉(zhuǎn)化為聯(lián)系數(shù),以確定屬性權(quán)重.

直覺模糊集中的隸屬度、非隸屬度及猶豫度所提供的信息是點(diǎn)估計(jì),在很多情況下無法準(zhǔn)確反映決策者的真實(shí)意圖. 因此,屬性權(quán)重的確定及最終的方案排序很可能出現(xiàn)與事實(shí)不符的情況. 針對上述情況,本文將直覺模糊數(shù)轉(zhuǎn)化為用2個區(qū)間數(shù)來表示,同時引入風(fēng)險因子k. 而風(fēng)險因子k與猶豫度相對應(yīng),反映了猶豫度對決策過程的影響. 本文所提供的轉(zhuǎn)化公式既體現(xiàn)了隸屬度、非隸屬度及猶豫度在決策中的作用,又規(guī)避了點(diǎn)估計(jì)無法準(zhǔn)確反映決策者意圖的弊端. 利用屬性值間離差最大化方法建立新模型求得屬性權(quán)重.用文獻(xiàn)[16]中主值模型的綜合值及區(qū)間直覺模糊集的得分函數(shù)2套方案分別進(jìn)行排序,并討論其結(jié)果.

1 基本理論

1.1 基本定義

定義1[2]設(shè)X是一個非空集合,A={〈x,μA(x),νA(x)〉|x∈X}為直覺模糊集,其中μA(x)和νA(x)分別表示X中的元素x屬于X隸屬度μA:X→[0,1]和非隸屬度vA:X→[0,1],且滿足0≤μA(x)+vA(x)≤1,?x∈X.此外,πA(x)=1-μA(x)-vA(x)表示X中的元素x屬于X的猶豫度.

定義2[17]設(shè)X是一個給定的論域,則X上的一個區(qū)間直覺模糊集A定義為:

定義3[18-19]設(shè)a1=(μa1,νa1)和a2=(μa2,νa2)為直覺模糊數(shù),s(a1)=μa1-νa1和s(a2)=μa2-νa2分別為a1和a2的得分函數(shù),h(a1)=μa1+νa1和h(a2)=μa2+νa2分別為a1和a2的精確函數(shù):

若s(a1)

若s(a1)=s(a2),則

1)若h(a1)=h(a2),則a1和a2相等,即μa1=μa2和νa2=νa1,記為a1=a2;

2)若h(a1)

3)若h(a1)>h(a2),則a1大于a2,記為a1>a2.

(1)

(2)

(3)

1.2 區(qū)間數(shù)轉(zhuǎn)化為三角函數(shù)的方法

其中:

(4)

稱為區(qū)間數(shù)的模;

(5)

稱為幅角.

1.3 將直覺模糊數(shù)轉(zhuǎn)化為區(qū)間數(shù)的方法

(6)

2 決策方法

對于效益型屬性,采用公式:

(7)

對于成本型屬性,采用公式:

(8)

(9)

(10)

綜合考慮,則

(11)

綜合2種情形,記

(12)

則M(Si)越大,Ai越優(yōu).

綜上所述,給出如下算法:

步驟1 將直覺模糊矩陣R=(μij,νij)mn轉(zhuǎn)化為二元區(qū)間數(shù)矩陣[[μij,μij+kπij],[νij,νij+(πij-kπij)]]mn;

步驟2 利用式(11)計(jì)算屬性權(quán)重ωj;

步驟3 利用式(12)計(jì)算M(Si),并根據(jù)k的取值和M(Si)的大小對Ai進(jìn)行排序;

中汕廠的訂單保住了,景花廠生產(chǎn)穩(wěn)定了。阿花說這幾天我心都操干了,我要美容。天天往美容院跑,臉蛋越發(fā)俏麗,身材越發(fā)魔鬼了。周末,她來廠里晃一下,交代了工作,就開車出去了。

經(jīng)計(jì)算,每個方案最終都對應(yīng)2個區(qū)間數(shù),按照其所代表的意義,這2個區(qū)間數(shù)可以理解為1個區(qū)間直覺模糊數(shù).因此,可以按區(qū)間直覺模糊數(shù)的得分函數(shù)及k的取值情況對各個選項(xiàng)進(jìn)行排序.

3 算例分析

例2 某公司準(zhǔn)備提拔一名部門經(jīng)理,現(xiàn)有8名候選人A=(A1,A2,A3,A4,A5,A6,A7,A8)符合提拔條件.公司分別從6個方面G=(G1,G2,G3,G4,G5,G6)進(jìn)行評估,并將結(jié)果以直覺模糊信息形式給出[24](見表1).

表1 直覺模糊決策矩陣Table 1 Intuitionistic fuzzy decision matrix

步驟1 由于該表中屬性值均為效益型,故無需再對其進(jìn)行規(guī)范化處理.將上述直覺模糊矩陣轉(zhuǎn)化為二元區(qū)間數(shù)矩陣(見表2).

表2 二元區(qū)間數(shù)矩陣表Table 2 Binary interval number matrix table

屬性權(quán)重,如表3所示.

表3 各屬性權(quán)重值表格Table 3 Table of weight values of each attribute

步驟3 對應(yīng)上述k值,分別計(jì)算M(Si),見表4.

表4 各方案的綜合主值表格Table 4 Consolidated master value table for each program

k=0時,選項(xiàng)排序?yàn)椋?/p>

A5>A4>A1>A7>A6>A2>A8>A3;

k=1時,選項(xiàng)排序?yàn)椋?/p>

A5>A1>A4>A6>A2>A7>A8>A3.

表5 二元區(qū)間數(shù)加權(quán)綜合值表格Table 5 Weighted comprehensive value table for binary interval numbers

表6 各方案綜合得分值表格Table 6 Comprehensive score table

k=0時,其選項(xiàng)排序?yàn)椋?/p>

A5>A4>A1>A7>A6>A2>A3>A8;

A5>A4>A1>A7>A6>A2>A8>A3;

k=1時,排序?yàn)椋?/p>

A5>A1>A4>A6>A7>A2>A8>A3.

4 結(jié)果比較

5 結(jié) 論

[1]ZADEHLA.Fuzzyset[J]. Information and Control,1965,8(3):338-356.

[2] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1986,20(1):87-96.

[3] MAO J J, YAO D B, WANG C C. A novel crossentropy and entropy measures of IFSs and their applications[J]. Knowledge-Based Systems,2013, 48:37-45.

[4] 王曉杰,魏翠萍,郭婷婷.基于交叉熵和熵的直覺模糊多屬性群決策專家權(quán)重的確定[J].曲阜師范大學(xué)學(xué)報,2011,37(3):35-40. WANG X J,WEI C P,GUO T T. A method to drive experts’ weights in intuitionistic fuzzy multi-attribute group decision making based on cross entropy and entropy[J]. Journal of Qufu Normal University,2011,37(3):35-40.

[5] 趙萌,任嶸嶸.基于模糊熵的直覺模糊多屬性群決策方法[J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2014,44(23):153-159. ZHAO M, REN R R. Method based on fuzzy entropy with intuitionistic fuzzy set for group multi-attribute decision making[J]. Journal of Mathematics in Practice and Theory, 2014,44(23):153-159.

[6] 戚曉雯,梁昌勇,張恩橋,等.基于熵最大化的區(qū)間直覺模糊多屬性群決策方法[J].系統(tǒng)工程理論與實(shí)踐,2011,31(10):1940-1948. QI X W, LIANG C Y, ZHANG E Q, et al. Approach to interval-valued intuitionistic fuzzy multiple attributes group decision making based on maximum entropy[J].Systems Engineering Theory & Practice, 2011,31(10):1940-1948.

[7] 陳曉紅.基于熵和關(guān)聯(lián)系數(shù)的區(qū)間直覺模糊決策方法[J].系統(tǒng)工程與電子技術(shù),2013,35(4):791-794. CHEN X H. Approach to interval-valued intuitionistic fuzzy decision making based on entropy and correlation coefficient[J]. Systems Engineering and Electronics,2013,35(4):791-794.

[8] 李蘭平.基于一類新的直覺模糊熵的直覺模糊多屬性決策法[J].齊齊哈爾大學(xué)學(xué)報,2014,30(2):83-86. LI L P. Intuitionistic fuzzy multi-attribute decision making based on a new intuitionistic fuzzy entropy measure[J].Journal of Qiqihar University,2014,30(2):83-86.

[9] 劉小弟,朱建軍,張世濤,等.考慮屬性權(quán)重優(yōu)化的猶豫模糊多屬性決策方法[J].控制與決策,2016,31(2):297-302. LIU X D, ZHU J J, ZHANG S T, et al. Hesitant fuzzy multiple attribute decision making method based on optimization of attribute weight[J]. Control and Decision,2016,31(2):297-302.

[10] 韓二東,郭鵬,趙靜.主客觀權(quán)重集成及擴(kuò)展VIKOR的多屬性群決策方法[J].計(jì)算機(jī)工程與應(yīng)用,2015,51(11):1-6. HAN E D, GUO P, ZHAO J. Method for multiple attribute group decision maling based on subjective-objective weight integrated and extended VIKOR[J].Computer Engineering and Applications, 2015,51(11):1-6.

[11] 段傳慶.一種對方案有偏好的區(qū)間直覺模糊多屬性算法[J].中國科學(xué)技術(shù)大學(xué)學(xué)報,2015,45(12):100-105. DUAN C Q. Approach to interval-valued intuitionistic fuzzy multiple attribute decision making with preference information[J].Journal of University of Science and Technology of China, 2015,45(12):100-105.

[12] XU Z S. Multiple attribute group decision making with different formats of preference information on attributes[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B,2007,37:1500-1511.

[13] XU Z S, CHEN J. MAGDM linear programming models with distinct uncertain preference structures[J]. IEEE Transactions on Systems,Man,and Cyber-netics-Part B,2008,38:1356-1370.

[14] YOON K. The propagation of errors in multiple-attribute decision analysis:A practical approach[J]. Journal of the Operational Research Society,1989, 40(7): 681-686.

[15] 張吉軍. 區(qū)間數(shù)多指標(biāo)決策問題的模糊層次分析法[J]. 工業(yè)工程與管理,2003(6):20-23. ZHANG J J. Fuzzy AHP in multiple attribute decision making with interval numbers[J]. Industrial Engineering and Management,2003(6):20-23.

[16] 劉秀梅,趙克勤. 基于聯(lián)系數(shù)的屬性權(quán)重未知的區(qū)間數(shù)多屬性決策研究[J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識,2013,43(3):143-148. LIU X M, ZHAO K Q. Interval multi-attribute decision making with the attribute weight unknown based on connection number[J]. Journal of Mathematics in Practice and Theory, 2013,43(3):143-148.

[17] ATANASSOV K, GARGOV G. Interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1989,31(3):343-349.

[18] XU Z S. Intuitionistic fuzzy aggregation operators [J]. IEEE Transactions on Fuzzy Systems,2007,15(6):1179-1187.

[19] XU Z S, YAGER R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. International Journal of General Systems,2006,35(4):417-433.

[20] 徐澤水.區(qū)間直覺模糊信息的集成方法及其在決策中的應(yīng)用[J].控制與決策,2007,22(2):215-219. XU Z S. Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making [J]. Control and Decision,2007,22(2):215-219.

[21] 徐澤水.不確定多屬性決策方法及應(yīng)用[M].北京:清華大學(xué)出版社,2004:105-117. XU Z S. Uncertain Multiple Attribute Decision Making:Methods and Applications[M]. Beijing: Tsinghua University Press,2004:105-117.

[22] 劉秀梅,趙克勤.基于聯(lián)系數(shù)復(fù)運(yùn)算的區(qū)間數(shù)多屬性決策方法及應(yīng)用[J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2008,38(23):57-64. LIU X M, ZHAO K Q. Multiple attribute decision making and its applications based on complex number arithmetic operation of connection number with interval numbers[J]. Journal of Mathematics in Practice and Theory,2008,38(23):57-64.

[23] XU Z S, HU H. Projection models for intuitionistic fuzzy multiple decision making[J]. International Journal of Information Technology and Decision Making,2010,9(2):267-280.

[24] 王翠翠,姚登寶,毛軍軍,等.基于熵和相關(guān)系數(shù)的直覺模糊多屬性決策方法[J].計(jì)算機(jī)應(yīng)用,2012,32(11):3002-3004. WANG C C, YAO D B, MAO J J, et al. Intuitionistic fuzzy multiple attributes decision making method based on entropy and correlation coefficient[J]. Journal of Computer Applications,2012,32(11):3002-3004.

DUAN Chuanqing1,2

(1.SchoolofBusinessAdministration,HefeiUniversityofTechnology,Hefei230009,China; 2.SchoolofMathematics,HefeiUniversityofTechnology,Hefei230009,China)

This paper discusses the multiple attribute decision making problems, in which the information about attribute weights is totally unknown and the attribute values are expressed by intuitionistic fuzzy sets. Two interval numbers are used to take the place of attribute values. A new method is proposed to gain the weights of the attributes based on the deviations between the values of the attributes. We make the ranking of projects by the weighted comprehensive values of all projects and the score function of interval-valued intuitionistic fuzzy numbers, respectively, and then compared with the results of the two methods. Finally,an illustrative example is given to verify the effectiveness of the method.

intuitionistic fuzzy number; interval number;multiple attribute decision making;entropy

2016-05-19.

中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助(J2014HGXJ0080).

段傳慶(1978-),ORCID:http://orcid.org/0000-0002-3096-3479,男,博士,講師,主要從事決策分析研究,E-mail:dcqhn@126.com.

10.3785/j.issn.1008-9497.2017.02.009

C 934

A

1008-9497(2017)02-174-07

Intuitionistic fuzzy multiple attribute decision making based on interval numbers. Journal of Zhejiang University(Science Edition), 2017,44(2):174-180

猜你喜歡
模糊集直覺排序
排序不等式
“好一個裝不下”直覺引起的創(chuàng)新解法
基于上下截集的粗糙模糊集的運(yùn)算性質(zhì)
林文月 “人生是一場直覺”
海峽姐妹(2020年7期)2020-08-13 07:49:22
恐怖排序
一個“數(shù)學(xué)直覺”結(jié)論的思考
節(jié)日排序
刻舟求劍
兒童繪本(2018年5期)2018-04-12 16:45:32
數(shù)學(xué)直覺謅議
E-不變凸模糊集
灌阳县| 民乐县| 正宁县| 当阳市| 女性| 伊金霍洛旗| 扎赉特旗| 青神县| 东光县| 多伦县| 农安县| 上栗县| 平度市| 苍南县| 苏尼特左旗| 新干县| 奈曼旗| 平凉市| 贡觉县| 永川市| 阳春市| 新干县| 安新县| 汝城县| 襄垣县| 和政县| 汕尾市| 印江| 五常市| 潜江市| 河北区| 宜兴市| 汕尾市| 古浪县| 福鼎市| 保康县| 太康县| 普兰县| 易门县| 大新县| 泰和县|