張 迪,王紅光,賈 彬,李東曉,李瑞奇,李雁鳴
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/河北省作物生長(zhǎng)調(diào)控重點(diǎn)實(shí)驗(yàn)室,河北保定 071000)
播后鎮(zhèn)壓和冬前灌溉對(duì)冬小麥干物質(zhì)轉(zhuǎn)移和氮素利用效率的影響
張 迪,王紅光,賈 彬,李東曉,李瑞奇,李雁鳴
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/河北省作物生長(zhǎng)調(diào)控重點(diǎn)實(shí)驗(yàn)室,河北保定 071000)
為明確播后鎮(zhèn)壓和冬前灌溉對(duì)高產(chǎn)冬小麥干物質(zhì)和氮素轉(zhuǎn)移及氮素利用效率的影響,以冬小麥品種石新828和石麥12為材料,采用裂區(qū)田間試驗(yàn),于開(kāi)花期和成熟期,測(cè)定不同器官的干物質(zhì)和氮積累量和轉(zhuǎn)移量、籽粒產(chǎn)量、蛋白質(zhì)產(chǎn)量、氮吸收效率和氮肥生產(chǎn)效率。結(jié)果表明,冬灌和鎮(zhèn)壓處理下,2個(gè)品種開(kāi)花期和成熟期的干物質(zhì)積累量下降,開(kāi)花前各營(yíng)養(yǎng)器官干物質(zhì)的轉(zhuǎn)移量、轉(zhuǎn)移率及對(duì)籽粒的貢獻(xiàn)率均降低,但開(kāi)花后籽粒中的干物質(zhì)積累量增加。冬灌處理小麥成熟期的總干物質(zhì)積累量和產(chǎn)量下降。冬灌處理下,石新828開(kāi)花后籽粒中的氮積累量增加,開(kāi)花后氮素對(duì)籽粒的貢獻(xiàn)率提高,但各器官的氮轉(zhuǎn)移量顯著降低,籽粒氮積累總量顯著減少,氮吸收效率下降;冬灌對(duì)石麥12成熟期籽粒氮素積累量影響不顯著。與不鎮(zhèn)壓相比,鎮(zhèn)壓處理下,2個(gè)品種開(kāi)花期的氮積累總量和不同器官中的氮積累量均降低,而成熟期各器官氮積累量及分配比例的差異均不顯著。鎮(zhèn)壓處理與不鎮(zhèn)壓處理相比,2個(gè)品種開(kāi)花前營(yíng)養(yǎng)器官中的氮轉(zhuǎn)移量、轉(zhuǎn)移率和貢獻(xiàn)率均降低,但是開(kāi)花后的氮積累量及其對(duì)籽粒氮的貢獻(xiàn)率提高,其中,鎮(zhèn)壓的石麥12開(kāi)花前氮轉(zhuǎn)移量、貢獻(xiàn)率和開(kāi)花后氮積累量、貢獻(xiàn)率與不鎮(zhèn)壓的差異達(dá)顯著水平;成熟期籽粒氮素積累量的差異不顯著。建議在足墑播種條件下不必進(jìn)行冬灌,應(yīng)根據(jù)播種前后土壤和水分條件確定是否需要鎮(zhèn)壓。
冬小麥; 冬前灌溉; 播后鎮(zhèn)壓; 產(chǎn)量; 干物質(zhì)轉(zhuǎn)移; 氮素利用效率
河北省冬季寒冷少雪,水資源嚴(yán)重匱乏,氮肥利用效率低[1]。該地區(qū)由于前后茬作物接茬時(shí)間短,常因播種質(zhì)量問(wèn)題導(dǎo)致小麥出苗率低、形成苗弱以及越冬死苗的現(xiàn)象[2]。因此,防凍保苗以提高小麥產(chǎn)量,是該地區(qū)急需解決的問(wèn)題。冬前灌溉(以下簡(jiǎn)稱冬灌)曾長(zhǎng)期被作為冬小麥越冬保苗的措施,播后鎮(zhèn)壓也能提高出苗質(zhì)量,但關(guān)于播后鎮(zhèn)壓和冬灌對(duì)小麥干物質(zhì)積累、氮素利用效應(yīng)的研究結(jié)果不盡相同。有研究表明,小麥籽粒中的氮來(lái)自開(kāi)花后吸收的氮和開(kāi)花前營(yíng)養(yǎng)器官貯藏氮的再分配[3];冬灌是影響小麥開(kāi)花前氮素積累和轉(zhuǎn)運(yùn)的重要因素之一[4]。黨建友等[5]報(bào)道,在山西南部地區(qū),氮肥全部底施配合灌越冬水,能獲得較高的小麥產(chǎn)量及較高的水分和氮素利用效率。褚鵬飛等[6]研究表明,冬小麥灌拔節(jié)水和開(kāi)花水,可以獲得理想的產(chǎn)量和水分利用效率。冬灌促進(jìn)土壤硝態(tài)氮向深層淋溶,是沙土地降低氮肥利用效率的主要原因[7];不是特別干旱和寒冷的年份,可以不灌越冬水[8];為了預(yù)防凍害,應(yīng)該采取鎮(zhèn)壓措施[9]。鎮(zhèn)壓可改變土壤緊實(shí)度和三相比,影響土壤中氮的氧化還原反應(yīng),改變土壤氮的供給能力,并通過(guò)增加根系與土壤的接觸,促進(jìn)氮的吸收[10]。但土壤過(guò)度緊實(shí)使根系生長(zhǎng)量減少,從而減少對(duì)土壤養(yǎng)分的吸收[11]。Lal[12]報(bào)道,與不鎮(zhèn)壓相比,鎮(zhèn)壓玉米的氮素吸收量減少23.2%。但關(guān)于北部冬麥區(qū)播種后鎮(zhèn)壓和冬灌對(duì)冬小麥營(yíng)養(yǎng)器官中干物質(zhì)和氮素轉(zhuǎn)移、氮素利用效率的影響研究較少。本研究就播種后鎮(zhèn)壓和冬灌對(duì)2個(gè)冬小麥品種干物質(zhì)和氮素轉(zhuǎn)移及氮素利用效率的影響進(jìn)行探究,旨在明確這些技術(shù)措施對(duì)高產(chǎn)冬小麥的效應(yīng),為確定兼顧節(jié)水和簡(jiǎn)化栽培的管理措施提供依據(jù)。
1.1 試驗(yàn)材料與設(shè)計(jì)
試驗(yàn)材料為冬小麥品種石麥12和石新828。試驗(yàn)于2012-2013年冬小麥生長(zhǎng)季在河北省高碑店市進(jìn)行。試驗(yàn)地為壤土,前茬為花生,施底肥前0~20 cm土層土壤養(yǎng)分為:有機(jī)質(zhì)13.9 g·kg-1,堿解氮95.47 mg·kg-1,速效磷13.32 mg·kg-1。每公頃施N 240 kg、P2O5138 kg、K2O 108 kg。磷、鉀肥全部底施,氮肥按底肥和拔節(jié)期追肥各50%施用。春季在拔節(jié)期和開(kāi)花期各灌水1次。
試驗(yàn)采取裂區(qū)設(shè)計(jì),主區(qū)是灌溉,分為不冬灌和冬灌;副區(qū)是播種后鎮(zhèn)壓,分為鎮(zhèn)壓和不鎮(zhèn)壓。小區(qū)面積4 m×20 m(80 m2),3次重復(fù)。2012年10月11日12 cm等行距機(jī)械播種,播種后次日用石磙進(jìn)行鎮(zhèn)壓處理。基本苗255萬(wàn)·hm-2。11月23日灌溉。2013年6月16日收獲。其他田間管理均同當(dāng)?shù)馗弋a(chǎn)田。
1.2 測(cè)定項(xiàng)目和方法
于開(kāi)花期和成熟期在各小區(qū)取植株樣品。開(kāi)花期將植株樣品分為葉片、莖稈+葉鞘(簡(jiǎn)稱莖鞘)和穗3部分;成熟期分為葉片、莖鞘、穎殼+穗軸(簡(jiǎn)稱穗)、籽粒4部分。于105 ℃殺青30 min,75 ℃烘干至恒重,粉碎后用H2SO4-H2O2法消煮,用AA3流動(dòng)分析儀(德國(guó)SEAL公司生產(chǎn))測(cè)定氮含量。用以下公式[13-14]計(jì)算相關(guān)指標(biāo):
氮積累量=干物質(zhì)積累量×含氮量;
營(yíng)養(yǎng)器官干物質(zhì)(氮)轉(zhuǎn)移量=開(kāi)花期營(yíng)養(yǎng)器官干物質(zhì)(氮)積累量-成熟期營(yíng)養(yǎng)器官干物質(zhì)(氮)積累量;
開(kāi)花后干物質(zhì)(氮)積累量=成熟期干物質(zhì)(氮)積累量-開(kāi)花期干物質(zhì)(氮)積累量
營(yíng)養(yǎng)器官干物質(zhì)(氮)轉(zhuǎn)移率=營(yíng)養(yǎng)器官干物質(zhì)(氮)轉(zhuǎn)移量/開(kāi)花期營(yíng)養(yǎng)器官干物質(zhì)(氮)積累量×100%;
開(kāi)花前營(yíng)養(yǎng)器官干物質(zhì)(氮)對(duì)籽粒的貢獻(xiàn)率=營(yíng)養(yǎng)器官干物質(zhì)(氮)轉(zhuǎn)移量/成熟期籽粒干物質(zhì)(氮)積累量×100%;
開(kāi)花后干物質(zhì)(氮)對(duì)籽粒的貢獻(xiàn)率=開(kāi)花后干物質(zhì)(氮)積累量/成熟期籽粒干物質(zhì)(氮)積累量×100%;
器官的氮分配比例=器官的氮積累量/植株氮積累量×100%;
氮素吸收效率=植株氮積累量/施氮量
氮肥生產(chǎn)效率=籽粒產(chǎn)量/施氮量
籽粒蛋白質(zhì)產(chǎn)量=籽粒產(chǎn)量×籽粒蛋白質(zhì)含量
1.3 數(shù)據(jù)處理
用EXCEL 2003 和SPSS version 19.0進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、分析。
經(jīng)方差分析發(fā)現(xiàn),播后鎮(zhèn)壓與冬灌對(duì)各項(xiàng)被測(cè)指標(biāo)的交互作用均不顯著,因此只對(duì)2種措施的主效應(yīng)進(jìn)行分析。
2.1 播后鎮(zhèn)壓和冬灌對(duì)小麥干物質(zhì)轉(zhuǎn)移的影響
由表1可見(jiàn),冬灌和鎮(zhèn)壓處理下,2個(gè)小麥品種開(kāi)花期和成熟期的干物質(zhì)積累量、開(kāi)花前營(yíng)養(yǎng)器官干物質(zhì)轉(zhuǎn)移量、轉(zhuǎn)移率及對(duì)籽粒干重的貢獻(xiàn)率均顯著降低,但開(kāi)花后干物質(zhì)積累量及其對(duì)籽粒的貢獻(xiàn)率顯著增加。與不冬灌相比,冬灌處理石麥12和石新828開(kāi)花前干物質(zhì)轉(zhuǎn)移量分別降低了787.28和614.60 kg·hm-2,而開(kāi)花后干物質(zhì)積累量分別增加744.49和293.12 kg·hm-2,均與不冬灌處理的差異顯著;由于開(kāi)花后干物質(zhì)積累量的增加量少于開(kāi)花前干物質(zhì)轉(zhuǎn)移的減少量,因此冬灌處理小麥的總干物質(zhì)積累量降低。與不鎮(zhèn)壓相比,鎮(zhèn)壓處理的石麥12和石新828開(kāi)花前干物質(zhì)的轉(zhuǎn)移量分別降低了523.82和332.82 kg·hm-2,而開(kāi)花后干物質(zhì)積累量分別增加533.53和408.20 kg·hm-2,均與不鎮(zhèn)壓處理的差異顯著,兩個(gè)品種的總干物質(zhì)積累量在鎮(zhèn)壓與不鎮(zhèn)壓處理間差異均不顯著。
2.2 播后鎮(zhèn)壓和冬灌對(duì)小麥開(kāi)花期和成熟期各器官氮素積累和分配的影響
從表2可以看出,冬灌處理下,2個(gè)品種開(kāi)花期葉片、莖鞘和穗中的氮積累量和總氮積累量都降低。其中,石新828不同器官氮積累量和總氮積累量與不冬灌的差異均達(dá)顯著水平,石麥12莖鞘的氮積累量和總氮積累量與不冬灌的差異達(dá)顯著水平。從分配比例來(lái)看,石麥12冬灌處理葉片中的氮分配比例顯著增加,莖鞘中的分配比例顯著減少,穗中的分配比例與不冬灌的差異不顯著;石新828冬灌處理穗中的氮分配比例顯著升高,而在葉片和莖鞘中的分配比例與不冬灌的差異不顯著。說(shuō)明冬灌對(duì)2個(gè)小麥品種氮的積累量和在不同器官的分配比例的影響存在一定差異。與不鎮(zhèn)壓相比,2個(gè)品種鎮(zhèn)壓處理后,開(kāi)花期的總氮積累量和不同器官中的氮積累量均有所降低,僅石麥12葉片和穗中的氮積累量及總氮積累量差異顯著。2個(gè)品種鎮(zhèn)壓與不鎮(zhèn)壓處理小麥開(kāi)花期各器官中的氮分配比例差異均不顯著。
冬灌對(duì)2個(gè)小麥品種成熟期不同器官氮積累量和分配比例的影響不同(表3)。與不冬灌比較,冬灌的石新828不同器官氮積累量和總氮積累量均顯著降低,莖鞘中的氮分配比例也顯著降低,但籽粒中的氮分配比例提高。冬灌對(duì)石麥12不同器官氮積累量和分配比例的影響均不顯著。鎮(zhèn)壓對(duì)成熟期2個(gè)品種不同器官的氮積累量和總氮積累量及其分配比例影響均不顯著。
表1 播后鎮(zhèn)壓和冬灌對(duì)小麥干物質(zhì)的影響
同列數(shù)據(jù)后的不同小寫(xiě)字母表示相同品種不同處理間的差異在0.05水平顯著。下同。
Different small letters following data mean significant difference among different treatments at 0.05 level. I: Irrigation; NI:No irrigation; C:Compaction; NC:No compaction;DMA:Dry matter accumulation.The same below.
表2 播后鎮(zhèn)壓和冬灌對(duì)小麥開(kāi)花期氮積累量和分配比例的影響
2.3 播后鎮(zhèn)壓和冬灌對(duì)小麥各器官氮素轉(zhuǎn)移的影響
由表4可見(jiàn),冬灌對(duì)2個(gè)小麥品種不同器官開(kāi)花前氮素轉(zhuǎn)移的影響不盡相同。與不冬灌相比,冬灌的石麥12的莖鞘開(kāi)花前氮素向籽粒的轉(zhuǎn)移量和轉(zhuǎn)移率以及總氮轉(zhuǎn)移量顯著降低;石新828開(kāi)花前葉片、莖鞘及總氮的轉(zhuǎn)移量均顯著降低,但開(kāi)花前氮素的轉(zhuǎn)移率與不冬灌的差異均不顯著;2個(gè)品種開(kāi)花前氮素對(duì)籽粒氮的貢獻(xiàn)率均與不冬灌的差異不顯著。2個(gè)品種冬灌處理開(kāi)花后籽粒的氮積累量與對(duì)籽粒的貢獻(xiàn)率都有所提高,但與不冬灌的差異均不顯著。
鎮(zhèn)壓處理2個(gè)品種開(kāi)花前營(yíng)養(yǎng)器官氮轉(zhuǎn)移量、轉(zhuǎn)移率和對(duì)籽粒的貢獻(xiàn)率都有所降低,開(kāi)花后氮積累量與對(duì)籽粒的貢獻(xiàn)率提高。其中,鎮(zhèn)壓的石麥12開(kāi)花前氮素轉(zhuǎn)移總量和對(duì)籽粒氮的貢獻(xiàn)率顯著低于不鎮(zhèn)壓,而開(kāi)花后的氮積累量和對(duì)籽粒氮的貢獻(xiàn)率顯著高于不鎮(zhèn)壓。
2.4 播后鎮(zhèn)壓和冬灌對(duì)小麥產(chǎn)量和氮素利用的影響
由表5可見(jiàn),與不冬灌相比,冬灌的石新828籽粒產(chǎn)量、蛋白質(zhì)產(chǎn)量和氮素吸收效率均顯著降低。表明冬灌不利于石新828對(duì)氮素的吸收利用。冬灌對(duì)石麥12產(chǎn)量和氮素利用的影響不顯著。鎮(zhèn)壓處理對(duì)石新828、石麥12的產(chǎn)量和氮肥效率的影響均不顯著。說(shuō)明冬灌和鎮(zhèn)壓對(duì)小麥產(chǎn)量和氮素利用效率的影響在2個(gè)品種間稍有差異,鎮(zhèn)壓的影響比冬灌小。
表3 播后鎮(zhèn)壓和冬灌對(duì)小麥成熟期氮積累量和分配比例的影響
表4 播后鎮(zhèn)壓和冬灌對(duì)小麥開(kāi)花后氮積累和開(kāi)花前氮轉(zhuǎn)移及其對(duì)籽粒氮貢獻(xiàn)率的影響
表5 播后鎮(zhèn)壓和冬灌對(duì)小麥籽粒產(chǎn)量和氮肥利用效率的影響
3.1 冬灌對(duì)冬小麥干物質(zhì)和氮素轉(zhuǎn)移的影響
研究表明,小麥中后期增加灌溉次數(shù),具有減少開(kāi)花前干物質(zhì)向籽粒轉(zhuǎn)移的效應(yīng)[15]。本研究結(jié)果表明,冬灌可使開(kāi)花前干物質(zhì)向籽粒的轉(zhuǎn)移量、轉(zhuǎn)移率和貢獻(xiàn)率降低。與不冬灌相比,冬灌處理小麥開(kāi)花后的干物質(zhì)積累量和對(duì)籽粒的貢獻(xiàn)率有所增加,但開(kāi)花前干物質(zhì)轉(zhuǎn)移量的減幅更大,因此造成產(chǎn)量下降。說(shuō)明冬灌處理使開(kāi)花前干物質(zhì)轉(zhuǎn)移量降低是產(chǎn)量降低的主要原因。本研究中,灌漿后期陰雨寡照,光合作用降低,開(kāi)花后的干物質(zhì)生產(chǎn)較少。綜合上述結(jié)果,在不利天氣條件下,開(kāi)花前干物質(zhì)積累量對(duì)維持籽粒產(chǎn)量的相對(duì)穩(wěn)定至關(guān)重要。
籽粒蛋白質(zhì)含量是小麥的重要品質(zhì)指標(biāo)之一。籽粒蛋白質(zhì)含量與開(kāi)花前和開(kāi)花后氮吸收量、開(kāi)花前營(yíng)養(yǎng)器官的氮積累量及開(kāi)花后向籽粒的轉(zhuǎn)移量和轉(zhuǎn)移比例有關(guān)[16]。灌水處理是影響開(kāi)花前氮素對(duì)籽粒氮貢獻(xiàn)率的決定因素[17]。關(guān)于水分對(duì)氮素轉(zhuǎn)移的影響,趙 輝等[18]研究發(fā)現(xiàn),干旱處理可使冬小麥營(yíng)養(yǎng)器官開(kāi)花前氮素的運(yùn)轉(zhuǎn)量和運(yùn)轉(zhuǎn)率提高。段文學(xué)等[19]研究表明,與不灌水相比,灌拔節(jié)和開(kāi)花水可使開(kāi)花后營(yíng)養(yǎng)器官氮素向籽粒的轉(zhuǎn)移量和轉(zhuǎn)移率增加,成熟期籽粒氮素積累量及分配比例提高。姜 東等[20]則認(rèn)為干旱可使小麥開(kāi)花前氮素的轉(zhuǎn)移量減少。張永麗等[4]認(rèn)為,冬灌處理對(duì)開(kāi)花前植株氮素向籽粒轉(zhuǎn)移的影響因品種而異。本研究表明,冬灌處理使2個(gè)品種開(kāi)花后的干物質(zhì)和氮素轉(zhuǎn)移量及成熟期籽粒含氮量都有所降低,成熟期籽粒含氮量降低是由于開(kāi)花前營(yíng)養(yǎng)器官積累的氮素對(duì)籽粒的貢獻(xiàn)率減少所致,與王小燕等[15]的結(jié)果類似。綜上所述,冬灌對(duì)冬小麥干物質(zhì)和氮素轉(zhuǎn)移的影響因小麥品種、栽培條件及氣候等因素而異。
3.2 播后鎮(zhèn)壓對(duì)冬小麥干物質(zhì)和氮素轉(zhuǎn)移的影響
土壤是植物生長(zhǎng)的基礎(chǔ),土壤緊實(shí)度影響土壤養(yǎng)分有效性及其在土壤中的遷移和植物根系發(fā)育,最終會(huì)影響植物對(duì)養(yǎng)分的利用[21-22]。土壤緊實(shí)度對(duì)植物的影響因植物種類、鎮(zhèn)壓力度、鎮(zhèn)壓時(shí)間等因素而不同[23-25]。土壤緊實(shí)度過(guò)低和過(guò)高都造成大麥地上部生物量減少[26]。本研究表明,鎮(zhèn)壓可使小麥開(kāi)花前營(yíng)養(yǎng)器官的貯藏物質(zhì)向籽粒的轉(zhuǎn)移量減少,但開(kāi)花后干物質(zhì)的積累量增加,因此,對(duì)產(chǎn)量的影響較小。前人的研究多是模擬大型機(jī)械壓實(shí)土壤或者常年不良耕作方式造成土壤緊實(shí)度脅迫,鎮(zhèn)壓力度較大。本研究采用的播后鎮(zhèn)壓處理是為了適當(dāng)增加土壤緊實(shí)度,使種子與土壤充分接觸,使用小型鎮(zhèn)壓機(jī)具,鎮(zhèn)壓力度較小,因此與前人的研究有著本質(zhì)的區(qū)別。
Ahmad等[21]報(bào)道,隨著鎮(zhèn)壓次數(shù)的增加,小麥的氮素吸收量減少,但以較小力度鎮(zhèn)壓2遍的處理與不鎮(zhèn)壓處理之間差異不顯著。這也從側(cè)面說(shuō)明,在適度鎮(zhèn)壓力度下,鎮(zhèn)壓對(duì)作物的氮素吸收沒(méi)有顯著影響。賀明榮等[27]報(bào)道,提高土壤緊實(shí)度對(duì)小麥籽粒的品質(zhì)無(wú)顯著影響。本研究表明,鎮(zhèn)壓處理可使小麥開(kāi)花前的氮積累量低于不鎮(zhèn)壓處理,但鎮(zhèn)壓處理花后氮積累量明顯提高,成熟期總氮積累量和籽粒氮積累量與不鎮(zhèn)壓處理差異不顯著。因此,針對(duì)生產(chǎn)中存在的土壤緊實(shí)度不夠,影響小麥出苗等問(wèn)題,可以采取播后鎮(zhèn)壓措施。
3.3 冬灌和播后鎮(zhèn)壓對(duì)冬小麥產(chǎn)量和資源利用效率的影響
提高水分和氮肥利用效率是目前農(nóng)業(yè)生產(chǎn)中需要解決的關(guān)鍵問(wèn)題。作物的籽粒產(chǎn)量與灌水量之間呈拋物線關(guān)系,合理搭配灌水時(shí)期和灌水量均能提高水分利用效率[28]。本研究表明,冬灌后2個(gè)品種的產(chǎn)量和氮素利用效率均有不同程度下降,冬灌后石新828的氮肥生產(chǎn)效率和氮素吸收效率降低,而對(duì)石麥12的影響較小。說(shuō)明在本試驗(yàn)條件下,冬灌并不利于提高水分利用效率,對(duì)氮素利用效率的影響因小麥品種而異。與冬灌的效應(yīng)相比,播種后鎮(zhèn)壓對(duì)2個(gè)小麥品種產(chǎn)量和氮素利用效率的影響都比較小。因此,應(yīng)根據(jù)播種前后的土壤和水分條件確定是否需要鎮(zhèn)壓。而從提高資源利用效率角度出發(fā),在與本研究類似的高產(chǎn)栽培的足墑播種條件下,可以免去冬灌措施。
[1] 劉 明,陶洪斌,王 璞,等.華北平原水氮優(yōu)化條件下不同種植制度產(chǎn)量、水氮利用及經(jīng)濟(jì)效益分析[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,13(4):12.
LIU M,TAO H B,WANG P,etal.Analysis of different cropping systems using optimizing water-nitrogen management on yield,water and nitrogen utilization and economic benefits [J].JournalofChinaAgriculturalUniversity,2008,13(4):12.
[2] 李少昆,王克如,馮聚凱,等.玉米秸稈還田與不同耕作方式下影響小麥出苗的因素[J].作物學(xué)報(bào),2006,32(3):464.
LI S K,WANG K R,FENG J K,etal.Factors affecting seedling emergence in winter wheat under different tillage patterns with maize stalk mulching returned to the field [J].ActaAgromomicaSinica,2006,32(3):464.
[3] 同延安,趙 營(yíng),趙護(hù)兵.施氮量對(duì)冬小麥氮素吸收、運(yùn)轉(zhuǎn)及產(chǎn)量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2007,13(1):167.
TONG Y A,ZHAO Y,ZHAO H B.Effects of N rates on N uptake,transformation and the yield of winter wheat [J].PlantNutritionandFertilizerScience,2007,13(1):167.
[4] 張永麗,于振文.灌水量對(duì)小麥氮素吸收、分配、利用及產(chǎn)量與品質(zhì)的影響[J].作物學(xué)報(bào),2008,34(5):876.
ZHANG Y L,YU Z W.Effects of irrigation amount on nitrogen uptake,distribution,use,and grain yield and quality in wheat [J].ActaAgromomicaSinica,2008,34(5):876.
[5] 黨建友,裴雪霞,張定一,等.玉米秸稈還田下冬灌時(shí)間與施氮方式對(duì)冬小麥生長(zhǎng)發(fā)育及水肥利用效率的影響[J].麥類作物學(xué)報(bào),2014,34(2):212-213.
DANG J Y,PEI X X,ZHANG D Y,etal.Effects of winter irrigation date and nitrogen fertilization on the growth,water and nutrient use efficiencies in winter wheat under straw return to field [J].JournalofTriticeaeCrops,2014,34(2):212-213.
[6] 褚鵬飛,王 東,張永麗,等.灌水時(shí)期和灌水量對(duì)小麥耗水特性、籽粒產(chǎn)量及蛋白質(zhì)組分含量的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2009,42(4):1312-1313.
CHU P F,WANG D,ZHANG Y L,etal.Effects of irrigation stage and amount on water consumption characteristics,grain yield and content of protein components of wheat [J].ScientiaAgriculturaSinica,2009,42(4):1312-1313.
[7] 楊 榮,蘇永中.農(nóng)田利用方式和冬灌對(duì)沙地農(nóng)田土壤硝態(tài)氮積累的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2009,20(3):620-621.
YANG R,SU Y Z.Effects of farm land use type and winter irrigation on nitrate accumulation in sandy farm land soil [J].ChineseJournalofAppliedEcology,2009,20(3):620-621.
[8] SHAO L W,ZHANG X Y,SUN H Y,etal.Yield and water use response of winter wheat to winter irrigation in the North China Plain [J].JournalofSoilandWaterConservation,2011,66(2):104.
[9] 張 迪,王紅光,馬伯威,等.播后鎮(zhèn)壓和冬前灌溉對(duì)土壤條件和冬小麥生育特性的影響[J].麥類作物學(xué)報(bào),2014,34(6):793.
ZHANG D,WANG H G,MA B W,etal.Effects of post-sowing soil compaction and pre-winter irrigation on soil conditions and growth and development of winter wheat [J].JournalofTriticeaeCrops,2014,34(6):793.
[10] KOOISTRA M J,SCHOONDBEEK D,BOONE F R,etal.Root-soil contact of maize,as measured by a thin-section technique.2.Effects of soil compaction [J].PlantandSoil,1992,139(1):119.
[11] ARVIDSSON J.Nutrient uptake and growth of barley as affected by soil compaction [J].PlantandSoil,1999,208(1):12-15.
[12] LAL R.Axle load and tillage effects on crop yields on a Mollic Ochraqualf in northwest Ohio [J].SoilTillageResearch,1996,37:143.
[13] 王紅光,于振文,張永麗,等.推遲拔節(jié)水對(duì)小麥氮素積累與分配和硝態(tài)氮運(yùn)移的影響[J].生態(tài)學(xué)報(bào),2012,32(6):1864.
WANG H G,YU Z W,ZHANG Y L,etal.Effects of delayed irrigation at jointing stage on nitrogen accumulation and its allocation,and NO3-N migration in wheat [J].ActaEcologicaSinica,2012,32(6):1864.
[14] 鄭成巖,于振文,王西芝,等.灌水量和時(shí)期對(duì)高產(chǎn)小麥氮素積累、分配和轉(zhuǎn)運(yùn)及土壤硝態(tài)氮含量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2009,15(6):1326.
ZHENG C Y,YU Z W,WANG X Z,etal.Effects of irrigation amount and stage on nitrogen accumulation,distribution,translocation and soil NO3-N content in high-yield wheat [J].PlantNutritionandFertilizerScience,2009,15(6):1326.
[15] 董 浩,陳雨海,周勛波.灌溉和種植方式對(duì)冬小麥耗水特性及干物質(zhì)生產(chǎn)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(7):1875-1877.
DONG H,CHEN Y H,ZHOU X B.Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production [J].ChineseJournalofAppliedEcology,2013,24(7):1875-1877.
[16] 王小燕,于振文.不同施氮量條件下灌溉量對(duì)小麥氮素吸收轉(zhuǎn)運(yùn)和分配的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2008,41(10):3022.
WANG X Y,YU Z W.Effect of irrigation rate on absorption and translocation of nitrogen under different nitrogen fertilizer rate in wheat [J].ScientiaAgriculturaSinica,2008,41(10):3022.
[17] 王德梅,于振文,張永麗,等.不同灌水處理?xiàng)l件下不同小麥品種氮素積累、分配與轉(zhuǎn)移的差異[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(5):1047.
WANG D M,YU Z W,ZHANG Y L,etal.Changes in nitrogen accumulation,distribution,translocation and nitrogen use efficiency in different wheat cultivars under different irrigation conditions [J].PlantNutritionandFertilizerScience,2010,16(5):1047.
[18] 趙 輝,戴廷波,姜 東,等.高溫下干旱和漬水對(duì)冬小麥花后旗葉光合特性和物質(zhì)轉(zhuǎn)運(yùn)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2007,18(2):336.
ZHAO H,DAI T B,JIANG D,etal.Effects of drought and water logging on flag leaf post anthesis photosynthetic characteristics and assimilates translocation in winter wheat under high temperature [J].ChineseJournalofAppliedEcology,2007,18(2):336.
[19] 段文學(xué),張永麗,石 玉,等.測(cè)墑補(bǔ)灌對(duì)不同小麥品種耗水特性和氮素分配與轉(zhuǎn)運(yùn)的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2011,17(6):1314.
DUAN W X,ZHANG Y L,SHI Y,etal.Effects of soil-moisture monitoring supplemental irrigation on water consumption characteristics and nitrogen accumulation and translocation in different wheat cultivars [J].PlantNutritionandFertilizerScience,2011,17(6):1314.
[20] 姜 東,謝祝捷,曹衛(wèi)星,等.花后干旱和漬水對(duì)冬小麥光合特性和物質(zhì)運(yùn)轉(zhuǎn)的影響[J].作物學(xué)報(bào),2004,30(2):179-180.
JIANG D,XIE Z J,CAO W X,etal.Effects of post-anthesis drought and waterlogging on photosynthetic characteristics,assimilates transportation in winter wheat [J].ActaAgronomicaSinica,2004,30(2):179-180.
[21] AHMAD N,HASSAAN F U,BELFORD R K.Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat(Triticumaestivum):I.Compaction [J].FieldCropsResearch,2009,110(1):57-58.
[22] 楊曉娟,李春儉.機(jī)械壓實(shí)對(duì)土壤質(zhì)量、作物生長(zhǎng)、土壤生物及環(huán)境的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2008,41(7):2010-2011.
YANG X J,LI C J.Impacts of mechanical compaction on soil properties,growth of crops,soil-borne organisms and environment [J].ScientiaAgriculturaSinica,2008,41(7):2010-2011.
[23] 趙志剛,徐 亮,余青蘭,等.春油菜播后鎮(zhèn)壓效果分析[J].青海大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,29(5):32-34.
ZHAO Z G,XU L,YU Q L,etal.The effect analysis of suppression following sowing of spring rapeseeds [J].JournalofQinghaiUniversity(NatureScience),2011,29(5):32-34.
[24] ALAMEDA D,ANTEN N P R,WILLAR R.Soil compaction effects on growth and root traits of tobacco depend on light,water regime and mechanical stress [J].SoilandTillageResearch,2012,120:124.
[25] HYATT J,WENDROTH O,EGLI D B,etal.Soil compaction and soybean seedling emergence [J].CropScience,2007,47(6):2495.
[26] MULHOLLAND B J,BLACK C R,TAYLOR I B,etal.Effect of soil compaction on barley(HordeumvulgareL.) growth I.Possible role for ABA as a root-sourced chemical signal [J].JournalofExperimentalBotany,1996,47(4):541-542.
[27] 賀明榮,王振林.土壤緊實(shí)度變化對(duì)小麥籽粒產(chǎn)量和品質(zhì)的影響[J].西北植物學(xué)報(bào),2004,24(4):651-652.
HE M R,WANG Z L.Effects of soil compaction on grain yield and quality of wheat [J].ActaBotanicaBoreali-OccidentaliaSinica,2004,24(4):651-652.
[28] 楊曉亞,于振文,許振柱.灌水量和灌水時(shí)期對(duì)小麥耗水特性和氮素積累分配的影響[J].生態(tài)學(xué)報(bào),2009,29(2):850-851.
YANG X Y,YU Z W,XU Z Z.Effects of irrigation regimes on water consumption characteristics and nitrogen accumulation and allocation in wheat [J].ActaEcologicaSinica,2009,29(2):850-851.
Effect of Post-Sowing Soil Compaction and Pre-Winter Irrigation on Dry Matter Translocation and Nitrogen Use Efficiency of Winter Wheat
ZHANG Di, WANG Hongguang, JIA Bin, LI Dongxiao, LI Ruiqi, LI Yanming
(College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, Hebei 071000, China)
In order to clarify the effects of post-sowing soil compaction and pre-winter irrigation on the translocation of dry matter and nitrogen and nitrogen use efficiency of high-yielding winter wheat, a field experiment was carried out, using two wheat cultivars, Shimai 12 and Shixin 828. The experiments were designed as split plots.The amounts of dry matter and nitrogen accumulation and translocation in different organs at anthesis and maturity, grain yield, grain protein content, nitrogen absorption efficiency and nitrogen fertilizer production efficiency of wheat were determined. The results showed that under the treatments with pre-winter irrigation and post-sowing soil compaction, the amount of dry matter accumulation at anthesis and maturity of the two cultivars was decreased, and the amount and rate of pre-anthesis dry matter translocation from vegetative organs, and the contribution rate of pre-anthesis dry matter to grain weight of the two cultivars were also decreased, but post-anthesis dry matter accumulation amount in grains of the two cultivars were increased. The dry matter accumulation of wheat plants at maturity and grain yield of the two cultivars were decreased under the treatments with pre-winter irrigation. The amount of post-anthesis nitrogen accumulation in grains was increased, and the contribution rate of post-anthesis nitrogen accumulation to grain nitrogen was increased in Shixin 828, but the translocation amount of pre-anthesis accumulated nitrogen to grain was significantly reduced, so that the total amount of grain nitrogen and nitrogen absorption efficiency was decreased. For Shimai 12, however, the effect of pre-winter irrigation on grain nitrogen accumulation amount at maturity was not significant. Comparing with the treatments without post-sowing compaction, the amount of nitrogen accumulation in different organs and whole plants of wheat with post-sowing compaction was reduced at anthesis in the two cultivars. At maturity, however, the difference of nitrogen accumulation amount and distribution percentage in all organs of both cultivars was not significant. Compared with those without compaction, the translocation amount, translocation rate and contribution rate to grain nitrogen of pre-anthesis accumulated nitrogen in vegetative organs were decreased, but the accumulation amount and contribution rate to grain nitrogen of post-anthesis accumulated nitrogen were increased in the treatments with post-sowing compaction for both cultivars.For Shimai 12, all the differences of amount and contribution rate to grain nitrogen of pre- and post-anthesis accumulated nitrogen were significant between the two treatments. The difference of nitrogen amount accumulated in grains at maturity was not significant. It is suggested that, pre-winter irrigation is unnecessary with adequate soil moisture when sowing of wheat. Whether post-sowing compaction is needed should be determined according to pre- and post-sowing soil moisture of winter wheat.
Winter wheat; Pre-winter irrigation; Post-sowing compaction; Grain yield; Dry matter translocation; Nitrogen use efficiency
時(shí)間:2017-04-07
2016-08-05
2016-11-02 基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-3-2-3) 第一作者E-mail:zhangdi0101@sina.com 通訊作者:李雁鳴(E-mail:nxzwst@hebau.edu.cn; liym315@126.com)
S512.1;S311
A
1009-1041(2017)04-0535-08
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20170407.1021.030.html