李 彤, 翟二濤, 許麗霞, 黃霖琳, 彭 穗, 曾志榮
(中山大學(xué)附屬第一醫(yī)院消化內(nèi)科, 廣東 廣州 510080)
阿帕替尼通過(guò)阻斷VEGF通路增強(qiáng)胃癌放療療效*
李 彤, 翟二濤, 許麗霞, 黃霖琳, 彭 穗, 曾志榮△
(中山大學(xué)附屬第一醫(yī)院消化內(nèi)科, 廣東 廣州 510080)
目的: 探討血管內(nèi)皮生長(zhǎng)因子(VEGF)受體2酪氨酸激酶抑制劑阿帕替尼對(duì)胃癌細(xì)胞株SGC-7901放療療效的影響及其可能機(jī)制。方法: 試驗(yàn)設(shè)對(duì)照組、阿帕替尼組、單純放療組與聯(lián)合組。CCK-8法檢測(cè)細(xì)胞活力,流式細(xì)胞術(shù)分析細(xì)胞凋亡比例與細(xì)胞周期,免疫熒光染色觀察細(xì)胞核內(nèi)γ-H2AX的表達(dá),Western blot法檢測(cè)細(xì)胞增殖和凋亡相關(guān)蛋白。結(jié)果: 與阿帕替尼組或單純放療組相比,阿帕替尼聯(lián)合X射線顯著降低SGC-7901細(xì)胞的生長(zhǎng)活力(P<0.01),增殖相關(guān)蛋白p-PLCγ1和p-ERK1/2的水平下降;細(xì)胞凋亡比例明顯升高(P<0.01),凋亡相關(guān)蛋白PARP、cleaved caspase-9和cleaved caspase-3蛋白水平上調(diào),Bcl-2表達(dá)下降;SGC-7901細(xì)胞核內(nèi)γ-H2AX焦點(diǎn)淬滅延遲,表明阿帕替尼干擾放射線誘導(dǎo)的DNA雙鏈斷裂的修復(fù);SGC-7901 G2期細(xì)胞比例顯著增高(P<0.01)。結(jié)論: 阿帕替尼通過(guò)阻斷VEGF通路增加胃癌細(xì)胞對(duì)X射線照射的敏感性。
胃癌; 放療; 阿帕替尼; 血管內(nèi)皮生長(zhǎng)因子
胃癌是常見(jiàn)的惡性腫瘤之一[1],我國(guó)每年約有40萬(wàn)例新發(fā)胃癌,占全球的43%[2]。我國(guó)胃癌篩查沒(méi)有韓國(guó)、日本等東亞國(guó)家普遍,多數(shù)患者確診時(shí)屬胃癌中晚期。胃癌的主要治療方法包括外科手術(shù)、化療、放療。盡管化療和手術(shù)治療的方法在不斷進(jìn)步,但晚期胃癌患者的預(yù)后依然較差[3]。對(duì)于初期或手術(shù)后的病人,放療是良好的局部區(qū)域控制治療手段。研究表明,腫瘤組織中血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的高表達(dá)與放療抵抗顯著相關(guān)[4],靶向阻斷VEGF信號(hào)通路有潛在放療增敏的可能性。阿帕替尼(apatinib)是VEGF受體(VEGF receptor,VEGFR)2的酪氨酸激酶抑制劑,可靶向殺傷腫瘤細(xì)胞[5]。目前尚缺乏對(duì)阿帕替尼與胃癌放療相關(guān)性的研究。本研究擬觀察X線照射聯(lián)合阿帕替尼干預(yù)對(duì)胃癌細(xì)胞的細(xì)胞周期、細(xì)胞活力及凋亡的影響,并初步探討其分子信號(hào)通路,明確阿帕替尼是否可以增加胃癌對(duì)放療的敏感性,為指導(dǎo)臨床治療提供新的理論依據(jù)。
1 細(xì)胞和主要試劑
人胃癌細(xì)胞株SGC-7901購(gòu)自中科院上海細(xì)胞庫(kù)。
RPMI-1640培養(yǎng)基、胎牛血清和胰蛋白酶(Gibco);PBS和RIPA細(xì)胞裂解液(Thermo Fisher Scientific);阿帕替尼(恒瑞);CCK-8試劑盒(Dojindo);抗磷脂酶C(phospholipase C,PLC)、p-PLCγ1、p-ERK1/2、ERK1/2、多聚(ADP-核糖)聚合酶[poly(ADP-ribose) polymerase,PARP]、caspase-3、caspase-9、Bcl-2、GAPDH抗體和相應(yīng) II 抗(Cell Signaling Technology);5% Triton、DAPI、山羊血清和多聚甲醛;兔抗人磷酸化組蛋白H2AX(γ-H2AX)抗體(Bioworld);羊抗兔IgG(Santa Cruz)。
2 主要方法
2.1 細(xì)胞培養(yǎng)及實(shí)驗(yàn)分組 SGC7901細(xì)胞置于含10% 胎牛血清的RPMI-1640培養(yǎng)基(含1×105U/L青霉素和100 mg/L鏈霉素)中,于37 ℃、5% CO2、飽和濕度條件下培養(yǎng)。實(shí)驗(yàn)設(shè)4個(gè)組別:對(duì)照(control)組不作處理;阿帕替尼組使用終濃度為5 mmol/L的阿帕替尼處理;單純放療組接受10 Gy X射線的電離輻射(ionizing radiation,IR);聯(lián)合(combination)組使用5 mmol/L阿帕替尼處理24 h后接受10 Gy的X射線照射。
2.2 細(xì)胞活力的檢測(cè) 對(duì)數(shù)生長(zhǎng)期SGC7901細(xì)胞接種于96孔板,每孔含有1×104細(xì)胞懸液100 μL。使用含10% 胎牛血清的RPMI-1640培養(yǎng)基培養(yǎng)對(duì)照組和單純放療組細(xì)胞;在含10%胎牛血清的RPMI-1640培養(yǎng)基中加入終濃度為5 mmol/L的阿帕替尼培養(yǎng)阿帕替尼組和聯(lián)合組細(xì)胞。培養(yǎng)板放在培養(yǎng)箱中培養(yǎng)過(guò)夜,單純放療組與聯(lián)合組接受10 Gy的X線照射。向每孔加入10 μL CCK-8溶液(此后所有操作步驟均為避光進(jìn)行),將培養(yǎng)板在培養(yǎng)箱內(nèi)孵育3 h。用酶標(biāo)儀測(cè)定在450 nm處的吸光度(A450)值,實(shí)驗(yàn)獨(dú)立重復(fù)3次。
2.3 流式細(xì)胞術(shù)分析 對(duì)數(shù)生長(zhǎng)期SGC7901細(xì)胞均勻接種于6孔板,每孔含5×105細(xì)胞。對(duì)照組和單純放療組常規(guī)培養(yǎng),阿帕替尼組和聯(lián)合組給予終濃度為5 mmol/L的阿帕替尼處理,24 h后單純放療組和聯(lián)合組給予10 Gy X射線照射。各組細(xì)胞繼續(xù)培養(yǎng)24 h。PBS輕柔沖洗各組SGC-7901細(xì)胞后,將各組樣品一部分以PBS重懸為3×109/L單細(xì)胞懸液,每組取1 mL立即進(jìn)行細(xì)胞凋亡檢測(cè);另一部分以70%冰乙醇重懸為3×109/L單細(xì)胞懸液,-20 ℃固定過(guò)夜,每組取1 mL進(jìn)行細(xì)胞周期檢測(cè)。實(shí)驗(yàn)獨(dú)立重復(fù)3次。
2.4 Western blot法檢測(cè)蛋白質(zhì) 細(xì)胞處理同上。棄細(xì)胞培養(yǎng)液,用RIPA細(xì)胞裂解液∶PMSF(10∶1)的混合溶液提取細(xì)胞總蛋白,酶標(biāo)儀測(cè)定蛋白濃度。配10%的SDS-PAGE膠,每組取總蛋白30 μg上樣,恒壓,濃縮膠 80 V、分離膠 100 V電泳100 min, 4 ℃、400 mA轉(zhuǎn)膜120 min。裁膜,5% BSA室溫封閉 1.5 h,加入I抗于4 ℃孵育過(guò)夜,1×TBST洗膜,加入相應(yīng) II 抗室溫孵育2 h,1×TBST洗膜,曝光顯影。實(shí)驗(yàn)獨(dú)立重復(fù)3次。
2.5 免疫熒光技術(shù) 細(xì)胞處理同上。將單純放療組、聯(lián)合組細(xì)胞分別在照射后1 h、6 h、12 h和24 h收集細(xì)胞,-20 ℃保存?zhèn)溆?。全部?xì)胞收集好后加3% H2O2室溫孵育30 min,PBS振蕩洗滌,多聚甲醛固定20 min,PBS振蕩洗滌;0.5% Triton破膜,PBS振蕩洗滌;滴加正常山羊血清封閉液,室溫放置60 min;滴加適當(dāng)稀釋的兔抗人單克隆抗體,空白對(duì)照不加 I 抗,用PBS代替,室溫放置2 h,PBS振蕩洗滌;避光加入DAPI稀釋的熒光 II 抗,37 ℃溫箱、濕盒孵育60 min。PBS振蕩洗滌,水溶性封片劑封片,激光共聚焦顯微鏡調(diào)至油鏡下觀察。
3 統(tǒng)計(jì)學(xué)處理
用SPSS 22.0統(tǒng)計(jì)軟件進(jìn)行分析。數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用重復(fù)測(cè)量定量資料的方差分析,組間兩兩比較采用Bonferroni法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 阿帕替尼聯(lián)合X線照射對(duì)SGC-7901細(xì)胞活力的影響
與阿帕替尼組或單純放療組相比,聯(lián)合組顯著降低SGC-7901細(xì)胞活力,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01)。Western blot法檢測(cè)進(jìn)一步證實(shí),與單純放療組或阿帕替尼組相比,聯(lián)合組增殖相關(guān)蛋白p-PLCγ1和p-ERK1/2表達(dá)顯著下降,見(jiàn)圖1。
Figure 1.Apatinib and X-ray synergistically inhibited SGC-7901 cell viability. A:Avalues detected by CCK-8 assay; B: the protein levels of p-PLCγ1 and p-ERK1/2 determined by Western blot analysis. Mean±SD.n=3.**P<0.01vsIR group;##P<0.01vsapatinib group.
圖1 阿帕替尼聯(lián)合X線照射協(xié)同抑制SGC-7901細(xì)胞活力
2 阿帕替尼聯(lián)合X線照射對(duì)SGC-7901細(xì)胞凋亡的影響
流式細(xì)胞術(shù)分析結(jié)果顯示,對(duì)照組細(xì)胞的凋亡比例為4.081%,阿帕替尼組的細(xì)胞凋亡比例為10.42%,單純放療組的細(xì)胞凋亡比例為16.19%,聯(lián)合組的細(xì)胞凋亡比例為27.49%。阿帕替尼組與單純放療組的細(xì)胞凋亡比例均高于對(duì)照組,而聯(lián)合組的細(xì)胞凋亡比例明顯高于阿帕替尼組與單純放療組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。聯(lián)合組凋亡相關(guān)蛋白PARP、cleaved caspase-9和cleaved caspase-3表達(dá)水平上調(diào),Bcl-2表達(dá)下降,見(jiàn)圖2。
3 阿帕替尼聯(lián)合X線照射對(duì)SGC-7901細(xì)胞中γ-H2AX表達(dá)的影響
我們前期研究發(fā)現(xiàn),VEGF通路關(guān)鍵蛋白在SGC-7901胃癌細(xì)胞株中呈現(xiàn)高表達(dá)狀態(tài)。應(yīng)用10 Gy電離輻射劑量照射單純放療組與聯(lián)合組SGC-7901細(xì)胞株,結(jié)果發(fā)現(xiàn)2組1 h時(shí)均可見(jiàn)γ-H2AX核內(nèi)焦點(diǎn)出現(xiàn)。單純放療組隨后核內(nèi)焦點(diǎn)逐漸減少,12 h時(shí)接近照射前水平。而聯(lián)合組核內(nèi)焦點(diǎn)淬滅延遲,24 h未恢復(fù)照射前水平,見(jiàn)圖3,表明聯(lián)合組雙鏈斷裂(double-strand breaks,DSBs)修復(fù)過(guò)程被干擾。
4 阿帕替尼聯(lián)合X線照射對(duì)SGC-7901細(xì)胞細(xì)胞周期影響
流式細(xì)胞術(shù)分析結(jié)果顯示,對(duì)照組的G2期細(xì)胞比例為7.08%,阿帕替尼組的G2期細(xì)胞比例為12.13%,單純放療組的G2期細(xì)胞比例為23.49%,聯(lián)合組的G2期SGC-7901細(xì)胞比例升高,為40.16%。與阿帕替尼組或單純放療組對(duì)比,聯(lián)合組阻滯于G2期的細(xì)胞比例顯著增高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.01),見(jiàn)圖4。
胃癌根除術(shù)成功的患者因局部復(fù)發(fā)、遠(yuǎn)處轉(zhuǎn)移風(fēng)險(xiǎn)高,5年生存率依然很低,放療可明顯減少淋巴引流區(qū)域復(fù)發(fā),提高術(shù)后3年生存率和5年生存率[6-7]。對(duì)無(wú)遠(yuǎn)處轉(zhuǎn)移(M0)的IV期胃癌患者實(shí)施放療可以降低腫瘤分期、減小瘤體,從而降低手術(shù)難度、增加胃癌根除術(shù)的成功率。而伴有遠(yuǎn)處轉(zhuǎn)移(M1)的IV期胃癌患者,放療可緩解或治療出血、狹窄、疼痛等癥狀[8]。對(duì)于初期或手術(shù)后的病人,放療是一種良好的局部區(qū)域控制治療。但一部分胃癌患者會(huì)發(fā)生放療抵抗,導(dǎo)致放療療效不佳。胃周圍重要器官對(duì)放射線的耐受性限制了射線劑量的提高,因此尋找可增強(qiáng)胃癌的放療敏感性的藥物或手段,對(duì)于胃癌的治療有重要意義。
X射線用于腫瘤治療的原理是其能夠誘導(dǎo)細(xì)胞產(chǎn)生DNA雙鏈斷裂[9]。DSBs修復(fù)缺陷的細(xì)胞對(duì)放射線敏感性增加,DSBs修復(fù)蛋白高表達(dá)的細(xì)胞對(duì)射線耐受[10-11]。熒光標(biāo)記的磷酸化組蛋白H2AX(γ-H2AX)是識(shí)別細(xì)胞內(nèi)DSBs的有效標(biāo)記物,細(xì)胞內(nèi)殘留γ-H2AX焦點(diǎn)數(shù)量代表了細(xì)胞對(duì)DSBs的修復(fù)能力,與細(xì)胞放射敏感性有密切關(guān)系[12]。研究顯示,抑制VEGF信號(hào)通路可能減緩腫瘤細(xì)胞DSBs修復(fù)過(guò)程而增敏放療[13]。在本研究中,與單純放療組相比,聯(lián)合組細(xì)胞核內(nèi)γ-H2AX熒光淬滅時(shí)間延遲,提示DSBs修復(fù)過(guò)程被干擾。其機(jī)制可能是放療誘導(dǎo)DSBs形成,而阿帕替尼通過(guò)抑制VEGF信號(hào)通路來(lái)干擾DSBs修復(fù),從而抑制腫瘤細(xì)胞增殖,實(shí)現(xiàn)增敏放療。
Figure 2.Combination of apatinib and X-ray induced SGC-7901 cell apoptosis. A: the apoptotic rate determined by flow cytometry; B: the protein levels of cell apoptosis biomarkers determined by Western blot analysis. Mean±SD.n=3.**P<0.01vsIR group;##P<0.01vsapatinib group.
圖2 阿帕替尼聯(lián)合X線照射通過(guò)線粒體途徑誘導(dǎo)SGC-7901細(xì)胞凋亡
放療會(huì)誘導(dǎo)VEGF、成纖維細(xì)胞生長(zhǎng)因子2和血小板源性生長(zhǎng)因子等促血管生長(zhǎng)因子的表達(dá)[14],促進(jìn)腫瘤血管生成,為腫瘤提供營(yíng)養(yǎng),抑制腫瘤血管生成可顯著增敏放療[15]。VEGF是很多實(shí)體腫瘤都分泌的調(diào)節(jié)血管形成最重要的信號(hào)分子,腫瘤組織中VEGF的高表達(dá)與放療抵抗顯著相關(guān)[4]。VEGFR包括VEGFR1、VEGFR2和VEGFR3[16]。VEGFR2與配體結(jié)合后,比其它受體更顯著地增強(qiáng)激酶的活性,導(dǎo)致血管形成增強(qiáng),微血管密度增大,血管內(nèi)皮細(xì)胞增殖增強(qiáng),與不良臨床預(yù)后更相關(guān)[17]。阿帕替尼靶向抑制VEGFR2的酪氨酸激酶發(fā)揮殺傷腫瘤的作用[5],可顯著延長(zhǎng)一線或二線化療失敗的晚期胃癌患者的中位生存期與無(wú)進(jìn)展生存期[18]。
目前認(rèn)為細(xì)胞凋亡途徑包括死亡受體通路介導(dǎo)的細(xì)胞凋亡和線粒體途徑介導(dǎo)的細(xì)胞凋亡[19]。有研究顯示,VEGF通路的激活可以抑制細(xì)胞凋亡,并通過(guò)PLC依賴的信號(hào)通路促進(jìn)胃癌細(xì)胞增殖[20-21],而放療過(guò)程中腫瘤細(xì)胞恢復(fù)增殖、凋亡信號(hào)傳導(dǎo)途徑中斷,是腫瘤對(duì)放射不敏感又一重要機(jī)制[22]。阿帕替尼可通過(guò)阻滯VEGFR2-PLCγ1-ERK1/2信號(hào)通路抑制胃癌細(xì)胞增殖,并減少VEGF的分泌[21]。在整個(gè)細(xì)胞增殖周期中,G2/M期對(duì)放射損傷最為敏感。細(xì)胞周期阻滯于G2期的腫瘤細(xì)胞對(duì)放療敏感性普遍高于阻滯在細(xì)胞周期其它階段的腫瘤細(xì)胞[23]。有報(bào)道阿帕替尼可引起細(xì)胞周期抑制蛋白p21和p27的上調(diào)及cyclin B1和Cdc1的下調(diào),阻滯細(xì)胞周期于G2/M期[24]。
Figure 3.Detection of γ-H2AX expression by immunofluorescence cytochemistry. The combination group showed a delay of fluorescence quenching.
圖3 免疫熒光觀察阿帕替尼聯(lián)合X射線組γ-H2AX核內(nèi)焦點(diǎn)淬滅延遲
Figure 4.Apatinib combined with X-ray blocked cell cycle in the G2/M phase. Mean±SD.n=3.**P<0.01vsIR group;##P<0.01vsapatinib group.
圖4 阿帕替尼聯(lián)合X線照射使細(xì)胞周期阻滯于G2/M期
本研究發(fā)現(xiàn),相對(duì)于阿帕替尼組或單純放療組,阿帕替尼聯(lián)合X射線可顯著提高SGC-7901細(xì)胞的凋亡比例,上調(diào)凋亡通路的標(biāo)志物PARP、cleaved caspase-9和cleaved caspase-3蛋白水平,抑制抗凋亡蛋白Bcl-2表達(dá),提示通過(guò)線粒體途徑誘導(dǎo)細(xì)胞凋亡。此外,兩者聯(lián)合可協(xié)同增加對(duì)SGC-7901胃癌細(xì)胞的生長(zhǎng)抑制作用,顯著下調(diào)增殖相關(guān)蛋白p-PLC和p-ERK1/2的蛋白水平。阿帕替尼聯(lián)合X線照射可使G2期細(xì)胞比例較明顯增加,細(xì)胞周期阻滯于G2期,抑制腫瘤增殖,提高腫瘤細(xì)胞的放射敏感性。
基于本研究的初步探索,認(rèn)為阿帕替尼可通過(guò)與VEGFR2結(jié)合,靶向阻斷VEGF通路,從而抑制DSBs修復(fù),降低放療誘導(dǎo)的腫瘤血管形成效應(yīng),增加阻滯在G2期的胃癌細(xì)胞數(shù)目,抑制腫瘤增殖,誘導(dǎo)腫瘤凋亡,從而影響腫瘤組織對(duì)射線的敏感性,增強(qiáng)胃癌放療的效應(yīng),可為臨床胃癌實(shí)施放療時(shí)用阿帕替尼增敏放療提供理論依據(jù)。
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2):87-108.
[2] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008[J]. Int J Cancer, 2010, 127(12):2893-2917.
[3] Ueda T, Volinia S, Okumura H, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis[J]. Lancet Oncol, 2010, 11(2):136-146.
[4] 劉陽(yáng)云, 劉庚勛, 李正賢, 等. VEGF表達(dá)預(yù)測(cè)鼻咽癌放療效應(yīng)的價(jià)值[J]. 中國(guó)腫瘤,2014, 23(4):329-332.
[5] Scott AJ, Messersmith WA, Jimeno A. Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors[J]. Drugs Today (Barc), 2015, 51(4):223-229.
[6] Yu JI, Lim do H, Ahn YC, et al. Effects of adjuvant radiotherapy on completely resected gastric cancer: a radiation oncologist’s view of the ARTIST randomized phase III trial[J]. Radiother Oncol, 2015, 117(1):171-177.
[7] Valentini V, Cellini F, Minsky BD, et al. Survival after radiotherapy in gastric cancer: systematic review and meta-analysis[J]. Radiother Oncol, 2009, 92(2):176-183.
[8] Izuishi K, Mori H. Recent strategies for treating stage IV gastric cancer: roles of palliative gastrectomy, chemotherapy, and radiotherapy[J]. J Gastrointestin Liver Dis, 2016, 25(1):87-94.
[9] Kuefner MA, Brand M, Engert C, et al. Radiation induced DNA double-strand breaks in radiology[J]. Rofo, 2015, 187(10):872-878.
[10]Kühne M, Riballo E, Rief N, et al. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity[J]. Cancer Res, 2004, 64(2):500-508.
[11]Allal AS, Kahne T, Reverdin AK, et al. Radioresistance-related proteins in rectal cancer[J]. Proteomics, 2004, 4(8):2261-2269.
[12]Joist HE, Ahya SN, Giles K, et al. Differential effects of very high doses of doxercalciferol and paricalcitol on serum phosphorus in hemodialysis patients[J]. Clin Nephrol, 2006, 65(5):335-341.
[13]Shi L, Zhang S, Wu H, et al. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway[J]. PLoS One, 2013, 8(10):e78344.
[14]Kleibeuker EA, Fokas E, Allen PD, et al. Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect[J]. Oncotarget, 2016, 7(47):76613-76627.
[15]Grifn RJ, Williams BW, Wild R, et al. Simultaneous inhibition of the receptor kinase activity of vascular endothelial, fibroblast, and platelet derived growth factors suppresses tumor growth and enhances tumor radiation response[J]. Cancer Res, 2002, 62(6):1702-1706.
[16]Glade-Bender J, Kandel JJ, Yamashiro DJ. VEGF blocking therapy in the treatment of cancer[J]. Expert Opin Biol Ther, 2003, 3(2):263-276.
[17]Roviello G, Ravelli A, Polom K, et al. Apatinib: A novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer[J]. Cancer Lett,2016, 372(2):187-191.
[18]Li J, Qin S, Xu J, et al. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction[J]. J Clin Oncol, 2016, 34(13):1448-1454.
[19] 邵 棋, 曹 斐, 李 梅, 等. Integrin β1對(duì)胃癌細(xì)胞 SGC7901 多藥耐藥性的影響[J]. 中國(guó)病理生理雜志, 2016, 32(12): 2233-2238.
[20]Peng H, Zhang Q, Li J, et al. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma[J]. Oncotarget, 2016, 7(13):17220-17229.
[21]Lin Y, Zhai E, Liao B, et al. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer[J]. Oncotarget, 2017, 8(7): 11990-12002.
[22]Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure[J]. Nat Rev Cancer, 2005, 5(7):516-525.
[23]Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2004, 59(4):928-942.
[24]Rahimi N. Vascular endothelial growth factor receptors: molecular mechanisms of activation and therapeutic potentials[J]. Exp Eye Res, 2006, 83(5):1005-1016.
(責(zé)任編輯: 林白霜, 羅 森)
Apatinib increases radiosensitivity of gastric cancer by inhibiting VEGF pathway
LI Tong, ZHAI Er-tao, XU Li-xia, HUANG Lin-lin, PENG Sui, ZENG Zhi-rong
(DepartmentofGastroenterology,TheFirstAffiliatedHospital,SunYat-senUniversity,Guangzhou510080,China.E-mail:zengzhirong@vip.163.com)
AIM: To investigate radiosensitization effect of apatinib, a vascular endothelial growth factor (VEGF) receptor2 tyrosine kinase inhibitor, on human gastric carcinoma cell line SGC-7901 and its mechanism. METHODS: SGC-7901 cells were divided into control group, apatinib group, radiotherapy group and combination group. The cell viability was measured by CCK-8 assay. The changes of cell apoptosis and cell cycle were analyzed by flow cytometry. The protein levels of cell apoptosis biomarkers, such as PARP, cleaved caspase-9, cleaved caspase-3 and Bcl-2, and cell proliferation biomarkers, p-PLCγ1 and p-ERK1/2, were detected by Western blot. γ-H2AX expression was detected by immunofluorescence.RESULTS: Compared with apatinib group and radiation group, the cell viability was inhibited after treatment with both apatinib and X-ray (P<0.01). The protein levels of cell proliferation markers p-PLCγ1 and p-ERK1/2 were down-regulated. The cell apoptosis was enhanced (P<0.01). The protein levels of cell apoptosis makers such as PARP, cleaved caspase-9 and cleaved caspase-3 were up-regulated, while Bcl-2 was down-regulated. The disappearance of γ-H2AX foci in the nucleus was delayed, indicating that apatinib impaired the repair of radiation-induced DNA double-strand breaks. The proportion of G2phase was significantly increased (P<0.01). The combination treatment had more significant effect on SGC-7901 cells than treating with apatinib or radiotherapy alone. CONCLUSION: Apatinib increases the radiosensitivity of gastric cancer cells via blocking VEGF pathway.
Gastric carcinoma; Radiotherapy; Apatinib; Vascular endothelial growth factor
1000- 4718(2017)05- 0776- 06
2017- 01- 03
2017- 04- 06
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81502079); 廣州市科技計(jì)劃項(xiàng)目(No. 201607010074)
R730.23; R735.2
A
10.3969/j.issn.1000- 4718.2017.05.002
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 020-87332200-8283; E-mail: zengzhirong@vip.163.com