王東祥,凌祥,彭浩,楊新俊,崔政偉
?
轉(zhuǎn)盤表面黏性薄液膜穩(wěn)態(tài)流動特性數(shù)值模擬
王東祥1,2,凌祥2,彭浩2,楊新俊1,2,崔政偉1
(1江南大學(xué)機(jī)械工程學(xué)院,江蘇省食品先進(jìn)制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇無錫214122;2南京工業(yè)大學(xué)江蘇省過程強(qiáng)化與新能源裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,江蘇南京211800)
轉(zhuǎn)盤表面薄膜流廣泛存在于轉(zhuǎn)盤反應(yīng)器、造粒和分子蒸餾等化工領(lǐng)域,其流動特性對造粒、反應(yīng)以及熱質(zhì)傳遞具有重要影響。建立了穩(wěn)態(tài)薄膜流動特性理論模型,并對比實(shí)驗(yàn)數(shù)據(jù)與數(shù)值模擬結(jié)果,研究了等效Froude數(shù)、量綱1特征厚度與長度比值和澆注尺寸r對薄膜厚度分布的影響,導(dǎo)出了水躍和同步區(qū)半徑模型并通過實(shí)驗(yàn)驗(yàn)證。結(jié)果表明:等效Froude數(shù)不會對薄膜厚度分布產(chǎn)生明顯影響;量綱1和澆注尺寸r是水躍發(fā)生與否的決定條件,增大或縮小r有助于水躍出現(xiàn),水躍半徑穩(wěn)定于=0.85;平均徑向速度呈典型三分區(qū)特征,縮小澆注尺寸r將引起澆注區(qū)范圍加大而加速區(qū)范圍顯著縮小,導(dǎo)致薄膜無明顯加速現(xiàn)象而直接進(jìn)入同步區(qū),但同步區(qū)半徑維持在=1.53。研究結(jié)果為轉(zhuǎn)盤反應(yīng)器以及離心?;鞯鹊脑O(shè)計(jì)與優(yōu)化提供了可借鑒的理論與應(yīng)用基礎(chǔ)。
流體力學(xué);模型;實(shí)驗(yàn)驗(yàn)證;流域;轉(zhuǎn)盤;穩(wěn)態(tài)流
液體在轉(zhuǎn)盤表面因離心作用以薄層形式向外流動形成薄膜流,具有高熱質(zhì)傳遞系數(shù)等獨(dú)特優(yōu)點(diǎn),廣泛存在于分子蒸餾[1]、轉(zhuǎn)盤反應(yīng)器[2-8]、離心造粒[9-11]以及高溫熔融渣料余熱回收[12-14]等領(lǐng)域。薄膜流體自由液面形狀或者液膜厚度對造粒和熱質(zhì)傳遞具有重要影響[15-18]。如可調(diào)控液膜厚度以避免傳熱表面發(fā)生干斑或干區(qū)而導(dǎo)致熱敏性物料變味變質(zhì)、非熱敏性物料結(jié)焦,以至覆蓋傳熱界面引起傳熱能力或者反應(yīng)速率的顯著下降[19-20];在轉(zhuǎn)盤粒化法回收熔融渣料余熱工藝中,液膜厚度決定了流體在轉(zhuǎn)盤邊緣的破碎形態(tài)[21-23],進(jìn)而作用于熔融渣顆粒的凝固換熱和物相轉(zhuǎn)變[24],是影響余熱回收效率和渣粒資源化再利用的重要因素。
Emslie等[25]最早探索轉(zhuǎn)盤表面的薄膜流動行為,研究發(fā)現(xiàn)若忽略薄膜與轉(zhuǎn)盤間的速度滑移(即忽略科式力),薄膜流理論上由黏性力與離心力共同作用,較大Ekman數(shù)(>1)條件下的液膜厚度與轉(zhuǎn)盤徑向距離間滿足∝-2/3,提出了離心模型。在一些特殊條件下,某一轉(zhuǎn)盤區(qū)域的液膜厚度會顯著上升,形成水躍[26-29],但實(shí)現(xiàn)水躍半徑的理論預(yù)測還鮮有涉及。Wang等[30]在離心模型基礎(chǔ)上考慮了速度滑移的影響,研究發(fā)現(xiàn)離心模型只適用于水躍之后的薄膜流,科式力會顯著提高水躍區(qū)域的薄膜厚度。Woods[31]分析了強(qiáng)慣性力(<1)薄膜流,提出了Pigford模型。Burns等[32]采用電阻法對薄膜流的平均徑向速度進(jìn)行測量,發(fā)現(xiàn)徑向速度分布可分為澆注區(qū)、加速區(qū)以及同步區(qū),并提出黏性因子,對Pigford模型進(jìn)行了修正。Sisoev等[33]研究發(fā)現(xiàn)空氣誘導(dǎo)剪切力引起薄膜表面可能伴隨波動,但平均液膜厚度不會顯著改變,轉(zhuǎn)盤軸心和邊緣區(qū)域的液膜近似呈穩(wěn)態(tài)流動[34]。
現(xiàn)有研究工作主要針對轉(zhuǎn)盤軸心或邊緣區(qū)域的薄膜流動行為。本文針對整個(gè)轉(zhuǎn)盤表面薄膜流體的穩(wěn)態(tài)流動特性,采用量綱1分析與積分平均法簡化Navier-Stokes(N-S)方程,建立穩(wěn)態(tài)薄膜流動特性理論模型,研究薄膜自由液面形狀和液膜厚度分布,同時(shí)探討水躍和同步區(qū)演化的一般規(guī)律,為轉(zhuǎn)盤反應(yīng)器以及離心?;鞯鹊脑O(shè)計(jì)與優(yōu)化提供可借鑒的理論與應(yīng)用基礎(chǔ)。
1.1 控制方程量綱1化
工質(zhì)以恒定流量沿轉(zhuǎn)盤軸心澆注,液膜呈旋轉(zhuǎn)周期性流動。考慮一無限大轉(zhuǎn)盤,水平放置,以恒定角速度沿軸旋轉(zhuǎn)。工質(zhì)澆注口半徑為in,流量為,牛頓流體,不可壓縮,完全潤濕轉(zhuǎn)盤表面。液膜厚度分布如圖1所示,r為水躍半徑。
參考系固定于轉(zhuǎn)盤,微團(tuán)所受體積力為
式中,為工質(zhì)密度,為轉(zhuǎn)盤轉(zhuǎn)速,為液膜與轉(zhuǎn)盤之間相對速度,為重力加速度。
將式(1)代入Navier-Stokes(N-S)方程并進(jìn)行量綱1化處理化簡方程,引入薄膜特征厚度0以及特征長度0[29,34]
式中,為工質(zhì)運(yùn)動黏度?;谙嗨贫桑俣瘸叨群蛪毫Τ叨确謩e為
0=0=l0,0=0,0=220(3)
結(jié)合式(1)~式(3)處理連續(xù)性方程和N-S方程可得式(4)~式(7)。、、、分別為量綱1速度和壓力,=0/0,=20/。
(5)
(6)
1.2 薄膜近似
澆注口尺寸一般滿足in?0,薄膜特征厚度0相比其特征長度0為微量,可采用薄膜近似[30],即=0/0?1,式(4)~式(7)中的2和4項(xiàng)均可忽略;采用積分平均法將式(4)~式(7)中的物理量按照處理。變換后,式(4)~式(7)進(jìn)一步簡化為式(8)。為便于理解,式(8)中已略去所有物理量的上劃線。
式中,=s+,為等效Froude數(shù),s為大氣壓強(qiáng)。
1.3 邊界條件
薄膜流表面需滿足運(yùn)動學(xué)以及應(yīng)力平衡邊界條件。Kim等[29]認(rèn)為r處的切向速度可采用式(9)計(jì)算,但并未給出r的計(jì)算方法。而工質(zhì)澆注條件(澆注尺寸或澆注速度)均有可能影響薄膜流特性,可定義r=in/0。若忽略工質(zhì)沖擊轉(zhuǎn)盤引起的微弱能量損失,動能由軸向完全轉(zhuǎn)變?yōu)閺较颍?i>r處平均徑向速度可以近似為式(10),=r處的液膜厚度應(yīng)滿足連續(xù)性方程式(11)。綜上,式(8)需滿足邊界條件式(9)~式(11)。
(10)
(11)
1.4 模型驗(yàn)證
薄膜流厚度一般在數(shù)百微米,測量方法一般為探針法[28]和電阻法[26,32]。圖2、圖3為式(8)預(yù)測值分別與Leshev等[28]的探針法和Miyasaka[26]的電阻法測量值對比,工質(zhì)均為甘油水溶液。Miyasaka[26]的實(shí)驗(yàn)條件為=1200 kg·m-3,=(3~8)×10-3Pa·s,進(jìn)口in為200,=0.1~0.3??梢钥闯?,薄膜的厚度分布與實(shí)驗(yàn)測量吻合得很好。Miyasaka在實(shí)驗(yàn)中觀察到了水躍現(xiàn)象,從圖3可以看出,式(8)準(zhǔn)確地預(yù)測到了水躍的發(fā)生半徑,并且薄膜厚度與測量值也完全吻合。
Burns等[32]采用電阻法對薄膜平均徑向速度進(jìn)行了測量,發(fā)現(xiàn)徑向速度分布可分為澆注區(qū)、加速區(qū)以及同步區(qū)。由圖4可以看出,式(8)對薄膜流徑向速度的預(yù)測值與測量值吻合得很好,完全可以體現(xiàn)速度的三分區(qū)特征。
2.1 液膜厚度分布
由式(8)~式(11)可以看出,薄膜流的流動特性與等效Froude數(shù)、澆注口半徑r以及有關(guān)。圖5為=0.01與r=0.1時(shí)不同的薄膜厚度(或自由液面形狀)沿徑向的分布。可以看出,隨著由0增至0.04,薄膜厚度自澆注口后先呈微弱下降,而后在水躍半徑處匯聚,在水躍之后的薄膜流同樣先微弱下降而后完全重合。水躍半徑r則不受控制始終維持在0.85左右,另外對于>1.5的轉(zhuǎn)盤區(qū)域,薄膜流自由液面完全重合。因此只對水躍附近的薄膜流產(chǎn)生了微弱影響,而不會改變水躍半徑以及遠(yuǎn)離轉(zhuǎn)盤軸心的薄膜流特性,忽略后在=0.48處引入的最大誤差小于3%。從式(8)可以看出,等效Froude數(shù)對薄膜流的影響主要通過薄膜流體壓強(qiáng)來體現(xiàn),但由于薄膜流厚度一般在數(shù)百微米,其內(nèi)部壓強(qiáng)近似等于自由液面的大氣壓強(qiáng)而沒有顯著改變,即使Froude數(shù)在0.25~∝范圍時(shí)也不會對薄膜流自由液面形狀產(chǎn)生顯著影響。
圖6為=0與r=0.1時(shí)不同值的薄膜厚度徑向分布。隨著由0.001增至0.2,薄膜流從無水躍現(xiàn)象逐漸過渡到明顯的發(fā)生水躍,水躍半徑最終穩(wěn)定于=0.85的轉(zhuǎn)盤位置;當(dāng)<1.5時(shí),薄膜厚度呈顯著下降直至>0.05后趨于穩(wěn)定,而>1.5轉(zhuǎn)盤區(qū)域的薄膜流則不受影響,完全重合。由于相同澆注條件下主要體現(xiàn)了轉(zhuǎn)速對薄膜流的影響,因此水躍現(xiàn)象是否發(fā)生與轉(zhuǎn)盤轉(zhuǎn)速直接相關(guān)。圖7所示為=0與=0.01時(shí)不同澆注口尺寸r的薄膜厚度分布。其變化規(guī)律與圖6類似,澆注口半徑r<0.1時(shí)水躍現(xiàn)象開始于=0.85處出現(xiàn),當(dāng)r降至0.02以下時(shí),水躍穩(wěn)定且自由液面開始趨于一致。Wang等[30]采用CFD方法對不同澆注口尺寸in時(shí)的薄膜流特性進(jìn)行了數(shù)值分析,其中=45 ml·s-1,=2590 kg·m-3,=0.7 Pa·s,=0.478 N·m-1,=209.4 r·s-1。從圖8同樣可以看出,相同工況條件下澆注口尺寸顯著影響水躍是否發(fā)生和水躍前的薄膜厚度,而對水躍后區(qū)域則無影響。
結(jié)合圖6和圖7可以看出,相同工況下,工質(zhì)進(jìn)口條件(澆注口尺寸、澆注流量)以及轉(zhuǎn)盤轉(zhuǎn)速直接決定了水躍現(xiàn)象是否發(fā)生,并且影響<1.5轉(zhuǎn)盤區(qū)域的薄膜流特性。但水躍的發(fā)生半徑始終維持在=0.85左右,>1.5轉(zhuǎn)盤區(qū)域的薄膜流特性也不受影響。原因主要在于以=1.5為界,>1.5薄膜流徑向流動特性主要受離心力和黏性力控制,而<1.5的區(qū)域作用力主要為慣性力和黏性力。對于給定的澆注流量,澆注口尺寸縮小引起工質(zhì)沖擊轉(zhuǎn)盤軸心速度的顯著上升,在黏性力作用下澆注區(qū)速度急劇縮小,工質(zhì)由急流轉(zhuǎn)變?yōu)榫徚鳎糠謩幽苻D(zhuǎn)化為位能而導(dǎo)致水躍現(xiàn)象的發(fā)生。而增大轉(zhuǎn)盤轉(zhuǎn)速時(shí),慣性力影響區(qū)域減小,離心作用區(qū)域加大而引起薄膜快速進(jìn)入加速區(qū)而無水躍現(xiàn)象發(fā)生。
2.2 同步區(qū)半徑
Burns等[32]采用電阻法對薄膜流的平均徑向速度進(jìn)行測量,發(fā)現(xiàn)徑向速度分布可分為澆注區(qū)、加速區(qū)以及同步區(qū)。以圖9中r=0.15為例,工質(zhì)澆注至轉(zhuǎn)盤軸心后由于黏性力作用引起速度下降,在水躍附近速度降至最低,而后離心力引起薄膜切向速度逐漸與轉(zhuǎn)盤一致,徑向速度也同時(shí)上升直至=1.53處達(dá)到最大,最終進(jìn)入同步區(qū)。但從圖9也可以看出,隨著澆注口尺寸的縮小或薄膜流慣性力的增大,澆注區(qū)范圍逐漸加大,工質(zhì)速度因黏性減速效果也越明顯,而加速區(qū)范圍顯著縮小,薄膜無明顯加速現(xiàn)象,但不影響同步區(qū)尺寸。圖10所示為根據(jù)文獻(xiàn)測量數(shù)據(jù)得到的同步區(qū)半徑回歸方程。可以看出,量綱1同步區(qū)半徑=1.47,與本文的理論分析結(jié)果基本一致,這也驗(yàn)證了本文的研究結(jié)論。
本文以轉(zhuǎn)盤表面薄膜流穩(wěn)態(tài)流動特性為研究對象,采用量綱1分析與積分平均法化簡N-S方程,建立了量綱1薄膜流理論模型,研究了等效Froude數(shù)、量綱1和澆注口尺寸r對量綱1薄膜厚度分布的影響,探討了薄膜流水躍半徑以及同步區(qū)半徑與操作參數(shù)的一般規(guī)律。得到以下結(jié)論。
(1)等效Froude數(shù)在0~0.04范圍內(nèi)時(shí),對薄膜流的影響主要通過薄膜流體壓強(qiáng)來體現(xiàn),但由于薄膜流厚度一般在數(shù)百微米,其內(nèi)部壓強(qiáng)近似等于自由液面的大氣壓強(qiáng)而沒有顯著改變,不會對量綱1薄膜厚度產(chǎn)生明顯影響,進(jìn)而水躍半徑與無關(guān)。
(2)量綱1以及澆注口尺寸r直接決定了水躍現(xiàn)象是否發(fā)生。澆注口尺寸縮小引起工質(zhì)沖擊轉(zhuǎn)盤軸心速度顯著上升,黏性力引起澆注區(qū)速度由急流急劇向緩流轉(zhuǎn)變,流體位能增大而有利于水躍發(fā)生;而慣性力影響區(qū)域隨轉(zhuǎn)盤轉(zhuǎn)速增大而減小,離心作用區(qū)域加大而引起薄膜快速進(jìn)入加速區(qū)而無水躍現(xiàn)象發(fā)生。增大或者縮小r均有利于水躍的發(fā)生,量綱1水躍半徑始終維持在=0.85。
(3)>1.53區(qū)域的薄膜流徑向流動特性主要受離心力和黏性力控制,而<1.53的區(qū)域作用力主要為慣性力和黏性力,由此導(dǎo)致薄膜的平均徑向速度呈現(xiàn)典型三分區(qū)特征,縮小澆注口尺寸r將引起澆注區(qū)范圍加大而加速區(qū)范圍顯著縮小,導(dǎo)致薄膜無明顯加速現(xiàn)象而直接進(jìn)入同步區(qū),但同步區(qū)半徑始終維持在=1.53,與實(shí)驗(yàn)測量結(jié)果=1.47基本一致。
F——力,N g——重力加速度,m·s-2 h——薄液膜厚度,m l0——薄膜特征長度,m p——量綱1薄膜流壓強(qiáng) ps——大氣壓強(qiáng),Pa Q——工質(zhì)流量,m3·s-1 r——量綱1轉(zhuǎn)盤半徑 ri——量綱1進(jìn)口半徑 rin,rj,rs——分別為工質(zhì)進(jìn)口半徑、水躍半徑與同步區(qū)半徑,m u,v,w——分別為薄膜徑向、切向與軸向速度,m·s-1 u0,v0,w0——分別為量綱1薄膜徑向、切向與軸向速度 d0——薄膜特征厚度,m e——薄膜特征厚度與長度比值 μ——工質(zhì)動力黏度,Pa·s ρ——工質(zhì)密度,kg·m-3 υ——工質(zhì)運(yùn)動黏度,m2·s-1 w——轉(zhuǎn)盤轉(zhuǎn)速,rad·s-1 下角標(biāo) i——澆注進(jìn)口 j——水躍半徑 0——特征參數(shù)
[1] BATISTELLA C B, MORAES E B, MACIEL W M R. Comparing centrifugal and falling film molecular stills using reflux and cascade for fine chemical separations[J]. Computers & Chemical Engineering, 1999, 23: S767-S770.
[2] BOIARKINA I, NORRIS S, PATTERSON D A. Investigation into the effect of flow structure on the photocatalytic degradation of methylene blue and dehydroabietic acid in a spinning disc reactor[J]. Chemical Engineering Journal, 2013, 222(4): 159-171.
[3] 韓進(jìn), 朱彤, 今井剛, 等. 基于高速轉(zhuǎn)盤法的剩余污泥可溶化處理[J]. 化工學(xué)報(bào), 2008, 59(2): 478-483. HAN J, ZHU T, JIN J G,. Solubilization of excess sludge by high speed rotary disk[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(2): 478-483.
[4] 李丹, 張大皓, 譚天偉. 轉(zhuǎn)盤反應(yīng)器固定根霉重復(fù)批次發(fā)酵生產(chǎn)脂肪酶[J]. 化工學(xué)報(bào), 2007, 58(9): 2347-2351. LI D, ZHANG D H, TAN T W. Product ion of lipase by repeated batch fermentation with immobilizedusing rotating biological contactor[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(9): 2347-2351.
[5] 任南琪, 周顯嬌, 郭婉茜, 等. 染料廢水處理技術(shù)研究進(jìn)展[J]. 化工學(xué)報(bào), 2013, 64(1): 84-94. REN N Q, ZHOU X J, GUO W Q,. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94.
[6] 孫志成, 韓進(jìn), 張明楊, 等. 機(jī)械轉(zhuǎn)盤聯(lián)合超聲破解剩余污泥[J]. 化工學(xué)報(bào), 2016, 67(12): 5229-5236. SUN Z C, HAN J, ZHANG M Y,. Disintegration of excess sludge by mechanical rotary disk combination with ultrasonication[J]. CIESC Journal, 2016, 67(12): 5229-5236.
[7] BOIARKINA I, NORRIS S, PATTERSON D A. Investigation into the effect of flow structure on the photocatalytic degradation of methylene blue and dehydroabietic acid in a spinning disc reactor[J]. Chemical Engineering Journal, 2013, 222 (4): 159-171.
[8] 魏冰, 張巧玲, 劉有智, 等. 旋轉(zhuǎn)盤反應(yīng)器光催化降解苯酚廢水動力學(xué)[J]. 環(huán)境工程學(xué)報(bào), 2016, 10(3): 1305-1309. WEI B, ZHANG Q L, LIU Y Z,. Kinetics of phenol by photocatalysis degradation in spinning disk reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1305-1309.
[9] WANG D X, LING X, PENG H,. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9267-9275.
[10] 吳君軍, 王宏, 朱恂, 等. 轉(zhuǎn)盤離心粒化中絲狀成粒特性[J]. 化工學(xué)報(bào), 2015, 66(7): 2474-2480. WU J J, WANG H, ZHU X,. Characteristic of ligament in centrifugal granulation by spinning disc[J]. CIESC Journal, 2015, 66(7): 2474-2480.
[11] AHMED M, YOUSSEF M S. Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics[J]. Chemical Engineering Science, 2014, 107(14): 149-157.
[12] ZHANG H, WANG H, ZHU X,. A review of waste heat recovery technologies towards molten slag in steel industry[J]. Applied Energy, 2013, 112(4): 956-966.
[13] BARATI M, ESFAHANI S, UTIGARD T A. Energy recovery from high temperature slags[J]. Energy, 2011, 36(9): 5440-5449.
[14] WANG D X, LING X, PENG H. Simulation of ligament mode breakup of molten slag by spinning disk in the dry granulation process[J]. Applied Thermal Engineering, 2015, 84: 437-447.
[15] JACOBSEN N C, HINRICHSEN O. Micromixing efficiency of a spinning disk reactor[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11643-11652.
[16] AHMED M, YOUSSEF M S. Characteristics of mean droplet size produced by spinning disk atomizers[J]. Journal of Fluid Engineering, 2012, 134(7): 1-9.
[17] BOIARKINA I, NORRIS S, PATTERSON D A. The case for the photocatalytic spinning disc reactor as a process intensification technology: comparison to an annular reactor for the degradation of methylene blue[J]. Chemical Engineering Journal, 2013, 225(3): 752-765.
[18] CAPRARIIS B D, RITA D M, STOLLER M,. Reaction-precipitation by a spinning disc reactor: influence of hydrodynamics on nanoparticles production[J]. Chemical Engineering Science, 2012, 76(28): 73-80.
[19] 閻維平, 葉學(xué)民, 李洪濤. 液體薄膜流的流動和傳熱特性[J]. 華北電力大學(xué)學(xué)報(bào), 2005, 32(1): 59-65. YAN W P, YE X M, LI H T. Hydrodynamics and heat transfer of liquid thin films[J]. Journal of North China Electric Power University, 2005, 32(1): 59-65.
[20] CHIANG C, CHANG M, LIU H,. Process intensification in the production of photocatalysts for solar hydrogen generation[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5207-5215.
[21] PENG H, WANG N, WANG D X,. Experimental study on critical characteristics of liquid atomization by spinning disk[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6175-6185.
[22] 王東祥, 凌祥, 彭浩. 轉(zhuǎn)盤離心?;墼耗ち鲃犹匦詳?shù)值模擬研究[J]. 南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 37(3): 67-73. WANG D X, LING X, PENG H. Numerical simulation of film flow characteristics of molten slag on spinning disk in centrifugal atomization process[J]. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37(3): 67-73.
[23] WANG D X, LING X, PENG H,. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9267-9275.
[24] 何先琰, 王宏, 朱恂, 等. 鉛錫合金熔融顆粒風(fēng)冷相變換熱特性實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào), 2015, 36(8): 1748-1751.HE X Y, WANG H, ZHU X,. Experiment study on air-cooled phase change heat transfer characteristics of Sn-Pb alloy droplets[J]. Journal of Engineering Thermophysics, 2015, 36(8): 1748-1751.
[25] EMSLIE A G, BONNER F T, PECK L G. Flow of a viscous liquid on a rotating disk[J]. Journal of Applied Physics, 1958, 29(5): 858-862.
[26] MIYASAKA Y. On the flow of a viscous free boundary jet on a rotating disk[J]. Bulletin of the JSME, 1974, 40(331): 1461-1468.
[27] THOMAS S, FAGHRI A, HANKEY W. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk[J]. Journal of Fluids Engineering, 1991, 113(1): 73-80.
[28] LESHEV I, PEEV G. Film flow on a horizontal rotating disk[J]. Chemical Engineering and Processing, 2003, 42 (11): 925-929.
[29] KIM T S, KIM M U. The flow and hydrodynamic stability of a liquid film on a rotating disc[J]. Fluid Dynamics Research, 2009, 41(3): 475-479.
[30] WANG D X, LING X, PENG H. Theoretical analysis of free-surface film flow on the rotary granulating disk in waste heat recovery process of molten slag[J]. Applied Thermal Engineering, 2014, 63(1): 387-395.
[31] WOODS W P. The hydrodynamics of thin liquid films flowing over a rotating disk[D]. United Kingdom: University of Newcastle, 1995.
[32] BURNS J R, RAMSHAW C, JACHUCK R J. Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique[J]. Chemical Engineering Science, 2003, 58 (11): 2245-2253.
[33] SISOEV G M, MATER O K, LAWRENCE C J. Axisymmetric wave regimes in viscous liquid film flow over a spinning disk[J]. Journal of Fluid Mechanics, 2003, 495(495): 385-411.
[34] PRIELING D, STEINER H. Unsteady thin film flow on spinning disks at large ekman numbers using an integral boundary layer method[J]. International Journal of Heat and Mass Transfer, 2013, 65(7): 10-22.
Numerical simulation of stable flow dynamics of viscous film on spinning disk surface
WANG Dongxiang1,2, LING Xiang2, PENG Hao2, YANG Xinjun1,2, CUI Zhengwei1
(1Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China;2Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, Nanjing Tech University, Nanjing 211800, Jiangsu, China)
Film flow on spinning disk surface exists extensively in chemical engineering operations, such as centrifugal graining, molecular distillation and spinning disk reactors. Flow dynamics of the film flow has a major impact on graining, reaction, heat and mass transfer rate. Theoretical model of stable film flow dynamics was established and verified by comparison of experimental results and numerical simulations. The effect of equivalent Froude number, dimensionless ratio of characteristic thickness over length,and casting sizeron dimensionless film thickness distribution was studied, which a model of dimensionless hydraulic jump and synchronized zone radius was derived and verified by experiments. The results show that equivalent Froude number has little effect on film thickness distribution and occurrence of hydraulic jump phenomenon mainly depends uponandr. Increasingor decreasingrleads to appearance of hydraulic jump with a dimensionless hydraulic jump radius always at=0.85. Mean radial velocity exhibited features of typical three zone distribution. Reducing casting size would extend injection zone and shrink acceleration zone, such that film flow goes directly to synchronized zone at dimensionless synchronized radius of 1.53 without evident acceleration. The results will provide theoretical reference for design and optimization of spinning disk reactors and centrifugal pelletizers.
fluid mechanics; model; experimental validation; flow regimes; spinning disk; steady flow
10.11949/j.issn.0438-1157.20170040
TQ 021.1
A
0438—1157(2017)06—2321—07
凌祥。
王東祥(1985—),男,博士,講師。
國家自然科學(xué)基金項(xiàng)目(51606086,51406078)。
2017-01-10收到初稿,2017-02-16收到修改稿。
2017-01-10.
Prof. LING Xiang, xling@njtech.edu.cn
supported by the National Natural Science Foundation of China (51606086, 51406078).