尚小珂 盧蓉 柳梅 肖書(shū)娜 王斌 張長(zhǎng)東 董念國(guó)
?
·基礎(chǔ)研究·
壓力-容積環(huán)評(píng)估肺動(dòng)脈高壓小鼠右心室功能的研究
尚小珂 盧蓉 柳梅 肖書(shū)娜 王斌 張長(zhǎng)東 董念國(guó)
目的 使用電導(dǎo)導(dǎo)管測(cè)量小鼠右心室壓力-容積環(huán),評(píng)估健康小鼠及肺動(dòng)脈高壓模型小鼠的血流動(dòng)力學(xué)。方法 將16只小鼠隨機(jī)分為實(shí)驗(yàn)組(n=8)和對(duì)照組(n=8)。實(shí)驗(yàn)組小鼠暴露在常壓缺氧的環(huán)境中10 d,對(duì)照組小鼠被安置在室內(nèi)空氣中。使用1.2 F導(dǎo)管從右頸動(dòng)脈插至升主動(dòng)脈,另外再穿刺右心室心尖部,用20號(hào)針頭導(dǎo)入1.2 F壓力-容積導(dǎo)管,獲得壓力-容積的測(cè)量值并計(jì)算血流動(dòng)力學(xué)參數(shù)。比較兩組小鼠血流動(dòng)力學(xué)參數(shù)的差異。結(jié)果 兩組小鼠體重、右心房重量/體重、左心房重量/體重、(左心室+室間隔)重量/體重比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05);實(shí)驗(yàn)組小鼠右心室重量/(左心室+室間隔)重量[(0.30±0.03)比(0.23±0.06),P=0.0291]、右心室重量/體重[(1.04±0.13)比(0.74±0.10),P=0.0001]顯著高于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義。兩組小鼠心率、主動(dòng)脈收縮壓、主動(dòng)脈舒張壓、右心室舒張末期容積、心室內(nèi)最大壓力上升速度、右心室收縮末期壓力-容積關(guān)系的斜率、心室內(nèi)最大壓力下降速度、松弛因子τ比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05)。實(shí)驗(yàn)組小鼠血細(xì)胞容積率、右心室收縮壓、右心室舒張壓、搏出功、壓力導(dǎo)數(shù)的最大值與右心室舒張末期壓力容積關(guān)系的斜率、前負(fù)荷補(bǔ)充搏功、動(dòng)脈有效彈性顯著大于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義;而射血時(shí)間[(36±2)ms比(45±1)ms,P=0.0001]、心輸出量[(5.2±2.6)ml/min比(8.5±2.3)ml/min,P=0.0026]、心室順應(yīng)性[(0.43±0.13)μl/mmHg比(0.68±0.21)μl/mmHg,P=0.0030(1 mmHg=0.133 kPa)]、射血分?jǐn)?shù)[(28±13)%比(51±11)%,P=0.0008]、耦合效率[(0.36±0.15)比(0.73±0.26),P=0.0001]顯著低于對(duì)照組,差異亦均有統(tǒng)計(jì)學(xué)意義。結(jié)論 本研究驗(yàn)證了電導(dǎo)導(dǎo)管測(cè)量小鼠右心室壓力-容積數(shù)據(jù)的可能性,為健康狀態(tài)或疾病狀態(tài)下的右心室-肺動(dòng)脈耦合機(jī)制的研究提供了方向。
壓力-容積環(huán); 肺動(dòng)脈高壓; 電導(dǎo)導(dǎo)管; 右心室-肺動(dòng)脈耦合
肺動(dòng)脈高壓是肺小動(dòng)脈原發(fā)病變或其他原發(fā)疾病導(dǎo)致的肺動(dòng)脈阻力增加,最終會(huì)導(dǎo)致代償失調(diào)的右心室功能衰竭,甚至死亡。近年來(lái),肺動(dòng)脈高壓的預(yù)后效果仍不理想,現(xiàn)有治療措施1年內(nèi)死亡率約為15%[1]。雖然右心室功能是確定心肺功能的重要因素,但與左心室(left ventricle,LV)相比,對(duì)右心室(right ventricle,RV)的研究相對(duì)較少。具體而言,與LV相比,RV的力學(xué)性能尚未明確,唯一報(bào)道RV力學(xué)數(shù)據(jù)的研究基于健康犬類(lèi)[2-4]、牛類(lèi)[5]和鼠類(lèi)[6]等動(dòng)物模型的離體實(shí)驗(yàn)。就肺動(dòng)脈高壓而言,目前僅有一項(xiàng)鼠類(lèi)的肺動(dòng)脈環(huán)縮術(shù)研究論述了RV因形態(tài)重構(gòu)而發(fā)生的力學(xué)與結(jié)構(gòu)變化[7]。而小鼠RV-血管耦合的相關(guān)研究尚未見(jiàn)報(bào)道。本研究通過(guò)利用電導(dǎo)導(dǎo)管測(cè)量壓力-容積環(huán)評(píng)估小鼠RV功能、肺動(dòng)脈功能和RV-肺動(dòng)脈血流動(dòng)力學(xué)耦合,將這項(xiàng)技術(shù)運(yùn)用于小鼠RV和肺血管研究。
1.1 動(dòng)物模型制作
16只雄性C57bL6小鼠,年齡為10~12周,體重為(25.6±1.4)g。將16只小鼠隨機(jī)分為實(shí)驗(yàn)組(n=8)和對(duì)照組(n=8)。實(shí)驗(yàn)組小鼠暴露在常壓缺氧的環(huán)境中10 d,缺氧環(huán)境由環(huán)境控制箱制造,每周打開(kāi)控制箱3次,每次10~20 min用來(lái)打掃籠子,補(bǔ)充食物和水,每12 h開(kāi)關(guān)燈交替;對(duì)照組小鼠被安置在室內(nèi)空氣中自由進(jìn)食、給水,每12 h開(kāi)關(guān)燈交替。
1.2 手術(shù)步驟
使用戊巴比妥鈉(80 mg/kg)腹腔注射麻醉,插管并放置呼吸機(jī),使用225 L的潮氣量和200次/min呼吸頻率,以加熱墊保持小鼠的溫度為38℃~39℃。從下頜骨到劍突下剪開(kāi)皮膚,打開(kāi)胸骨,進(jìn)入胸腔,暴露RV。
1.3 血流動(dòng)力學(xué)測(cè)量
參考Pacher等[8]的操作方法,使用1.2 F導(dǎo)管從右頸動(dòng)脈插入至升主動(dòng)脈,另外再穿刺RV心尖部,用20號(hào)針頭導(dǎo)入1.2 F壓力-容積導(dǎo)管,使用小鼠動(dòng)脈血校準(zhǔn)導(dǎo)管參數(shù)。獲得壓力-容積的初始測(cè)量值后,分離出下腔靜脈并短暫夾閉,通過(guò)改變腔靜脈回流測(cè)定RV收縮末期壓力和RV舒張末期壓力的關(guān)系。下腔靜脈閉塞限制在幾秒鐘內(nèi),以避免引起心搏驟停。
所有數(shù)據(jù)測(cè)量完畢后,用一個(gè)血液樣品來(lái)測(cè)量血細(xì)胞比容。稱重LV、室間隔(S)及RV,RV/(LV+S)用來(lái)計(jì)算RV肥大的指標(biāo)。左心房(LA)、右心房(RA)也剔除并稱重。
1.4 血流動(dòng)力學(xué)數(shù)據(jù)分析
每一只小鼠都至少取10個(gè)連續(xù)心臟周期用于分析壓力-容積數(shù)據(jù),測(cè)得的基本血流動(dòng)力學(xué)數(shù)據(jù)包括心率、舒張壓、收縮壓。RV功能的部分參數(shù)包括心輸出量(cardiac output,CO)、射血分?jǐn)?shù)、心室順應(yīng)性及動(dòng)脈有效彈性(Ea)等根據(jù)血流動(dòng)力學(xué)數(shù)據(jù)進(jìn)行計(jì)算。心臟收縮力從3個(gè)方面來(lái)定義: 收縮末期壓力-容積關(guān)系的斜率(end-systolic elastance,Ees)、前負(fù)荷補(bǔ)充搏功(preload recruitable stroke work,PRSW)、壓力導(dǎo)數(shù)的最大值與舒張末期壓力容積關(guān)系的斜率(dP/dtmax-EDV)。最后用Ees/Ea 計(jì)算心室血管耦合效率。
1.5 統(tǒng)計(jì)學(xué)分析
2.1 兩組小鼠心室重量情況比較
兩組小鼠體重、RA重量/體重、LA重量/體重、(LV+S)重量/體重比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05);而實(shí)驗(yàn)組小鼠RV重量/(LV+S)重量[(0.30±0.03)比(0.23±0.06),P=0.0291]、RV重量/體重[(1.04±0.13)比(0.74±0.10),P=0.0001]顯著高于對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(表1)。
2.2 兩組小鼠血流動(dòng)力學(xué)參數(shù)及壓力-容積衍生相關(guān)指標(biāo)的比較
通過(guò)對(duì)小鼠腔靜脈阻塞導(dǎo)致前負(fù)荷改變形成典型的壓力-容積曲線。兩組小鼠心率、主動(dòng)脈收縮壓、主動(dòng)脈舒張壓、RV舒張末期容積、dP/dtmax、Ees、dP/dtmin、松弛因子τ比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(均P>0.05)。實(shí)驗(yàn)組小鼠血細(xì)胞容積率、RV收縮壓、RV舒張壓、搏出功、dP/dtmax-EDV、PRSW、Ea顯著大于對(duì)照組,差異均有統(tǒng)計(jì)學(xué)意義;而射血時(shí)間[(36±2)ms比(45±1)ms,P=0.0001]、心輸出量[(5.2±2.6)ml/min比(8.5±2.3)ml/min,P=0.0026]、心室順應(yīng)性[(0.43±0.13)μl/mmHg比(0.68±0.21)μl/mmHg(1 mmHg=0.133 kPa),P=0.0030]、射血分?jǐn)?shù)[(28±13)%比(51±11)%,P=0.0008]、Ees/Ea[(0.36±0.15)比(0.73±0.26),P=0.0001]顯著低于對(duì)照組,差異亦均有統(tǒng)計(jì)學(xué)意義(表2)。
本研究通過(guò)小鼠實(shí)驗(yàn)論證了導(dǎo)管同步測(cè)量RV壓力與容積的可能性,得出壓力-容積數(shù)據(jù)以及RV-肺動(dòng)脈功能的病變。目前,尚未見(jiàn)同步測(cè)量小鼠RV逐次心跳的壓力和容積的研究報(bào)道。
本研究測(cè)量的RV壓力與既往研究類(lèi)似,約25 mmHg[9-11];略高于另外幾項(xiàng)研究的測(cè)量結(jié)果(約18 mmHg)[12-13],RV收縮壓高于后兩項(xiàng)研究的可能因素是小鼠心率減慢所致。本研究測(cè)得的RV CO值近似于熱稀釋法測(cè)得的RV CO值[14]、經(jīng)食管超聲心動(dòng)圖估算的RV CO值[14]以及各種方法測(cè)得的LV CO值[15]。測(cè)量得RV舒張末期容積值與超聲心動(dòng)圖測(cè)得的值類(lèi)似[14],但低于Rockman等[16]利用X線微血管造影術(shù)測(cè)得的值。但Rockman等使用了對(duì)比劑,靜脈回流隨之增加,并且心率偏低,這兩種因素可能會(huì)影響RV舒張末期容積的值。在測(cè)得RV功能數(shù)據(jù)中,對(duì)照組RV收縮力替代值dP/dtmax[(2522±660) mmHg/s]高于Otto等[17]測(cè)得的值[(736±100)mmHg/s],但Otto等測(cè)得的RV壓力和心率均偏低,這可能是產(chǎn)生差異的原因。射血分?jǐn)?shù)類(lèi)似于超聲心動(dòng)圖測(cè)得的值[14],以及X線微血管造影術(shù)測(cè)得的值[16]。通過(guò)壓力-容積分析的金指標(biāo)Ees測(cè)量小鼠RV收縮力低于LV的值[18],可能是與RV的壓力較低有關(guān)。
目前,尚無(wú)小鼠肺循環(huán)Ea的相關(guān)研究。Ea包括了整個(gè)心室后負(fù)荷的主要元素,如血管末梢阻力、動(dòng)脈順應(yīng)性、特性阻抗等[15],可通過(guò)搏出功除以心室壓力峰值(SW/PVP)計(jì)算[19]。已有研究表明,小鼠肺循環(huán)的Ea值比體循環(huán)系統(tǒng)的Ea值約小4倍[15]。在CO相同的情況下,RV壓力峰值比LV壓力峰值約小4倍[15]。本研究驗(yàn)證了這些指標(biāo)。另外本研究表明收縮力增強(qiáng)、Ea增大、室腔順應(yīng)性減弱,導(dǎo)致心室與脈管系統(tǒng)無(wú)法耦合,說(shuō)明在慢性缺氧10 d的情況下,小鼠心肌做功已經(jīng)無(wú)法抵消增加的后負(fù)荷量,耦合效率降低約一半。
本研究利用電導(dǎo)導(dǎo)管檢查健康和肺動(dòng)脈高壓小鼠,評(píng)估RV和心肺功能狀態(tài)。本研究的不足之處在于電導(dǎo)導(dǎo)管測(cè)量容積并非金標(biāo)準(zhǔn),可能會(huì)導(dǎo)致容積測(cè)量偏小而高估Ees等參數(shù);另外本研究樣本量較小,還需要增加樣本量進(jìn)一步驗(yàn)證結(jié)論。目前初步測(cè)得的參數(shù)與既往研究基本一致,這些發(fā)現(xiàn)重要在于用壓力-容積環(huán)小鼠模型闡明肺動(dòng)脈高壓與力學(xué)和結(jié)構(gòu)變化有關(guān)的規(guī)律,將這些整體變化情況進(jìn)行量化分析極為重要。肺動(dòng)脈高壓是一種嚴(yán)重的疾病,其預(yù)后較差,了解并預(yù)測(cè)RV衰竭對(duì)于診治肺動(dòng)脈高壓并探索更有效的治療措施極為重要。本研究應(yīng)用電導(dǎo)導(dǎo)管測(cè)量壓力-容積曲線評(píng)估了右心功能和心室-肺動(dòng)脈耦合關(guān)系,可將這些技術(shù)運(yùn)用于轉(zhuǎn)基因和剔除基因的小鼠,以評(píng)估基因因素對(duì)于RV衰竭與肺動(dòng)脈高壓的影響,以及傳統(tǒng)治療方法或新的治療方法的療效。
表1 兩組小鼠體重和心室重量比較情況±s)
注:RV,右心室;LV,左心室;S,隔膜;RA,右心房;LA,左心房
表2 兩組小鼠血流動(dòng)力學(xué)參數(shù)和從RV壓力-容積衍生的收縮及舒張功能指標(biāo)比較±s)
注: dP/dtmax,心室內(nèi)最大壓力上升速度;dP/dtmin,心室內(nèi)最大壓力下降速度;dP/dtmin-EDV,壓力導(dǎo)數(shù)的最大值與舒張期壓力-容積關(guān)系的解率;PRSW,前負(fù)荷補(bǔ)充搏功;Ees,收縮末期壓力-容積關(guān)系的斜率;Ea,動(dòng)脈有效彈性;Ees/Ea,耦合效率;1 mmHg=0.133 kPa
[1] McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation task force on expert consensus documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol, 2009, 53(17): 1573-1619.
[2] Sacks MS, Chuong CJ. A constitutive relation for passive right-ventricular free wall myocardium. J Biomech, 1993, 26(11): 1341-1345.
[3] Sacks MS, Chuong CJ. Biaxial mechanical properties of passive right ventricular free wall myocardium. J Biomech Eng, 1993, 115(2): 202-205.
[4] Witzenburg C, Raghupathy R, Kren SM, et al. Mechanical changes in the rat right ventricle with decellularization. J Biomech, 2012, 45(5): 842-849.
[5] Ghaemi H, Behdinan K, Spence AD. In vitro technique in estimation of passive mechanical properties of bovine heart: Part I. Experimental techniques and data. Med Eng Phys, 2009, 31(1): 76-82.
[6] Valdez‐Jasso D, Simon MA, Champion HC, et al. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium. J Physiol, 2012, 590(18): 4571-4584.
[7] Hill MR, Simon MA, Valdez-Jasso D, et al. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng, 2014, 42(12): 2451-2465.
[8] Pacher P, Nagayama T, Mukhopadhyay P, et al. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc, 2008, 3(9): 1422-1434.
[9] Nikam VS, Schermuly RT, Dumitrascu R, et al. Treprostinil inhibits the recruitment of bone marrow-derived circulating fibrocytes in chronic hypoxic pulmonary hypertension. Eur Respir J, 2010, 36(6): 1302-1314.
[10] Ochoa CD, Yu L, Al-Ansari E, et al. Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension. J Cardiothorac Surg, 2010, 5:32.
[11] Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest, 2005, 115(10): 2811-2821.
[12] Morecroft I, Pang L, Baranowska M, et al. In vivo effects of a combined 5-HT1B receptor/SERT antagonist in experimental pulmonary hypertension. Cardiovasc Res, 2009,85(3):593-603.
[13] Wu X, Du L, Xu X, et al. Increased nitrosoglutathione reductase activity in hypoxic pulmonary hypertension in mice. J Pharmacol Sci, 2010, 113(1): 32-40.
[14] Champion HC, Villnave DJ, Tower A, et al. A novel right-heart catheterization technique for in vivo measurement of vascular responses in lungs of intact mice. Am J Physiol Heart Circ Physiol, 2000, 278(1): H8-H15.
[15] Segers P, Georgakopoulos D, Afanasyeva M, et al. Conductance catheter-based assessment of arterial input impedance, arterial function, and ventricular-vascular interaction in mice. Am J Physiol Heart Circ Physiol, 2005, 288(3): H1157-H1164.
[16] Rockman HA, Ono S, Ross RS, et al. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A.,1994, 91(7): 2694-2698.
[17] Otto C, Hein L, Brede M, et al. Pulmonary hypertension and right heart failure in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. Circulation, 2004, 110(20): 3245-3251.
[18] Joho S, Ishizaka S, Sievers R, et al. Left ventricular pressure-volume relationship in conscious mice. Am J Physiol Heart Circ Physiol, 2007, 292(1): H369-H377.
[19] Vanderpool RR, Pinsky MR,Naeije R, et al.RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart, 2015, 101(1): 37-43.
DONGNian-guo,Email:sxs_dng@163.com
Objective To study on the evaluation of haemodynamics in the normal and pulmonary hypertensive mouse hearts using pressure volume loops measured by electric catheter. Methods Compared the difference in haemodynamics between mice exposed to chronic hypoxia for 10 days, which causes hypoxia-induced pulmonary hypertension(experimental group,n=8), and mice raised under normal atmospheric pressure (control group,n=8). The right carotid artery was cannulated with a 1.2 F catheter and advanced into the ascending aorta, then punctured towards the right ventricular apex. A 1.2 F admittance pressure-volume catheter was introduced using a 20-gauge needle to obtain the pressure - volume measurements and calculate hemodynamic parameters. Results There were no significant differences in average by weight, ratio of right atrial weight to body weight, left atrial weight/body weight, left ventricular free wall and septum weight/body weight between the 2 groups(allP>0.05).The ratio of right rentricle/left rentricle and septum weight as well as right rentricular weight/body weight was increased in the experimental group and of significant difference when compared to the control.The mice in in the experimental group had a 61%mean decrease in cardiac output,a 55% decrease in ejection fraction,and a 63% decrease in ventricular compliance(P<0.05).The increase in dP/dtmax-EDVand PRSWfound in the experimental group reflected significant increase in myocardial contractility.Increase in Ees was observed but without significant difference as compared to the control.Ea significantly increased in the experimental group resulting in significant decrease in Ees/Ea from(0.71 ±0.27) to (0.35 ±0.17) (P< 0.005). Conclusion This study demonstrates the feasibility of obtaining RV pressure-volume measurements in mice using electric catheter. These measurements provide insight into right ventricular- pulmonary artery interactions in healthy and diseased conditions.
Pressure-volume loop; Pulmonary hypertension; Electric catheter; The right ventricle-pulmonary artery coupling
10.3969/j.issn.1004-8812.2017.05.006
國(guó)家自然科學(xué)基金重大項(xiàng)目(31330029);武漢市中青年醫(yī)療骨干人才專項(xiàng)基金(201477);武漢市晨光計(jì)劃人才專項(xiàng)基金(2016)
430032 湖北武漢,華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院心外科(尚小珂、王斌、董念國(guó));武漢大學(xué)第二臨床學(xué)院醫(yī)學(xué)科學(xué)研究院(尚小珂);武漢市第一醫(yī)院ICU(盧蓉、柳梅);湖北省婦幼保健院ICU(肖書(shū)娜);武漢亞洲心臟病醫(yī)院心外科(張長(zhǎng)東)
董念國(guó),Email:sxs_dng@163.com
R544.1
2016-11-07)
Assessment of right ventricular function in mice with pulmonary hypertensive by pressure-volume loopsSHANGXiao-ke,LURong,LIUMei,XIAOShu-na,WANGBin,ZHANGChang-dong,DONGNian-guo.CardiovascularSurgery,WuhanUnionHospital,TongjiMedicalCollege,HuazhongUniversityofScienceandTechnology.Wuhan430022,China